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Abstract— This paper presents a fast computation method
of hydraulic robot dynamics and shows the effectiveness in
design optimization that needs a lot of repetitive simulation.
First, an exact simplification of the conventional representation
of hydraulic robots with external forces is presented based on
the Casimir functions. Second, a further exact simplification is
given via an integration by parts of the Hamiltonian function as
a structural property and a new representation of the hydraulic
robots is proposed. The new representation allows us to define a
back fluidmotive force (back-FMF) as a hydraulic version of the
well-known back electromotive force (back-EMF). Third, the
proposed representation and the conventional representation
are compared with each other with respect to computational
cost and the effectiveness of the proposed representation is
confirmed.

I. INTRODUCTION

In humanoid robotics, hydraulic robots are gaining popu-

larity. It is easy to see that actuators of both BIGDOG’s legs

[7] and ASIMO’s hands are now hydraulic. Also, hydraulic

systems are classically important in field robotics, such as

construction, agriculture, rescue, demining robotics and so

on. These are from the following advantages mainly. First, a

hydraulic robot is superior to an electrical robot with respect

to the power to weight ratio. Second, a hydraulic robot has

a property that the joint displacement can be finite for any

external force even if the power source is inactive.

On the other hand, in case of electrical robots, the driving

subsystem (the electrical system) is simple and almost static,

that is, the driving torque is just proportional to the control

input. In this case, fast computation methods have studied

well in 1990’ [21] assuming that the driving subsystem is

negligible.

However, in case of hydraulic robots, the driving sub-

system (the hydraulic system) is complex and dynamic due

to the existence of compressibility. We can not ignore the

driving subsystem any more and it has been more difficult

to study fast computation methods for hydraulic (and also

pneumatic) robots. Of course, it is needless to say that

computer specifications have much better than those in

1990’. But, from the viewpoint of design optimization, fast

computation methods are pretty important because a lot of

simulations are repeated since actual design optimizations

are non-convex problems.

The presented fast computation method in this paper is the

state-of-the-arts modeling in robotic systems & control. The

new results can be applied in other fields such as aircraft

industry as well as robotic industry. A new representation

in this paper is developed by exact simplifications of the
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conventional representation of the hydraulic robots. The

exact simplifications are from the physical and structural

properties. The hydraulic robot dynamics are discussed in

port-Hamiltonian framework [18] [12] which would be a

generalization of classical mechanics framework and also

different from ẋ = f (x) + g(x)u framework often used in

conventional robotics and the others (e.g. [15], [8], [20], [1]).

Although so many related works (e.g. [18], [10]) discuss

passivity [17] which is one of the physical and structural

properties in port-Hamiltonian framework, this paper repeat-

edly discusses Casimir function which is another physical

and structural property in a class of the port-Hamiltonian

framework.

A part of this paper presents an extended version of the

previous work [11] which does not focus on (any hydraulic)

robot dynamics but on hydraulic actuators only and also

does not consider any external forces by which the robots

perform tasks and interact with the unknown environment.

In this paper, it is observed how the whole body and the

external forces are taken into account successfully without

destroying the framework in the previous work. Furthermore,

the effectiveness of the proposed method is confirmed in

design optimization.

This paper is organized as follows. Section II presents

a preliminary in this paper. Section III proposes a canon-

ical form of forward dynamics. Section VI gives a main

result based on an integration by parts and proposes a new

representation of the hydraulic robots. Section V confirms

the effectiveness of the new representation with respect to

the computational cost in design optimization. This paper is

concluded in Section VI.

II. PRELIMINARY

A. Conventional representation

In this section, we review the conventional representation

of forward dynamics of a hydraulic robot [6] [13] [4] which

is described by







M(q)q̈+C(q, q̇)q̇+ Dq̇ = G(q)−T f + J(q)Td
︸ ︷︷ ︸

τd

f = A+p+ −A−p−
ṗ+ = bV+(q)−1 [−A+ṡ(q)+ B+(p+)u]
ṗ− = bV−(q)−1 [+A−ṡ(q)−B−(p−)u]

(1)

where q ∈ R
n are the joint displacements, p+ ∈ R

n are the

cap pressures, p− ∈R
n are the head pressures, f ∈R

n are the

driving forces, d ∈ R
n are the external forces and u ∈ R

n are

the spool valve displacements which are the standard control
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inputs [9]. Figure 1 shows the 1-DOF case of the standard

hydraulic arm. Here, the inertia matrix M(q) = M(q)T > 0,

the centrifugal and Coriolis matrix C(q, q̇)and the damping

matrix D(q) = D(q)T ≥ 0 are defined in the left-hand side of

the first equation. The first Jacobian J(q)∈ R
n×n, the second

Jacobian G = ∇T
q s(q)∈R

n×n with the cylinder displacements

s(q) ∈ R
n and the cylinder areas A+,A− are defined in the

right-hand side of the first equation. In the second and third

equations, the cylinder volumes V+(q) = diag(A+(L/2 · 1+
s(q))),V−(q) = diag(A−(L/2 ·1−s(q)))∈R

n with the stroke

L, the flows B+u,B−u ∈ R
n×n through the spool valve are

defined with the bulk modulus b. In the paper, the superscript

+ means the cap-side and the subscript − means the head-

side.

Remark The flows B±u are often approximated by Bernoulli

law, that is,

B±(p±)=diag
(

k
√

p̄± sgn(ui)( p̄− p±)
)

where k is the valve coefficient and p̄ := (pupper + plower)/2

is the mean value of the source pressures, that is, the pump

pressure pupper and the tank pressure plower, respectively.

Remark The forward dynamics (1) is a popular and prac-

tical model based on several assumptions. For example, the

second and third equations in dynamics (1) are discretized

from the (compressible) Navier-Stokes equations which are

already based on the continuum approximation. Also the con-

trol input is the spool displacement and the spool dynamics

is neglected.

B. Casimir function

In conventional robotic systems and control, one of the

most popular representations is Lagrangian form [2] which

is described by

d

dt
∇q̇L(q, q̇)−∇qL(q, q̇) = τ (2)

where L = T (q, q̇)−U(q) ∈ R is the Lagrangian with the

kinetic energy T = (1/2)q̇TM(q)q̇ and the potential energy

U(q) and τ ∈ R
n is the input torque.

It may be observed that the model (1) is a Lagrangian

system augmented with two state equations on the pressures.

In the sequel we shall use the port Hamiltonian framework

which is precisely suited for such systems and allowing for

the control inputs not to be generalized forces and the state

spaces not being any tangent bundles of the configuration

manifold [18] [19].

A Casimir function is one of the properties of port-

Hamiltonian systems which describe physical systems in-

cluding conventional mechanical systems. A standard state

space expression of port-Hamiltonian systems is given as
{

ẋ = (J(x)−R(x))∇xH(x)+ g(x)u

y = g(x)T∇xH(x)
(3)

where x ∈ R
n is the state, u,y ∈ R

m are the input and

the output, respectively. J(x) = −J(x)T ∈ R
n×n is a skew-

symmetric matrix and R(x) ≥ 0 ∈ R
n×n is a semi-positive

definite matrix. The function H(x) ∈ R is a Hamiltonian
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Fig. 1. The standard hydraulic arm (1-DOF case).

function. Here ∇x denotes the partial derivative with respect

x. In case of zero input u ≡ 0, if R(x) = 0,

dH

dt
= ∇

T
x H(x)J(x)∇xH(x) = 0

holds and the value of the Hamiltonian function is a con-

served quantity. A Casimir function C(x) ∈ R is defined as

a solution of the following PDE

J(x)∇xC(x) = 0. (4)

From this definition, in case of zero input u ≡ 0, if R(x) = 0,

dC

dt
= ∇

T
x C(x)J(x)∇xH(x) = 0 (5)

holds and the value of the Casimir function is also a

conserved quantity. Note that the solution of the PDE (4)

does not always exist and if

J(x)=

[
0 I

−I 0

]

, g(x)=

[
0

I

]

, (6)

and u = τ , then the state-space equation of system (3) is

equivalent to Equation (2).
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Lemma 1[18][14] Suppose that the PDE (4) has a solution

C(x). Then the system (3) is equivalent to the following

system
{

ẋ = J(x)∇x(H(x)+ f (C(x)))+ g(x)u
y = g(x)T∇xH(x)

(7)

for any function f (•) ∈ R. That is, the Hamiltonian function

in only the state equation of the system (3) is replaced by

H → H + f (C). (8)

Proof of Lemma 1. This is immediately proved by Equation

(4). �

Remark Note that the Hamiltonian function in the output

equation of the system (3) is not replaced and is still equal

to H. In this sense, the following holds

y �= g(x)T
∇x(H(x)+ f (C(x))).

The definition of Casimir function (4) can be generalized in

case of R �= 0.

III. CANONICAL FORM

In this paper, the exact simplification consists of two

stages. In the first stage, the forward dynamics is simplified

using Casimir functions which is a general property of port-

Hamiltonian systems with the solution of the PDE (4). In

the second stage, the simplified representation is further

simplified using an integration by parts which is a special

property of the hydraulic robots. The resulting representation

is different from any conventional representations such as in

[3] [6] [13]. The first stage corresponds to Section III. The

second stage corresponds to Section VI.

Proposition 1 (Canonical form) Consider the hydraulic

robots (1). Then there exists a coordinate transformation

which converts the system (1) to the state-space equation

of the following system












q̇

ṗ

Ċ+

Ċ−







=







0 +I 0 0

−I F22 0 0

0 0 0 0

0 0 0 0







∇xc H + b







0

τd

+V−1
+ B+u

−V−1
− B−u







︸ ︷︷ ︸

gC

y = gT
C∇xc H

(9)

with the state xc := (q, p,C+,C−) and the Hamiltonian func-

tion

H = T

+A+bexp(C+/b)−V+(q)(C+ + b−blog(V+/A+))
+A−bexp(C−/b)−V−(q)(C− + b−blog(V−/A−)).

and

F22 := −G(q)∇q(G(q)p)+ ∇
T
q (G(q)p)G(q)T −D.

Proof of Proposition 1. Just for readability, G(q) = I is

assumed at first. By taking the moment p = M(q)q̇ instead

of the velocity q̇, the system (1) is equivalent to the state

space equation of the following port-Hamiltonian system [3]

[6]







ẋp =







0 +I 0 0

−I −D −JT
32 −JT

42

0 J32 0 0

0 J42 0 0







∇xp H+ b







0

τd

+V−1
+ B+u

−V−1
− B−u







︸ ︷︷ ︸

gp

y = gT
p∇xpH

(10)

with the state xp := (q, p, p+, p−),

J32(q) = −V−1
+ A+b ∈ R

J42(q) = +V−1
− A−b ∈ R

and the Hamiltonian function

H = T

+V+(q)(b(exp(p+/b)−1)− p+)
+V−(q)(b(exp(p−/b)−1)− p−).

Let us take a coordinate transformation






q

p

C+

C−







=







q

p

−∫
J32(q)+ p+

−∫
J42(q)+ p−







(11)

where both C+ and C− satisfy Equation (4) and are the

Casimir functions. It is a direct calculation to prove that the

coordinate transformation (11) converts the system (10) into

the system (9) even without the assumption G(q) = I. �

Remark Many other nonlinear friction effects (the Coulomb

effect, the Stribeck effects and so on) can be taken into

account in the above procedure and the result of Proposition

1 holds as well because mass conservation is free from any

energy dissipation. In the following, we still omit such effects

to maintain readability.

Furthermore, from Lemma 1, the Hamiltonian function of

Equation (9) is simplified as

H → H − (A+bexp(C+/b)+ A−bexp(C−/b))

= T

−V+(q)(C+ + b−blog(V+/A+))

−V−(q)(C− + b−blog(V−/A−)). (12)

Note that the above simplification is from the “general”

property of port-Hamiltonian systems with Casimir func-

tions. However, in the following Section IV, the further exact

simplification will be discussed from the “special” properties

of the hydraulic robots.

IV. EXACT SIMPLIFICATION OF CANONICAL FORM

A. Back-fluidmotive force

In this subsection, for hydraulic robots, let us define a

generalization of the back-EMF (back electromotive force)

of electro-mechanical systems, such as DC motors.
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Lemma 2 Consider the system (9). Then there exists a

coordinate transformation which converts the system (9) into

the following system












q̇

ṗ

ḟA

ḟ⊥







=







0 I 0 0

−I F22 F0 G0

0 −F0 0 0

0 −G0 0 0







∇xF
H+







0

τd

gau

gbu







︸ ︷︷ ︸

gF

y = gT
F∇xF

H
(13)

with the state xF := (q, p, fA, f⊥),

F0(q) = b(A2
+V−1

+ + A2
−V−1

− )

G0(q) = bA+A−(V−1
+ −V−1

− )

ga(q, fA, f⊥) = b(A+V−1
+ B+ + A−V−1

− B−)

gb(q, fA, f⊥) = b(A−V−1
+ B+ −A+V−1

− B−)

and the Hamiltonian function

H = T

+ V+(q)

(

−b− +A+ fA + A− f⊥
‖A‖

)

+ V−(q)

(

−b− −A− fA + A+ f⊥
‖A‖

)

. (14)

Furthermore, the following identity holds for all q

(∇q −F0(q)∇ fA −G0(q)∇ f⊥)(H−T )+‖A‖ fA =0. (15)

Proof of Lemma 2. By a direct calculation, it is proved

that the system (9) is converted into the system (13) by the

following coordinate transformation
[

fA

f⊥

]

=
1

‖A‖

[
A+ −A−
A− +A+

]

︸ ︷︷ ︸

A

[
C+ − log(A−1

+ V+)

C− + log(A−1
− V−)

]

where ‖A‖ denotes the Frobenius norm of the matrix A. The

gradient of the function H −T is described by

∇xF
(H −T) =







−b(A+−A−)−‖A‖ fA

0

−L(A2
+−A2

−)/(2‖A‖)−‖A‖q

−(LA+A−)/‖A‖







and thus it is also confirmed directly that the identify (15)

holds for all q. �

Let us explain the physical meaning of the identify (15).

First, ‖A‖ fA corresponds to the driving force A+p+−A−p−
on the mechanical subsystems which is appeared in the

equation (1). Second, in the absence of the external forces,

the dynamics of p = Mq̇ (the right-hand side of ṗ-line)

should be equal to forces from the gradients of the function

T plus forces from the gradients of the function H−T which

should include the driving force as a unique potential force.

Note that the element-wise value of F0(q) is not constant

but always positive as well as that of ga. In this sense,

F0(q) is refereed as a “back-fluidmotive force variable” as

a generalization of the back-electromotive force constant

which is well-known in DC motors.

Remark The identity (15)

− b(A+−A−)

− F0(q)

(
L

2‖A‖(A2
+ −A2

−)+‖A‖q

)

− G0(q)
L

‖A‖A+A− = 0

is expressed as an integral form with respect to q as the

following

− b(A+−A−)q

− L

2‖A‖(A2
+−A2

−)

∫

F0(q)

− L

‖A‖A+A−
∫

G0(q)

= ‖A‖
∫

qF0(q) (16)

which will be used in the next subsection.

B. Integration by parts of Hamiltonian function

This subsection gives the most important result in this

paper. Based on the previous preparations, a further exact

simplification of the hydraulic robots is proposed via an

integration by parts.

Proposition 2 (Exact simplification of canonical form)

Consider the system (9). Then there exists a coordinate trans-

formation which converts the system (9) into the following

system













q̇

ṗ
˙̄C+
˙̄C−







=







0 +I 0 0

−I F22 0 0

0 0 0 0

0 0 0 0







∇xC̄
Hsimple+







0

τd

gau

gbu







y = gT
F∇xC̄

H
(17)

with the state xC̄ := (q, p,C̄+,C̄−) and the Hamiltonian

function

Hsimple := T +‖A‖
(∫ ∫

F0(q)− C̄+q

)

.

Proof of Proposition 2. Let us consider the coordinate

transformation
[

C̄+

C̄−

]

=
1

‖A‖

[
A+ −A−
A− +A+

][
C+

C−

]

where the states C̄+ and C̄− are Casimir functions of the

system (13)

C̄+ = −
∫

F0(q)+ fA

C̄− = −
∫

G0(q)+ f⊥.
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By a substitution of fA and f⊥ into the function H −T ,

H −T =
L
2

(

− 1
‖A‖

(
(A2

+−A2
−)(C̄+ − ∫

F0)

+ 2A+A−(C̄−−
∫

G0)
)
−b(A+ + A−)

)

+ q
(

− 1
‖A‖(A

2
+ + A2

−)(C̄+ − ∫
F0)−b(A+ + A−)

)

= (C̄+ − ∫
F0)

(

− L
2‖A‖(A

2
+−A2

−)−‖A‖q
)

+ (C̄−−
∫

G0)
(

− L
‖A‖A+A−

)

− L
2

b(A+ + A−)

− b(A+−A−)q
= −‖A‖C̄+q+ L

2‖A‖ (A
2
+−A2

−)
∫

F0 +‖A‖q
∫

F0

+ L
‖A‖A+A−

∫
G0 −b(A+−A−)q+ f̄ (C̄)

where

f̄ (C̄) :=
−L

2‖A‖(A2
+−A2

−)C̄+− L

‖A‖A+A−C̄−− L

2
b(A+ +A−)

which depends on Casimirs (and constants) only. From

Lemma 1 again, the Hamiltonian function is replaced by

H → H − f̄ (C̄).

Finally, by applying the integral form (16) of the identify,

H −T → −‖A‖C̄+q+
L

2‖A‖(A2
+ −A2

−)
∫

F0

+ ‖A‖q

∫

F0 +
L

‖A‖A+A−

∫

G0 −b(A+−A−)q

= −‖A‖C̄+q+‖A‖q

∫

F0 −‖A‖
∫

qF0

= ‖A‖
(

−C̄+q+

∫ ∫

F0(q)

)

.

where the last equation holds via the integration by parts. �

a1

a

b

b2

2

1

Fig. 2. The 2-DOF hydraulic robot with the design parameters (a,b)

V. DESIGN OPTIMIZATION

In general, an objective function in a robot design op-

timization consists of analytical terms and non-analytical

terms. If the objective function consists of analytical terms

only and there are no non-analytical terms, a gradient of the

TABLE I

THE HYDRAULIC PARAMETERS OF THE 2-DOF HYDRAULIC ROBOT

Physical parameters Values

Cap area A+ = 7.0×10−4[m2]
Head area A− = 5.4×10−4[m2]

Cylinder stroke L = 75×10−3[m]
Pump pressure pupper = 7.0×106[Pa]
Tank pressure plower = 0[Pa]
Bulk modulus b = 1.5×109[Pa]

Flow coefficient k = 1.63×10−7[m2/s/
√

Pa]

objective function is useful and thus many search methods

such as the steepest gradient method and the conjugate

gradient method are applicable [16]. However, once the

objective function has a non-analytical term, the gradient of

the objective function is not useful anymore and the robot

forward dynamics should be calculated for each update of

the design parameters.

Since the computational cost of the forward dynamics can

be much larger than that of the gradient of the objective

function, the proposed representation in the previous sections

would be quite important in the various design optimizations.

A. Forward dynamics of hydraulic robots

Let us consider a design optimization problem of a 2-DOF

hydraulic robot with 3-link in the presence of the gravity as

shown in Figure 2. The optimized design parameters a =
(a1,a2) and b = (b1,b2) are the distances between the arm

joint and the corresponding cylinder ends.

Figure 3 shows the time responses of the state

q(t), p+(t), p−(t) by the conventional representation (blue

lines) and those by the proposed representation (red lines)

in the presence of the non-zero damping matrix D = 363I

and the external forces d which is defined as the gravity

force (G(q) = I). Both responses are sufficiently similar to

each other. Note that the joint displacement is finite and the

second advantage in Section I is demonstrated.
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Fig. 3. Disturbance response of q(t), p+(t), p−(t)
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TABLE II

COMPUTATIONAL COST (u(t) = sin(2π300t))

Trial Before (conventional) [sec] After (proposed) [sec]

1 75.00 33.12
2 75.63 30.62
3 69.38 42.81
4 74.22 34.40
5 73.44 39.37

TABLE III

COMPUTATIONAL COST (u(t) = sin(2πt))

Trial Before (conventional) [sec] After (proposed) [sec]

1 158.75 53.11
2 159.37 58.42
3 150.13 58.13
4 155.31 57.99
5 158.25 59.13

Table II shows the computational cost of a sine-input

response with an input u = 0.001sin(2π300t) by the con-

ventional representation and that by the proposed represen-

tation. In all trials, the computational cost by the proposed

representation is much better than that by the conventional

representation. Table III shows the computational cost of

a sine-input response with an input u = 0.001sin(2πt) by

the conventional representation and that by the proposed

representation. The responses do not look like any curve

due to the high frequency behaviors. Again, in all trials, the

computational cost by the proposed representation is much

better than that by the conventional representation.

B. Objective function and constraints

The objective function is the sum of the analytic terms

and the non-analytic term

f (a,b) = w1e1(a,b)+ w2e2(a,b)+ w3e3(a,b)

where e1 is the manipulability (the volume of the manipu-

lability ellipsoids), e2 is the workspace (the volume of the

workspace) e3 is the endpoint force (the ∞-norm of the end-

point force in the step response) and w• is the corresponding

weight. The both e1 and e2 are the analytical terms which

are the explicit functions of the design parameters (a,b),
respectively. On the other hand, the third term e 3 is not an

analytical term and defined as

e3 := max
t

‖G(q(t))−T f (t)‖ℓ2

whose value is unknown unless the forward dynamics is cal-

culated using the design parameters (a,b). In this sense, the

design optimization problem is a non-convex optimization

problem. It is needless to say that the computation time of

the term e3 is much larger than that of the term e1 or e2.

The constraints of the design parameters (a,b) are

ai ≤ ai ≤ ai, bi ≤ bi ≤ bi

where •i and •i are from the link length design.

C. Optimization method

Figure 4 shows a standard design optimization procedure

which is an iteration of the forward dynamics calculation and

a search method in this paper which is a modified particle

swarm optimization (PSO) [5]. The PSO is an efficient search

method for non-convex optimization problems. The design

parameters are the position of N-particles and are updated

based on a stochastic linear combination of the best particle

posit on xgroup in all particles and the self-best position xsel f ,i

of the individual i (i = 1, · · · ,N)

xi ← xi + vi

vi ← wvi + c1r1(xsel f ,i − xi)+ c2r2(xgroup − xi),

where w is the inertia, c1,c2 are the weights and r1,r2 are

the random variables. The constraints are taken into account

as the regularity condition [16].

In this section, the workspace is focused and two cases,

that is, Case I (w1 = 0.4,w2 = 0.2,w3 = 0.4) and Case II

(w1 = 0.2,w2 = 0.6,w3 = 0.2) are investigated. Ten particles

are used in the modified PSO with w = 1,c1 = c2 = 0.4
under the constraints a = 0.10,a = 0.25,b = 0.15,b = 0.30.

The standard computer (CPU 2.0[GHz], Adams-Bushforth-

Moulton method) is used.

D. Optimization results and discussion

Figure 5 and Figure 6 show the optimization results of

Case I and Case II, respectively. Since the piston displace-

ments are the minimum in both cases, it is clearly shown that

the robots are designed differently. Figures 7-10 show that

all ten particles converge to a fixed position numerically in

both cases. Note that ten hydraulic arms (ten particles) are

simulated simultaneously in each parameter update based on

Figure 4.

The computational cost by the proposed forward cal-

culation is 101 sec and that by the conventional forward

calculation is 223 sec even though the optimized results

are the same in both calculations. By a comparison with

the computational cost of the parameters update, it is clear

that the proposed method contributes to reduce the total

computational cost in design optimization.

VI. CONCLUSIONS

This paper presents a fast computation method of hy-

draulic robot optimizations. First, an exact simplification

is proposed based on Casimir function. Second, a further

exact simplification is given via a structural property. The

new representation allows us to define a back fluidmotive

force (back-EMF) which is a hydraulic version of back-EMF.

Third, the proposed representation and the conventional rep-

resentation are compared with respect to the computational

cost and the effectiveness of the proposed representation

is confirmed by numerical experiment. Almost 50 % of

the computational cost is cut and the result will contribute

more in more complex cases such as high-degree of freedom

hydraulic arms and legs.
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Fig. 5. Optimized design (Case I)

Fig. 6. Optimized design (Case II)
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Fig. 8. Parameter updates a2,b2 (Case I)
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Fig. 9. Parameter updates a1,b1 (Case II)
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Fig. 10. Parameter updates a2,b2 (Case II)
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