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Abstract— In this work we propose a method to effectively
remove noise from depth images obtained with a commodity
structured light sensor. The proposed approach fuses data into
a consistent frame of reference over time, thus utilizing prior
depth measurements and viewpoint information in the noise
removal process. The effectiveness of the approach is compared
to two state of the art, single-frame denoising methods in the
context of feature descriptor matching and keypoint detection
stability. To make more general statements about the effect
of noise removal in these applications, we extend a method
for evaluating local image gradient feature descriptors to the
domain of 3D shape descriptors. We perform a comparative
study of three classes of such descriptors: Normal Aligned
Radial Features, Fast Point Feature Histograms and Depth
Kernel Descriptors; and evaluate their performance on a real-
world industrial application data set. We demonstrate that
noise removal enabled by the dense map representation results
in major improvements in matching across all classes of
descriptors as well as having a substantial positive impact on
keypoint detection reliability.

I. INTRODUCTION

With the recent availability of affordable 3D range sensors,
a number of algorithms for simultaneous sensor tracking and
environment reconstruction using dense models have been
proposed. Several of these approaches [1], [2] use Signed
Distance Functions (SDF) to achieve highly detailed 3D
models of small-scale environments by consistently fusing
depth information from multiple camera viewpoints. While
this class of approaches has produced impressive tracking
and modeling performance, the obtained models have so far
only been used in augmented reality and mapping appli-
cations. As suggested also in [1], however, consistent SDF
environment models have a number of potential applications
in robotics. In this article we discuss one such application
of particular relevance to robotics — improving the perfor-
mance of local shape features.

Recent advances in robot perception algorithms show that
salient keypoints and local feature descriptors continue to
play a big role in many important tasks. When performing
object recognition, scan alignment or localization, many
methods rely on detecting informative regions in the available
sensor data. The sensor data at such keypoint locations can
then be encoded, using a feature descriptor and matched to
other descriptors, computed from previous observations or
loaded from a database. While this process is well understood
for local visual feature approaches, algorithms that operate
on depth data are a recent development that has been given
much less attention.

Depth data is of high relevance in robotics — virtually
all autonomous mobile robots are equipped with a range

sensing device. It is thus not surprising that shape-based
feature descriptors have been proposed and used in a variety
of robotic applications: scan alignment [3], place recognition
and loop detection [4], [5], and object detection [6], [7],
to name but a few. Many of the recent contributions focus
on improving the consistency of salient feature detectors,
improving descriptors to become robust to viewpoint vari-
ations and noise and finding suitable metrics for matching
descriptors. In this work we propose a different approach to
improving the performance of depth-based local features. In-
stead of attempting to reduce the sensitivity to noise of either
detectors or descriptors, we examine the impact of denoising
the sensor data by means of a recently proposed Truncated
SDF (TSDF) reconstruction algorithm1 [2]. We use the TSDF
tracking and mapping algorithm to incrementally generate a
dense, implicit surface representation that combines the depth
images into a common frame of reference. Denoised depth
images are then produced by ray-casting the dense surface
from the tracked position of the depth sensor and used for
feature detection and extraction.

Filtering the depth sensor noise is not in general guar-
anteed to result in better keypoint detection or feature ex-
traction results, since removing the noise may come at the
price of smoothing out important geometric structure. We
examine two standard noise removal approaches — bilateral
filtering [8] and total variation L1 norm (TV-L1) filters [9],
and compare their effect on feature stability and accuracy
to that of the proposed SDF denoising approach. In order to
evaluate the effect of these noise removal approaches, we use
several recent depth-based feature detection and extraction
algorithms. Using a moving camera setup, we evaluate the
stability of the Normal Aligned Radial Feature [10] (NARF)
interest point detector over increasing baselines in translation
and rotation. We also compare the success in matching of
NARF, Fast Point Feature Histogram (FPFH) [3] and Depth
Kernel [6] descriptors, over the same range of motion.

The influence of these noise removal approaches on
keypoint stability and feature matching are evaluated on
an industrially relevant dataset from an automated logistics
application scenario. The proposed SDF denoising approach
is demonstrated to consistently improve the stability and
matching performance of local shape features, clearly out-
performing the alternative noise filtering approaches. The
main contributions of this article are thus two-fold. First, we
propose and formulate denoising as a novel application of
SDF tracking and modelling and demonstrate that it results

1http://www.ros.org/wiki/sdf tracker
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Fig. 1. Gradient magnitude for typical depth images, processed with different noise filtering techniques. Fig. 1(a): raw depth image obtained from the
sensor, Fig. 1(b): bilateral filter, Fig. 1(c): TV-L1 filter, Fig. 1(d): incremental SDF denoising, Fig. 1(e): full SDF denoising. Finally, Fig. 1(f) shows the
reconstructed SDF surfaces along with manually selected keypoint locations.

in substantial improvement of both keypoint stability and
feature description. Second, in order to perform a quantitative
evaluation, we adapt a method from computer vision [11]
to the domain of local shape features, resulting in a com-
parison of several recently proposed feature descriptors —
NARF, FPFH and Depth Kernels. While the computer vision
community has produced several comparisons of local visual
features [12], [11], [13], and there have been several works
evaluating the performance of object classifiers based on
local shape features [14], [15], [16], to the best of our
knowledge this article presents the first direct comparative
evaluation of local shape features.

This article proceeds with an overview of the depth
image noise filtering approaches evaluated in this work.
Sec. III presents the local shape detectors and descriptors,
selected for benchmarking and evaluation. We then present
the proposed evaluation methodology in Sec. IV, before
reporting and analyzing results in Sec. V. Finally, Sec. VI
concludes this paper with a summary of the lessons learned
and directions for future investigations.

II. NOISE FILTERING

In this section we outline relevant noise filtering ap-
proaches for depth image denoising. An example of a raw
depth image, as well as the filtered outputs produced by the
discussed approaches is shown in Fig. 1 and further explained
in the next subsections.

A. Bilateral Filter

The bilateral filter is a nonlinear filter that updates a
pixel p in an image I with a weighted sum of the values
of its neighbours q. Unlike a regular Gaussian smoothing
filter, which takes into account only the pixel-space distance
between p and q, the bilateral filter also considers the
difference in intensity at these pixels. Formally [17],

BF [I]p =
1

Wp

∑
q∈S

Gσs(‖p− q‖)Gσr (‖Ip − Iq‖)Iq (1)

where G are Gaussian PDF’s with variances σs in pixel-space
and σr in intensity-space, and Wp is a normalization factor.
The bilateral filter is an edge-preserving low-pass filter, well
suited and previously applied [1] for depth image denoising.

B. Total Variation - L1 Filter

The TV-L1 filter is based on the observation that the noise
in an image can be described by the total variation of a
pixel’s intensity value, relative to its neighbours. Minimizing
the total variation between pixels, therefore reduces the noise,
but may also smooth out important features of the image,
such as edges and corners. In order to preserve edges, the
filter output values are kept “close” to the original image
pixels in I using a regularized penalty, proportional to
the norm of the difference. The TV-L1 filter can then be
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formulated as an optimization problem:

min.
u∈X
‖∇u‖1 + λ‖u− g‖1, (2)

where u is a vector of filtered pixel values, g is a vector
containing the original values from I , λ is a regularization
parameter and X is the space of attainable pixel values. Find-
ing efficient means for solving this problem is still an active
area of research, though many approaches already exist. In
this work we employ a method proposed by Chambolle and
Pock [9], results from which are shown in Fig. 1(c).

C. SDF for modelling and depth image denoising

The TSDF is a 3D grid-based map representation, which
stores a truncated distance value in each grid cell, measuring
proximity to the closest object surface. Cells located on the
inside of objects are assigned negative valued distances and
cells outside of objects positive. Thus, the precise surface lo-
cations can be obtained by detecting the TSDF zero crossing
(Fig. 1(f)). In addition, tri-linear interpolation between adja-
cent grid cell values is used to obtain a continuous function
TSDF (x), x ∈ R3. Finally, the gradient of the 3D distance
field coincides with the surface normal orientation and is
computed numerically using a finite differences method.

Distance fields can be generated and used in many
ways [18]. Jones et al. [18] note that unless given a closed
and oriented surface representation, generating a true signed
distance field is not an easy task. To counter this fact, recent
work of Newcombe et al. [1] (and originally proposed by
[19]) uses projective line-of-sight distance to reconstruct
the SDF. Albeit being an approximation, projective distance
agrees well with the true signed distance close to surface
boundaries and further motivates the truncation of the field
at pre-determined positive and negative limits. Other notable
uses of distance fields, that favour our application include
acceleration of raycasting [20] and Iterative Closest Point
(ICP) registration [21].

In this work, we use the recently proposed SDF tracker
algorithm [2], which generates and uses a TSDF map for
on-line camera pose estimation. Obtaining a denoised map
ID from the virtual camera position c given a TSDF can be
accomplished using standard SDF raycasting [20], detailed
in Algorithm 1 for completeness. Unlike the previously
discussed single frame noise filtering approaches, SDF de-
noising uses all prior information and incorporates viewpoint
knowledge, in order to produce a filtered image. We compute
two types of denoised depth images — rendered from
the incrementally constructed TSDF in an online fashion
(Fig. 1(d)), and obtained using the TSDF of the full data
set retroactively (Fig. 1(e)) for offline applications. Both
are highly relevant to several recurring tasks in robotics —
ranging from object detection to place recognition.

III. DEPTH FEATURES ON NOISE-FILTERED MODELS

In this section we present a brief overview of the NARF
keypoint detector, and several feature descriptors. We chose
the following methods because of their simplicity (NARF),

Algorithm 1 Standard depth image raytracing in a TSDF
1: α← 0
2: for ∀u ∈ ID, over a maximum number of iterations do
3: compute the ray r̄ through u originating from c using

a pinhole camera model
4: D = TSDF (c + αr̄)
5: if D < 0 then
6: interpolate α based on current and previous D
7: return ID(u) = α(r̄3)
8: else
9: α = α+D

reported performance (Kernel descriptors) and apparent pop-
ularity in the community (FPFH). Note that a point cloud and
a range image can both be computed from a depth image,
respectively by a projection of depth pixels to 3D points
and by an inverse projection to 2D, storing the length of the
rays connecting the camera and points. Note also that we do
not consider run-time efficiency in this evaluation. However,
our results appear to generalize well over both simple and
complex descriptors alike.

A. NARF keypoint detector

The NARF keypoint detector finds regions of interest in a
given range image by first locating the boundaries of objects,
defined by large differences in range at adjacent pixels. A
score is then computed for the local variation around each
pixel, compared to the variation of neighbouring regions.
Keypoints are determined as the locations that are different
from neighbouring regions, but relatively uniform within
their immediate surroundings, as this promotes repeatability
in detection.

B. NARF feature descriptor

The NARF feature descriptor is computed at a given
pixel in a range image, by defining a patch perpendicular
to the estimated surface normal at the pixel. The pixel
intensities within this patch are then evaluated along pre-
defined directions radiating out from the query pixel. The
pixel intensity variation along each radial direction is taken
to be one dimension of the descriptor’s feature vector. For
rotation invariance, a dominant direction is also identified
within the patch and the feature vector is shifted relative to
this direction.

C. Kernel Descriptors

Kernel descriptors define similarity between patches using
kernel functions based on pixel attributes. A machine learn-
ing approach is then used to reduce the dimensionality of the
kernel functions such that a basis for the most informative
dimensions can be stored and used on-line for matching.
In this work we evaluate three different kernel descriptors:
namely, gradient kernel descriptors which express a differ-
ence in surface gradients between patches; local binary patch
(LBP) kernels, which encode and compare patterns of local
depth variation; and Spin/Normal kernel descriptors which
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Fig. 2. The industrial robot and target environment, used as an application
scenario for our evaluation.

measure the difference between surface normals around a
given point.

D. Fast Point Feature Histogram Descriptors

FPFH has been made popular as part of the point cloud
library [22] (PCL), and is a method designed to work on
unstructured point cloud data, with no assumption regarding
adjacency or viewpoint e.g. as implied by a depth image. An
FPFH feature vector is computed by first performing a neigh-
bourhood search in 3D, collecting points within a region of
pre-defined size. Points are then considered pairwise, along
with their estimated surface normals, and a set of angles are
computed based on geometrical relationships between the
points, their normals and the vector defined between them.
The results are weighted based on the distances between
the points and binned into a histogram which represents the
descriptor’s feature vector for that particular point.

IV. EVALUATION METHODOLOGY

In this section, we outline the procedure used for evalu-
ating the performance of the geometrical feature detectors
and descriptors discussed in the previous section. The ap-
proach is inspired by a recent work which evaluates visual
feature detectors and descriptors in the context of object
modelling [11]. We use a two step evaluation procedure —
we first test the stability of feature keypoint detectors over
multiple data frames and then proceed to evaluate the accu-
racy of feature descriptors. The results from these evaluation
procedures are then used to compare the performance of
detectors and descriptors both against each other, as well
as over varying types of filtered input depth data.

In all of the performed evaluations, we use datasets
collected from a moving Asus Xtion Pro depth camera with
a resolution of 640x480 depth pixels. The sensor is mounted
on a six axle industrial manipulator, designed for offloading
of shipping containers (see Fig. 2). During data collection, a
container is filled with goods, typically found in containers
— cardboard boxes of various sizes, barrels, sacks and tyres
(see Fig. 1(f)). These three types of goods account for over
65% [23] of all container loads and are of high interest
for automated unloading applications. The manipulator is

then instructed to follow a typical unloading pattern while
recording depth camera data, and two representative portions
of the data set are selected for use in evaluation.

Given a sequence of depth images Di, we use the SDF
tracker algorithm [2] to obtain an estimated camera trajec-
tory. Thus, for every depth image Di we associate a global
camera pose in the form of a homogeneous transformation
matrix Ti. As the length of the camera trajectories used
in this evaluation are relatively short and only cover a
moderately sized environment, the estimates from the SDF
tracker algorithm [2] are virtually drift-free. Therefore, for
the evaluation data sets used in this work, we treat the
estimated camera poses Ti as a ground truth input to the
evaluation procedure.

A. Keypoint Detectors
The first type of evaluation performed measures the stabil-

ity of detected keypoint locations, over a sequence of depth
data Di. Keypoints are commonly used to greatly reduce
the number of feature vectors computed in a typical image
region of interest. In order to ensure good performance, a
keypoint location needs to be distinctive, informative, and
crucially it needs to be repeatably detected. Thus, given two
depth images Di and Dj collected at two different camera
poses Ti and Tj , we can evaluate the stability of a keypoint
detector by calculating the percentage of keypoint locations,
detected in both depth frames. We calculate this ratio by
first transforming both sets of keypoints from local pixel
coordinates to their camera-centric 3D positions ki and kj ,
using the camera projection matrix. Next, we use the known
camera positions to obtain the global keypoint coordinates
Ki = Tiki and Kj = Tjkj . Finally, we calculate the ratio of
keypoints from frame i that have close neighbours in frame
j, over all keypoints in frame i:

si,j(tk) =
|dist(Ki,Kj) < tk|

|Ki|
(3)

where dist(Ki,Kj) is the euclidean distance between each
keypoint from Ki and it’s closest neighbour in Kj and | · |
denotes the set cardinality operator. This score function is
parametrized on a keypoint association distance tk, which
signifies the maximum acceptable deviation in a keypoint
position. In this evaluation we do not check for occluded
keypoint locations or keypoints that do not belong to both
fields of view, and thus even a perfect detector will not
achieve a score ratio of one. The camera motion between
different evaluated frames is however relatively small and
occlusion effects are minimal. In addition, in this evaluation
we are interested primarily in comparing keypoint stability
over differently processed depth images and thus the key-
point ratio is only used as a relative and not an absolute
measure. Finally, we compute the feature stability score si,j
over varying translation and rotation between the input depth
images Di and Dj and report stability histograms.

B. Feature Vector Descriptors
The second type of evaluation performed in this work mea-

sures the uniqueness of different feature vector descriptors.
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Fig. 3. NARF keypoint detection, for increasing baselines in camera translation and rotation

In order to provide a reliable match between two keypoint
locations, their feature vector representations need to be
sufficiently similar. In addition, feature vectors extracted
at different locations need to be sufficiently different, in
order to provide a clear separation between matching and
non-matching points. The similarity between two feature
vectors vi and vj is calculated using a parametric distance
d(vi, vj) = ((vi− vj)TS(vi− vj))0.5, where S is a measure
matrix that weights the importance of each dimension of
the feature vector. Depending on the application scenario,
different methods can be used to learn the matrix S and select
informative dimensions. In this work we take the standard
baseline approach of using an identity S matrix, resulting in
a Euclidean distance measure de.

Identifying matching feature vectors can be achieved by
simply setting a threshold on the maximum allowed Eu-
clidean distance, but as suggested by previous works [11],
this approach is suboptimal. Much better performance can
be achieved by using a relative feature distance. Given
two sets of feature vectors Vi = {vpi }p=1...|Vi| and Vj =
{vsj}s=1...|Vj |, the relative distance dw between a vector vpi
and it’s closest neighbour vs1j ∈ Vj is calculated as:

dw(vpi , v
s1
j ) =

de(v
p
i , v

s1
j )

de(v
p
i , v

s2
j )

, (4)

where vs2j is the second closest feature vector from Vj . The
relative distance has several desirable properties — it is nor-
malized in the range between 0 and 1, and more importantly
it attains low values only if de(v

p
i , v

s1
j ) � de(v

p
i , v

s2
j ), i.e.

only if vpi is much closer to its match than to any other
feature vector in Vj .

Using the relative distance dw, we can identify the matches
between two sets of feature vectors by applying a distance
threshold tf . Before describing the details of the evaluation
procedure however, we need to extract feature vectors from
the input sequence of depth images. In a typical system,
the keypoints detected in the previous step will be used
for determining the locations at which we extract feature
vectors. In order to obtain results independent of the quality
of the keypoint detector, we need to extract vectors at

precisely the same physical locations over the depth image
sequence. Therefore, we manually choose and track a set
of informative keypoint locations and thereby decouple the
keypoint detection and feature extraction evaluations. An
example view from the manual keypoint definition tool is
shown in Figure 1(f). The black squares represent user
defined keypoint locations, which are tracked throughout the
depth image sequence and reprojected in each frame, with
field of view and occlusion checks. In this manner, we also
obtain reliable ground truth matching data — every manually
selected keypoint and all feature vectors extracted at the same
physical location are globally identified.

Knowing the ground truth association between features ex-
tracted at different frames, we proceed similarly to [11]. For
any two depth images Di and Dj we calculate the numbers
of correctly and wrongly matched features, depending on the
feature association distance threshold tf . By varying tf in the
range [0, 1], we obtain different values for the correctly (true
positive) and wrongly (false positive) associated features.
In [11] the cut-off threshold is manually set to a single
value for all evaluated feature extraction techniques, which
can introduce some bias in the subsequent results. We use
instead a standard approach for binary classifier tuning and
set the threshold to a value that achieves equal precision and
recall values. Essentially, at this value the number of wrongly
matched features is roughly equal to the number of matches
that are not reported. We calculate the percentage of correctly
detected matching features, over all ground truth matches
between the two frames. This value is then accumulated into
two histograms, over the translation and rotation difference
between the two frames. In the next section, we report
our results for keypoint stability and correct match rates of
different feature detectors and descriptors.

V. RESULTS

The results for NARF keypoint stability over translation
and rotation viewpoint changes are shown in Fig. 3(a)
and 3(b). The probability of reliably reobserved keypoints
from different viewpoints increases by roughly twenty per-
cent when the raw data is filtered using the bilateral or TV-
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(b) NARF vs. trans.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Camera orientation offset (deg)

R
a
ti
o
 o

f 
c
o
rr

e
c
t 
m

a
tc

h
e
s

(c) FPFH vs. rot.
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(d) FPFH vs. trans.
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(e) Grad. kern. vs. rot.
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(g) LBP kern. vs. rot.
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(i) Spin Kern. vs. rot.
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(j) Spin Kern. vs. trans.
Fig. 4. Performances for matching the different types of descriptors. The performance, on the vertical axis, is measured as the ratio between correctly
matched descriptors and the total number of possible correct matches. Each plot shows the performance of one descriptor, subject to increasing rotation or
translation, on two different data sets. The individual curves in each plot relate to one of the four denoising strategies, and raw data.

L1 methods. The increase in performance when using the
SDF denoised images accounts for roughly another 20%,
compared to the two noise filters. These results strongly
suggest that the benefit of using past observations for data
denoising for keypoint stability is significant.

Results of the evaluation of the five types of feature
descriptors chosen are shown in Figure 4 (please note the
difference in scale of the ordinates). The ratio of correctly
identified matches is measured as a function of both transla-
tion and orientation offset in the camera pose and shown
on separate plots. The impact of reducing the noise, in
terms of feature matching is vast, in some cases, such as
for the FPFH descriptor leading to over four times more
matches compared to the raw data. Across all the feature
descriptors tested, the SDF denoised depth maps show by far
the largest boost in performance. It is encouraging to see that
there is little difference between the progressively denoised
model, based on only past observations, and the model which

incorporates the entire data-set at once. Interestingly, the
bilateral filter improves the matching rate on NARF features,
but has an adverse effect on the matching of LBP kernel
features, whereas the TV-L1 denoising yields a consistent
improvement for matching with the LBP descriptor, but
performs slightly worse than the bilateral filter in other cases.
When using gradient kernel features neither of the single-
frame denoising methods produce noticeable improvements
over the raw data.

Beyond quantifying the improvement that denoising incurs
in descriptor matching, we can also make a brief comparison
between the different descriptors for this particular appli-
cation. We note, for instance that the rate of matching for
FPFH is comparatively low, possibly because it is designed
to work with unstructured point cloud data. The Gradient and
LBP kernel features show the best overall performance, on
both raw and denoised data. The NARF features, deceivingly
simple as they may be to compute, show a remarkably good

3208



performance. The spin kernel appears to be the most sensitive
to viewpoint variation, though it has among the highest
matching rates for short baselines.

VI. DISCUSSION AND FUTURE WORK

Keypoint detection and feature descriptor matching remain
as two cornerstone components of many current algorithms
for object detection, tracking, mapping and localization and
are therefore highly relevant in the field of robotics. In
this work we have presented a methodology for evaluating
shape based feature descriptors and provided an empirical
analysis on the effects of sensor noise with regards to key-
point stability and robustness of feature descriptor matching.
We have demonstrated the benefit of using dense mapping
representations to obtain denoised sensor data and compared
to state of the art single-frame noise filtering approaches. The
proposed noise removal enabled by the dense map represen-
tation results in major improvements in matching across all
classes of descriptors and keypoint detection stability.

The evaluation performed in this work clearly indicates
the benefit of computing local shape descriptors on more
consistent and less noisy depth images. In particular, the
TSDF-based noise filtering evaluated testifies to the benefits
of using previous measurements and viewpoint information.
It would be interesting to compare the approach to other
noise filtering techniques that use prior information. More in-
depth evaluations, filter parameters and noise characteristics
influence, as well as evaluations in the context of object
recognition in online applications will be further explored
as future research directions stemming from this article.

As further extensions to this work, we would like to apply
dense map-based denoising methods beyond feature match-
ing and evaluate the benefits of SDF denoising on object
recognition. In this context, we can compare the benefits
of repeated single-shot classification and candidate fusion,
opposed to classification on SDF denoised geometrical mod-
els. Finally, we would like to investigate the possibility of
defining feature descriptors directly in the dense 3D space,
rather than on viewpoint-dependent depth images.
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