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Abstract— Accuracy is a fundamental performance require-
ment in network localization. This paper studies the accuracy of
range-based localization schemes for random sensor networks
with respect to network connectivity and scale. We show that
the variance of localization errors is proportional to the average
geometric dilution of precision (AGDOP). The paper proves a
novel lower bound of expectation of AGDOP (LB-E-AGDOP).
Our analysis based on LB-E-AGDOP shows that localization
accuracy is approximately inversely proportional to the average
degree of network. A further analysis shows that when network
connectivity merely guarantees localizability, increasing sensor
nodes leads to bounded monotonic increase in AGDOP; when
a network is densely connected, increasing sensor nodes leads
to bounded monotonic decrease in AGDOP. Finally, these
conclusions are validated by numerical simulations.

I. INTRODUCTION

Robotic sensor networks, namely sensor networks with

robotic mobility, represent a new paradigm of large-scale,

flexible, robust, cost-effective data collection and information

processing in complex environments. They are expected

to enable many fascinating applications including assisted

navigation and surveillance, wildlife habitat monitoring,

oceanographic data collection, and disaster management [1]–

[4]. Many of these applications rely on accurate location

information about sensor nodes. To this end, various network

localization schemes have been explored over the past decade.

These schemes can be generally classified into five categories:

range-based [5], [6], angle-based [7], [8], proximity-based [9],

[10], event-driven [11], [12], and simultaneous localization

and map building [13], [14]. In this paper, we focus on range-

based schemes because they can achieve better localization

accuracy than most other schemes [15].

Fig. 1 illustrates a scenario of range-based network localiza-

tion. Since range-based network localization is essentially a

graph realization problem [16]–[18], connectivity of the graph

exerts significant influence on many performance metrics,

such as accuracy, energy efficiency, localizability, robustness,

and scalability. Although localizability has been studied with

respect to connectivity [16], [17], the relationship between

accuracy and connectivity has not yet been theoretically

treated. This paper aims at a generalized theory to char-

acterize accuracy with respect to connectivity. Specifically,

the following problems are addressed in this paper.

• What is the quantitative relationship between localization

accuracy and network connectivity?

• For a certain level of connectivity, how does accuracy

vary with network scale (number of sensor nodes)?
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Fig. 1. A scenario of range-based network localization in 2 dimensions.
Squares denote anchor nodes whose locations are known, circles denote
sensor nodes whose locations are to be estimated, and lines represent ranging
links which provide inter-node distance information. We assume that sensor
nodes are randomly distributed, and ranging links are randomly established to
achieve a certain level of connectivity. The purpose of this paper is to study
the relationship between localization accuracy and network connectivity.

In this paper, connectivity is defined as average sensor and

node degrees of the graph. Connectivity affects geometry of

nodes. Geometry and inter-node ranging accuracy together

determine localization accuracy. We first show that the

variance of localization errors is proportional to the average

geometric dilution of precision (AGDOP) and thus decouple

localization accuracy from range accuracy. Next, we prove

a lower bound of E-AGDOP (LB-E-AGDOP), and obtain a

closed-form expression (19) that characterizes overall network

localization accuracy with respect to connectivity and network

scale. The closed-form expression is then used to answer the

above two questions. The theoretical answers are validated

by numerical simulations.

The rest of this paper is organized as follows. Section II

formulates the network localization problem and introduces

the connectivity metrics used throughout this paper. Section III

analyzes localization accuracy and its relationship to AGDOP.

Section IV derives a closed-form expression for LB-E-

AGDOP with respect to network connectivity and scale.

Section V studies how location accuracy varies with the net-

work scale. Section VI presents numerical simulation results

to validate the theoretical conclusions. Finally, Section VII

concludes the paper.

II. PRELIMINARIES

A. Problem formulation

In this paper, a sensor network is modeled as a simple

graph1 G = (V,E), where V = {1, 2, . . . , N} is a set of N

1A simple graph, also referred to as a strict graph, is an unweighted,
undirected graph containing no self-loops or multiple edges [19], [20].
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nodes (or vertices), and E = {e1, e2, . . . , eK} ⊆ V × V is a

set of K links (or edges) that connect the nodes [17].

All nodes are in a d-dimensional Euclidean space (d ≥ 1),

with the locations denoted by pn ∈ R
d, n = 1, . . . , N .

The first NS nodes, labeled 1 through NS , are ordinary

sensor nodes (or mobile nodes), whose locations are unknown;

the rest NA = N − NS nodes, labeled NS + 1 through

N , are special anchor nodes (or beacon nodes), who are

aware of their locations, either through GPS or manual pre-

programming during deployment.

An unordered pair ek = (ik, jk) ∈ E if and only if there

exists a direct ranging link between nodes ik and jk. The

link provides inter-node distance information ρk = rk + ǫk,

where rk = ‖pik − pjk‖ is the actual distance between nodes

ik and jk, and ǫk is the range measurement error. The range

measurements ρk can be obtained by a variety of methods,

such as one-way time of arrival (ToA), two-way ToA, and

received signal strength indication [21]. In this paper, we

assume perfect clock synchronization, i.e., zero clock biases,

if the range is measured by one-way ToA.

The network localization problem is to determine the

locations of sensor nodes pn, n = 1, . . . , NS , given a fixed

network graph G, known locations of anchors pn, n = NS+1,

. . . , N , and range measurements ρk, k = 1, . . . , K.

B. Metrics of connectivity

Assume no anchor-to-anchor links. For all nodes n = 1,

. . . , N , we define the following degrees:

• Anchor degree: degA(n), the number of anchor-to-sensor

links incident to node n;

• Sensor degree: degS(n), the number of sensor-to-sensor

links incident to node n;

• Degree: deg(n) = degA(n) + degS(n), the number of

links incident to node n;

In graph theory, connectivity is usually described by vertex

connectivity or edge connectivity. For example, a graph is

κ-vertex/edge-connected if it remains connected whenever

fewer than κ vertices/edges are removed [20]. Unfortunately,

vertex/edge connectivity only describes some “minimum”

properties of connectivity, such as minn deg(n) [20], and

does not distinguish between sensor and anchor nodes. This

paper uses average degrees to characterize the “average”

connectivity of the network. The average degrees are defined

as

δ∗ =
1

NS

NS
∑

n=1

deg∗(n), (1)

where the subscript ∗ can be blank, A, or S , for the average

degree, average anchor degree, or average sensor degree,

respectively.

Let KS and KA denote the number of sensor-to-sensor

and anchor-to-sensor links in the network, respectively. It is

easy to verify the equalities K = KS +KA, NSδS = 2KS ,

NSδA = KA, and δ = δS + δA.

III. LOCALIZATION ACCURACY

Localization is fundamentally an optimization problem that

finds coordinate vectors pn ∈ R
d, n = 1, . . . , NS , such

that for each ranging link ek = (ik, jk) ∈ E, the distance

rk = ‖pik − pjk‖ is as close to the range measurement ρk
as possible.

Assume that range errors follow a zero-mean Gaussian

distribution, i.e.,

ρk = rk + ǫk, ǫk ∼ N (0, σ2
k), ∀k = 1, . . . ,K. (2)

Then, the maximum likelihood (ML) estimation of {pn}NS

n=1

is equivalent to the weighted least squares (LS) problem

min
{pn}

NS
n=1

K
∑

k=1

(‖pik − pjk‖ − ρk)
2

σ2
k

. (3)

The LS problem cannot be directly solved because the

distance rk = ‖pik −pjk‖ is a nonlinear function of the coor-

dinate vectors pik and pjk . Let p = column{p1, p2, . . . , pNS
}

∈ R
dNS and r(p) = (r1(p), r2(p), . . . , rK(p))T ∈ R

K . The

first-order linear approximation of the distance function r(p)
with respect to an initial guess p0 can be written as

r(p0 +∆p) = r(p0) +G∆p, (4)

where the geometry matrix G ∈ R
K×dNS is given by

G =
∂r

∂p
=









∂r1
∂p1,1

. . . ∂r1
∂p1,d

. . . ∂r1
∂pNS,d

...
...

...
...

...
∂rK
∂p1,1

. . . ∂rK
∂p1,d

. . . ∂rK
∂pNS,d









, (5)

where pi,m, m = 1, . . . , d, is the mth element of the

coordinate vector pi. Each element of the geometry matrix

G is given by

Gk,(n−1)d+m =
∂rk

∂pn,m
=















pik,m−pjk,m

‖pik
−pjk

‖ if n = ik,
pjk,m−pik,m

‖pik
−pjk

‖ if n = jk,

0 otherwise.

(6)

Each row of G represents a link. There are only d nonzero

elements in a row for an anchor-to-sensor link, and there are

2d nonzero elements for a sensor-to-sensor link. Therefore,

G is highly sparse when the network contains many nodes.

Assume that the network is localizable. Then, G must be

a tall matrix (i.e., K ≥ dNS [16], [17], [22], [23]) with full

column rank, and the weighted LS problem (3) can be solved

by the following iterative algorithm, which is based on the

Newton–Raphson method [24],

p
(n+1) = p

(n) + (GTΣ−1G)−1GTΣ−1[ρ− r(p(n))], (7)

where ρ = (ρ1, ρ2, . . . , ρK)T, Σ = cov(ǫ, ǫ) is the covari-

ance of range errors, where ǫ = (ǫ1, . . . , ǫK)T.

When the initial guess p
(0) is accurate enough and

the iteration converges, the localization errors ω have the

following relationship to the range errors ǫ = (ǫ1, . . . , ǫK)T:

ω = p
(∞) − p = (GTΣ−1G)−1GTΣ−1[ρ− r(p)]

= (GTΣ−1G)−1GTΣ−1
ǫ.

(8)

The covariance of localization errors is thus given by

cov(ω,ω) = (GTΣ−1G)−1GTΣ−1 cov(ǫ, ǫ)

Σ−1GT(GTΣ−1G)−1

= (GTΣ−1G)−1.

(9)
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This has achieved the Cramér-Rao bound [25], [26].

If range measurement errors are independent and identically

distributed (iid), i.e., Σ = diag(σ2, . . . , σ2), we have

cov(ω,ω) = (GTΣ−1G)−1 = σ2(GTG)−1. (10)

The matrix H = (GTG)−1 ∈ R
dNS×dNS is referred to as

dilution of precision (DOP) matrix. DOP is a term widely

used in satellite navigation specifying the multiplicative effect

on positioning accuracy due to satellite geometry2 [24]. For

network localization, DOP specifies the multiplicative effect

due to not only node geometry but also network connectivity.

DOP decouples localization accuracy from range accuracy.

The smaller DOP is, the better localization accuracy one can

expect.

A diagonal element H(n−1)d+m,(n−1)d+m is the DOP of

coordinate m for node n. The sum of all the diagonal elements,

trace(H), is the geometric DOP (GDOP) of the whole

network. In this paper, we define average GDOP (AGDOP) as

GDOP divided by the number of sensor nodes, trace(H)/NS .

AGDOP is a performance indicator of localization accuracy

of each node due to network geometry and connectivity.

For a network with random node locations and random

links, AGDOP is a random variable. The expectation of

AGDOP (E-AGDOP) indicates the expected localization

accuracy because the root-mean-square localization error is

proportional to E-AGDOP. We shall use E-AGDOP and its

lower bound to study the relationship between localization

accuracy and network connectivity in the rest of the paper.

IV. LOWER BOUND OF E-AGDOP

The value of E-AGDOP can be simply derived from the

diagonal elements of EH = E[(GTG)−1]. Unfortunately, it

is very difficult to obtain a closed-form expression of EH for

a randomly-deployed network (random node locations and

random links) that achieves a certain level of connectivity.

Instead of evaluating EH , we consider F = GTG in this

paper, not only because EF can be evaluated analytically,

but also because (EF )−1 = [E(GTG)]−1 is proven to be a

lower bound of E[(GTG)−1], as detailed in Appendix I.

The matrix F is a function of node locations and links.

In this paper, we assume that 1) the the location of sensor

nodes in each dimension is iid, and 2) links are uniformly

distributed and independent of node locations. Although the

latter assumption is a bit far from many realistic scenarios,

it is necessary for a simple theoretical development. Under

the two assumptions, EF can be evaluated by the following

two steps:

Step 1: Ξ = Enodes(F |links), conditional expectation of F
for randomly-deployed nodes given certain links;

Step 2: EF = Elinks(Ξ), expectation of Ξ for randomly-

established links.

2The DOP used in satellite navigation is usually defined in the form

of
√

trace[(GTG)−1] [24]. In this paper, we define DOP in the form of

trace[(GTG)−1] to simplify calculation and analysis.

A. Step 1: random node locations

Recall (6) which describes the elements in G. Note that

when link k is incident to node n, i.e., n ∈ {ik, jk},

d
∑

m=1

( ∂rk
∂pn,m

)2

=

∑d
m=1(pik,m − pjk,m)2

‖pik − pjk‖2
= 1. (11)

Under the assumption that the nodes are randomly deployed

such that pik,m − pjk,m, m = 1, . . . , d are iid, we have

E
( ∂rk
∂pn,m

)2

=
1

d
, ∀m = 1, . . . , d. (12)

By (12), the elements of matrix F = {Fĩj̃} ∈ R
dNS×dNS

have the conditional expectation

Ξĩj̃ = Elocations(Fĩj̃ |connections) = E

K
∑

k=1

∂rk
∂pi,m1

∂rk
∂pj,m2

=











1
d
deg(i) if i = j and m1 = m2,

− 1
d

if (i, j) ∈ E and m1 = m2,

0 otherwise,

(13)

where ĩ = (i−1)d+m1, j̃ = (j−1)d+m2, 1 ≤ m1,m2 ≤ d.

It can be seen that Ξ = Ξ̌ ⊗ I , where ⊗ denotes the

Kronecker product, and I is the identity matrix of size d.

The elements of Ξ̌ are given by

Ξ̌ij =











1
d
deg(i) if i = j,

− 1
d

if (i, j) ∈ E,

0 otherwise.

(14)

The matrix Ξ̌ describes how the network is connected, as

its diagonal elements are given by Ξ̌ii = deg(i)/d, and its

non-zero off-diagonal element Ξ̌ij indicates that there is a

sensor-to-sensor link between nodes i and j. A surprising

coincidence is that the matrix dΞ̌ is a submatrix of the graph

Laplacian [27].

The lower bound of E-AGDOP (LB-E-AGDOP) can be

calculated by inverting F = EΞ or, equivalently, inverting

F̌ = E Ξ̌, because trace[(EΞ)−1] = d trace[(E Ξ̌)−1].

B. Step 2: random link connections

Given an average degree δ, the trace of Ξ̌ is given by

trace(Ξ̌) =

NS
∑

i=1

Ξ̌ii =

NS
∑

i=1

deg(i)/d = NSδ/d. (15)

Given an average sensor degree δS , there are NSδS/2 sensor-

to-sensor links in the network, and thus Ξ̌ includes NSδS
off-diagonal elements with a non-zero value of −1/d. Under

the assumption that the sensor-to-sensor links are chosen

uniformly at random from the set {(i, j)|1 ≤ i < j ≤
NS , i, j ∈ Z}, each off-diagonal element Ξ̌ij , i 6= j satisfies

the Bernoulli distribution

Ξ̌ij =

{

−1/d with probability NSδS
NS(NS−1) =

δS
NS−1 ,

0 with probability 1− δS
NS−1 .

(16)
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Then, the expectation of F̌ is given by

E F̌ij = Elinks(Ξij) =

{

δ
d

if i = j,

− δS
d(NS−1) otherwise.

(17)

Appendix II shows that

trace[(E F̌ )−1] =
NS

η

(

1 +
ζ

1−NSζ

)

, (18)

where η = d−1[δ+δS/(NS−1)] and ζ = δS/[δ(NS−1)+δS ].
Therefore, LB-E-AGDOP is given by

LB-E-AGDOP =
trace[(EF )−1]

NS

=
d

η

(

1 +
1

ζ−1 −NS

)

=
d2

δ + δS/(NS − 1)

(

1 +
δS

δA(NS − 1)

)

=
d2

δ

NS − 1 + δS/δA
NS − 1 + δS/δ

.

(19)

Thus far, we obtain a closed-form expression for LB-E-

AGDOP. It depends on two parameters of network connec-

tivity, δS and δA (note δ = δS + δA), and one parameter

of network scale, NS . It can be seen that LB-E-AGDOP is

approximately inversely proportional to the average degree,

and a low average anchor degree worsens accuracy.

V. ACCURACY FOR LARGE-SCALE NETWORKS

One of the advantages of sensor networks is that it can

scale up by deploying more and more sensor nodes. As for

range-based network localization, a question is whether the

localization accuracy is still maintained when more sensor

nodes join in the network, and what level of connectivity is

required if we want to maintain the localization accuracy. In

this section, we address these questions by analyzing how

accuracy varies with the network scale for a certain level of

connectivity.

As discussed in [16], [17], [23], KS ≥ O(NS) and KA ≥
O(1) are necessary for the network to be localizable. Let us

first consider the marginal case KS = O(NS) and KA =
O(1), which is equivalent to a constant δS and a constant

KA. Then, (19) can be written as

LB-E-AGDOP =
d2

KA/NS + δS + δS/(NS − 1)
·

(

1 +
δS

(KA/NS)(NS − 1)

)

≈ d2

KA/NS + δS

(

1 +
δS
KA

)

→ d2
( 1

δS
+

1

KA

)

as NS → ∞,

(20)

which indicates that increasing the number of sensor nodes

deteriorates accuracy, with LB-E-AGDOP increasing mono-

tonically towards a limit determined by δS and KA.

Next, consider the case KS = O(NS) and KA = O(NS),
which is equivalent to a constant δS and a constant δA. It

can be calculated from (19) that as NS → ∞,

LB-E-AGDOP → d2/δ. (21)

TABLE I

ACCURACY RELATIONSHIP TO THE CONNECTIVITY AND SCALE OF THE

SENSOR NETWORK.

Network connectivity As NS ր ∞

KS < O(NS) or KA < O(1) no longer localizable

KS = O(NS) and KA = O(1) AGDOP ր d2(1/δS + 1/KA)

KS = O(NS) and KA = O(NS) AGDOP ց d2/δ

KS = O(N2

S
) and KA = O(1) AGDOP ց d2/KA

KS = O(N2

S
) and KA > O(1) AGDOP ց 0

As the derivative of LB-E-AGDOP with respect to NS

∂AGDOP

∂NS

= − d2δ2S
δA(δNS − δA)2

< 0, (22)

increasing the number of sensor nodes improves accuracy,

with LB-E-AGDOP decreasing monotonically towards the

limit determined by δ.

Furthermore, let us consider a very benign case that

the sensor nodes form a complete graph [20], i.e., range

measurements are available for every pair of distinct sensor

nodes. Then, δS = NS − 1, δ = δA +NS − 1, and (19) can

be reduced to

LB-E-AGDOP =
d2

δA +NS

(

1 +
1

δA

)

→
{

d2/KA if KA = O(1)

0 if KA > O(1)

(23)

as NS → ∞. It can be seen that increasing the number of

sensor nodes always improves accuracy. When KA = O(1),
LB-E-AGDOP decreases monotonically towards d2/KA, just

as if each sensor node is directly connected to all anchor nodes.

When KA > O(1), LB-E-AGDOP decreases monotonically

towards 0. Nevertheless, this good scalability is at a price of

O(N2
S) sensor-to-sensor links.

Table I summaries the above findings. In general, range-

based localization schemes can guarantee accuracy for large-

scale network, even for the marginal case KS = O(NS) and

KA = O(1) which just ensures localizability.

VI. SIMULATION RESULTS

In this section, we conduct numerical simulations to

validate the theoretical results obtained in Sections IV and

V. All simulation results presented in this section are based

on the following settings.

• Two dimensions (d = 2);

• Sensor nodes are uniformly distributed in the unit square

[0, 1]× [0, 1];
• Four anchors (NA = 4) located at the corners of the

unit square, i.e., (0, 0), (0, 1), (1, 0), and (1, 1);
• Given KS , sensor-to-sensor links are chosen uniformly at

random from the set {(i, j)|1 ≤ i < j ≤ NS , i, j ∈ Z};

• Given KA, anchor-to-sensor links are chosen uniformly

at random from VS×VA, where VS = {1, 2, . . . , NS} is

the set of sensors and VA = {NS + 1, NS + 2, . . . , N}
is the set of anchors.

910



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.5

1

1.5

2

2.5

3

3.5

LB−E−AGDOP, theoretical

E
−

A
G

D
O

P
, 

s
im

u
la

te
d

 

 

Data points from simulations

Diagonal line y = x

Fig. 2. Comparison between LB-E-AGDOP from (19) and E-AGDOP
from simulations with the parameters NS = 10, KS = 20, 21, . . . , 35, and
KA = 8, 9, . . . , 20. The lower bound is tighter when E-AGDOP is smaller.

Fig. 1 has shown a scenario excerpted from the simulation

with the parameters NS = 10, KS = 20, and KA = 8.

A. E-AGDOP and its theoretical lower bound

Fig. 2 compares LB-E-AGDOP from (19) and E-AGDOP

obtained from simulations. The simulations are based on

the parameters NS = 10, KS = 20, 21, . . . , 35, and

KA = 8, 9, . . . , 20. Each dot in Fig. 2 represents a network

configuration with certain KS and KA.

It can be seen that our lower bound is tighter when E-

AGDOP is smaller. Although the relationship between LB-E-

AGDOP and E-AGDOP is nonlinear3, if two different network

configurations result in the same LB-E-AGDOP value, they

also lead to very close E-AGDOP values. Therefore, our

derived lower bound, LB-E-AGDOP, is a valid performance

indicator for the accuracy of range-based localization schemes

in random sensor networks. In particular, when LB-E-AGDOP

approaches a certain limit, E-AGDOP also approaches a limit.

This is an important foundation for our analysis in Section V.

B. Accuracy for large-scale network

As a validation of the theoretical results obtained in

Section V, Fig. 3 shows how localization accuracy varies for

an increasing network scale. The simulation is based on the

benign case that the sensor nodes form a complete graph,

and the number of anchor-to-sensor links is equal to the

number of sensors. According to Table I, as NS → ∞, LB-

E-AGDOP approaches 0, so does E-AGDOP. The simulation

result confirms this conclusion, and also shows that the gap

between LB-E-AGDOP and E-AGDOP decreases with an

decreasing E-AGDOP.

VII. CONCLUDING REMARKS

This paper has studied the accuracy of range-based local-

ization schemes in random sensor networks with respect to

3In fact, E-AGDOP−1 is approximately a linear function of LB-E-
AGDOP−1 [28].
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Fig. 3. Accuracy of range-based localization schemes for large-scale
network. The sensor nodes form a complete graph (KS = NS(NS −1)/2),
and the number of anchor-to-sensor links is equal to the number of sensors
(KA = NS ).

connectivity and the network scale. We have shown that the

variance of localization errors are proportional to AGDOP. We

have proved a novel lower bound of expectation of AGDOP

and derived a closed-form formula (19) that relates LB-E-

AGDOP to only three parameters: the average sensor degree,

average anchor degree, and number of sensor nodes. We have

then used this formula to study how localization accuracy

varies with connectivity and the network scale. The following

conclusions are drawn from our theoretical analysis.

• Localization accuracy is approximately inversely propor-

tional to the average degree, and a low average anchor

degree deteriorates accuracy.

• When network connectivity merely guarantees local-

izability, increasing sensor nodes leads to bounded

monotonic increase in AGDOP. When a network is

densely connected, increasing sensor nodes leads to

bounded monotonic decrease in AGDOP.

The simulation results have validated the theoretical results,

and shown that our derived lower bound, LB-E-AGDOP,

is a valid performance indicator for the accuracy of range-

based localization schemes in random sensor networks. The

theory and results presented in this paper provide guidelines

on designing range-based localization schemes for robotic

sensor networks.

APPENDIX I

PROOF OF THE LOWER BOUND OF EXPECTATION OF DOP

The proof of the lower bound of expectation of DOP is

based on the Cauchy–Schwarz inequality for the expectation

of random matrices [29], [30].

Lemma 1 (Cauchy–Schwarz inequality for matrices): Let

A ∈ R
n×p and B ∈ R

n×p be random matrices such that

E ‖A‖2 < ∞, E ‖B‖2 < ∞, and E(ATA) is non-singular.

Then

E(BTB) � E(BTA)[E(ATA)]−1 E(ATB), (24)
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where the operator X � Y means that X − Y is positive

semidefinite.

With the substitutions A = G and B = G(GTG)−1 into

the above inequality, we have the following theorem.

Theorem 1: For a random network with a non-singular

geometry matrix G defined in (5),

U = E[(GTG)−1] � V = [E(GTG)]−1. (25)

Since the diagonal elements of a positive semidefinite

matrix must be non-negative, we have

Uii ≥ Vii, ∀i = 1, . . . , dNS , (26)

where U = [Uij ] and V = [Vij ]. In particular, the expectation

of GDOP, trace(U), has a lower bound trace(V ).

APPENDIX II

PROOF OF EQ. (18)

Lemma 2 (Sherman–Morrison formula [31]): Suppose A
is an invertible square matrix, and u and v are vectors.

Suppose furthermore that 1 + vTA−1u 6= 0. Then the

Sherman–Morrison formula states that

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (27)

With η = d−1[δ + δS/(NS − 1)], (17) can be written as

η−1 E F̌ = I − uuT, (28)

where u =
√
ζ(1, 1, . . . , 1)T, and ζ = δS/[δ(NS − 1) + δS ].

Letting u = −v =
√
ζ(1, 1, . . . , 1)T, by the Sherman–

Morrison formula we have

(I − uuT)−1 = I + uuT/(1− uTu), (29)

and thus

η trace
[

(E F̌ )−1
]

= trace[(I − uuT)−1]

= NS +NSζ/(1−NSζ).
(30)
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