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Abstract— Using a multi-vehicle control scheme based on
smoothed particle hydrodynamics, a simulated swarm of un-
manned underwater vehicles is guided along a pre-computed
optimal trajectory between two points in an open domain under
the influence of a strong background flow. The pre-computed
trajectory is optimal in terms of fuel usage for a single vehicle.
If the gradient of the velocity field is small compared to the total
swarm radius, guiding a swarm of vehicles along this trajectory
gives nearly optimal trajectories for all vehicles in the swarm
without requiring additional costly optimization computations.
We provide a bound on the maximum energy cost for vehicles
in the swarm and also provide a more realistic estimate of the
maximum energy cost. We also determine that the energy cost
scales as N3/2 for swarms with large numbers of vehicles, N .
The algorithm and fuel cost bounds are verified in simulations
of unmanned underwater vehicles moving across a double gyre
system on the scale of a small ocean basin.

I. INTRODUCTION

The problem of guiding a vehicle or vehicles through open
domains with large background velocity fields (relative to
vehicle speed) is common in the field of oceanic sensing
and monitoring. For example, underwater gliders used in
ocean research may operate autonomously for months at a
time, traveling up to thousands of kilometers with speeds
of only about 25 cm/s [1]. The long term, relatively low
cost measurement capabilities of such gliders is largely made
possible by their very low speed, which requires very little
power to operate, only about 0.5 W [1]. However, these low
power capabilities come at the cost of vehicle speed. In many
cases, ocean currents reach speeds of around 1 m/s, making
certain regions inaccessible to the vehicles unless careful path
planning techniques are used.

While there is a large body of existing research on optimal
path planning in static and dynamic environments, the vast
majority of this work is focused on ground robots where a
path must be planned to avoid physical obstacles [2], [3], [4].
On the contrary, there are relatively few results on optimal
path planning through dynamic, strong background flows.
Past work in this area has noted the apparent connection be-
tween optimal trajectories and coherent structures in oceanic
flows [5], [6] and a recent algorithm has been developed to
determine minimum time trajectories for a single underwater
vehicle in an open domain [7].

In this investigation, we focus on generating nearly fuel-
optimal trajectories for large swarms of vehicles in open
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domains with strong background flows. As discussed above,
underwater vehicles in the ocean may greatly benefit from
fuel-optimal trajectory planning. Additionally, as underwater
vehicles become cheaper, it may be more common to release
large groups of vehicles to travel as a swarm and maximize
information gathering capabilities.

Given a good prediction of the background velocity in
the domain of interest, it is reasonable to formulate an
optimization problem for a single vehicle traveling between
two points subject to certain motion constraints. Typically,
one may wish to minimize the fuel usage, travel time, or
some combination of the two. For a single vehicle, this opti-
mization problem may be solved in many ways, however, as
additional vehicles are added to the system, the necessity of
ensuring collision avoidance and reasonable swarm behavior
quickly makes the problem intractable, especially if swarms
of dozens or even hundreds of vehicles are used.

To address the growing complexity of the optimization
problem, we achieve nearly optimal trajectories for a vehicle
swarm by guiding an entire swarm of vehicles along a
trajectory that is optimal for a single vehicle. The center of
the swarm remains very close to the optimal trajectory, but
vehicle’s at the margins of the swarm are farther away from
this optimal path. As long as the velocity gradients in the
background flow are small compared to the total swarm size,
all vehicles in the swarm achieve a nearly optimal trajectory.

To address the vehicle guidance issues associated with
large swarms of vehicles, we use a smoothed particle hydro-
dynamics (SPH) based control scheme. This control scheme
treats each vehicle in the swarm as an individual fluid
particle, providing obstacle and collision avoidance while
allowing for simple, distributed computing.

To analyze the effectiveness of this control scheme, we
provide a bound on the swarm fuel cost based on the swarm
moving as a rigid body along the optimal trajectory based on
the swarm size and the gradients in the background velocity
field. We also present the results of simulations based of
underwater vehicles moving across a double gyre flow on the
scale of a small ocean basin. Realistic vehicle constraints are
enforced and it is verified that the swarm obeys the upper
bound on fuel cost for groups ranging in size from one to
500 vehicles. Additionally, it is observed that the average
fuel cost per vehicle grows only as N3/2 for large numbers
of vehicles in the swarm.

The primary contribution of this paper is the introduction
and validation of a new method for nearly-optimal swarm
guidance in background flows. We provide a bound on the

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3837



fuel consumption which proves that the trajectories are nearly
optimal as long as the velocity gradients in the background
flow are small on the scale of the swarm size. Additionally,
we provide a more useful (i.e. more accurate) estimate for
the actual energy costs as well as a parametric model for the
cost as a function of number of vehicles in the swarm. We
find that the parametric model provides very good estimates
for fuel usage when extrapolating to large swarms (up to 500
vehicles) based on simulations of moderately sized swarms
(N ≤ 100).

II. SMOOTHED PARTICLE HYDRODYNAMICS

While there are many possible choices available for coop-
erative control algorithms, we have chosen to use a control
scheme based on smoothed particle hydrodynamics (SPH).
SPH is simple to implement, computationally efficient, and
gives fluid-like swarm movement. SPH is a Lagrangian for-
mulation of the Navier-Stokes equations of fluid motion. In
the context of cooperative control, each vehicle is treated as a
fluid particle. Pressure forces provide collision avoidance and
viscous forces provide a consensus term between vehicles.
Additionally, it is possible to create virtual reduced density
particles to provide guidance to groups of vehicles. Just as
fluid flows toward regions of low pressure, these virtual
particles act as goals or attractors for other SPH particles.
For compactness, we review only the necessary components
of the SPH formulation here. The reader is referred to the
article by Monaghan [8], the book by Liu and Liu [9], or the
references therein for further details.

In the SPH formulation, the acceleration of a vehicle is
determined by its interactions with nearby vehicles. The
range of interactions is limited by the use of a smoothing
kernel through which all fluid properties are applied and
the resulting accelerations are computed. There are many
smoothing kernels available, given various properties that
may be desirable for different purposes. In general, the
smoothing kernel is gaussian-like and we also chose a
compactly supported kernel to limit the range of vehicle
interactions. We choose the kernel function

W (r, h) =
C

hd


1− 3

2s
2 + 3

4s
3 if 0 ≤ s ≤ 1

1
4 (2− s)3 if 1 < s ≤ 2

0 if s > 2

(1)

where r is the position vector, h is the smoothing length, d
is the dimension of the space (2 or 3), C is a normalization
constant such that

∫
Wdx = 1 and s = ||r||2/h.

Apply this SPH assumptions to the Navier-Stokes equa-
tions of fluid motion gives rise to
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∑
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where ρ is density, m is mass, v is velocity, P is pressure,
∇i is the gradient with respect to particle i, rij = rj − ri, µ
is viscosity, subscripts denote particle identity, vij = vj−vi,
and rij = ||rij ||2. The mass is chosen so that particles have
neutral density in isolation, i.e.

mi =
ρ0

W (0, h)
. (4)

This mass ensures that vehicles always experience a repelling
force when rij < 2h. The pressures must be computed using
an equation of state such as

Pi = Kρi

(
ρi
ρ0
− 1

)
. (5)

The coefficients µ, K, and ρ0 must be determined by other
means. In fluid simulations, these coefficients are related to
the physical properties of the fluid, i.e. the viscosity, the
bulk modulus, and a reference density. However, we must
choose these parameters in a different way for the purpose
of cooperative control.

In the context of cooperative control, the accelerations
computed through the SPH equations are the desired accel-
erations of the vehicles in the swarm. Obviously this leads to
some constraints on the realistically achievable accelerations
and velocities. In the past, there has not been a clear way
of systematically choosing the values of µ, K, and ρ0 to
give accelerations that are of the desired magnitude for the
vehicles. A common issues was the appearance of a bang-
bang controller where the acceleration magnitudes are either
zero or the maximum possible value. This results from K and
mu being too large. If the mass is chosen as in equation (4),
it is possible to factor and cancel ρ0 from every term in
the equations so the choice of ρ0 has no affect on the
solution. For simplicity, we simply set ρ0 = 1 in all future
computations. We must then scale K and µ to achieve the
desired behavior.

We begin by considering the desired behavior qualitatively
in terms of a Reynolds number. The Reynolds number is
defined as the ratio of inertial forces to viscous forces and
in fluid flows is given by

Re =
ρ0Lv0
µ

(6)

for a reference length scale L and speed v0. In the coop-
erative control scheme, this ratio still applies, but now the
inertial forces are generated by the repulsive pressure force
terms and the viscous forces create a velocity consensus
type term. Typically, collision avoidance is significantly more
important than velocity consensus so we have found that a
Reynolds number of around Re = 10 is usually appropriate.

We can directly compare the pressure forces and the
viscous forces between two particles separated by a distance
h with a velocity difference of vmax. This gives a pressure
force (per unit mass) of

Fp =

∣∣∣∣2K W (h, h)

W (0, h)(W (0, h) +W (h, h))

dW (h, h)

drij

∣∣∣∣ (7)
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and a viscous force (per unit mass) of

Fµ =

∣∣∣∣2µ W (0, h)vmax

(W (0, h) +W (h, h))2
dW (h, h)

drij

∣∣∣∣ . (8)

The ratio of these two forces gives

Re =
Fp
Fµ

(9)

Additionally, the vehicles typically have a maximum accel-
eration that is related to the turning radius. For vehicles with
a turning radius of Rmin at a speed of vmax, the maximum
acceleration is given by

amax =
v2max

Rmin
. (10)

The total acceleration given by the SPH equations should be
approximately the same as amax, giving

amax = Fp + Fµ. (11)

Finally, we solve equations (7) and (8) for K and µ for the
vehicle particles.

Swarm guidance is handled through the use of virtual
particles with reduced density. These virtual particles may be
added, subtracted, or moved around the domain as needed.
They also typically have a much large smoothing width h
than the vehicle particles so that their attraction force acts
over a large distance. As long as the virtual particle density is
less than the reference density the pressure will be negative at
the attracting particle, causing attracting forces. For simplic-
ity, we use a fixed zero mass limit to determine the forces due
to the virtual reduced density particles. Additionally, these
particles to not exert any viscous forces, doing so would act
in opposition to the motion of vehicles toward the virtual
particle. In the limit of zero mass for a reduced density
virtual particle, we find that the an isolated vehicle particle
experiences acceleration of

Fr.d. =
Kr.d.

W (0, hr.d.)
∇W (r, hr.d.) (12)

where subscript r.d. denotes properties specific to the reduced
density particle and r is the vector from the vehicle particle
to the attractor particle. Again, based on the on the maximum
vehicle acceleration we can find Kr.d. by solving

amax = αFr.d. (13)

Here, we choose a constant 0 < α ≤ 1 so that forces from the
attractor particle are typically less than the forces between
vehicles that provide collision avoidance which is a higher
priority. Values of α = 0.1−0.5 typically seem to work well.

By choosing the SPH parameters using the methods out-
lined in this section, we ensure the qualitative behavior
desired by the choice of Reynolds number while also en-
suring that the desired accelerations are of the same order
as the vehicle capabilities. This eliminates the bang-bang
control results that we have experienced with other choices

of SPH parameters. Finally, we compute the final vehicle
acceleration, ẍ, via

ẍ = constrain
(
c1
dv

dt
− c2ẋ

)
. (14)

The addition of a drag force, −c2ẋ, increases the stability
of the controller and helps to eliminate oscillations while
the inclusion of the coefficients c1 and c2 allows for easy
adjustments of the effects of the SPH forces and the drag
force. Finally, a constraint function is applied to ensure that
the final acceleration values and the resulting velocities are
within the limits of the vehicle capabilities.

III. OPTIMAL TRAJECTORIES

The end goal of this technique is guide vehicles along
an nearly optimal trajectory through a complex, dynamic
background velocity field. In order to do so, we must first
define the optimization problem. Here, we consider only fuel-
optimal trajectories by minimizing the fuel or energy cost
along the trajectory. We assume that the drag on the vehicles
is the primary energy cost and that this force is proportional
to the vehicle speed squared. Let the vehicle velocity be given
by ẋ and the background flow velocity be given by U, then
the normalized power usage (normalized by the maximum
vehicle power) is given by

P (t) =
||ẋ−U||32
v3max

(15)

and the total normalized energy (or equivalently, fuel) cost
is given by

E =

∫ tf

t0

P (t)dt. (16)

Note that since the power has been normalized to eliminate
the inclusion of unknown drag coefficients, P is dimension-
less and E has units of time. We then wish to find

min
t0,tf ,x(t)

E (17)

subject to the constraints

x(t0) = x0,

x(tf ) = xf ,

||ẋ|| ≤ vmax

tmin ≤ t0 < tf ≤ tmax.

This optimization problem may be solved in many ways. We
have chosen to simply use existing software tools since the
optimization method is not a new contribution of this paper.
In the following sections, this optimization problem is input
and solved in MATLAB via the use of the OPTRAGEN 2.0
[10] and SNOPT [11] toolboxes. OPTRAGEN parameterizes
the trajectory using splines and translates the minimiza-
tion problem to a nonlinear programming problem which
is solved by SNOPT. Although this method is somewhat
sensitive to the initial guess and the spline parameters used,
it gives sufficiently accurate solutions for our purposes.
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Note that solving this optimization problem merely gives a
single optimal trajectory. This is a fuel-optimal trajectory for
a single vehicle. Since we will be guiding an entire swarm
of along this optimal trajectory, at most one of the vehicles
in the swarm may follow the optimal trajectory. At best, the
other vehicles will travel along nearly optimal trajectories.

As an estimate of the expected efficiency, we consider
a trajectory x(t) that has been displaced from the optimal
trajectory x∗(t) by some amount δx, but still travels at the
speed required by the optimal trajectory (i.e. ẋ = ẋ∗). Due to
the velocity gradients in the background flow, such a vehicle
will experience a different background flow velocity than that
which occurs along the optimal trajectory, and will therefore
require a larger amount of energy to complete the trajectory.

A Taylor series expansion gives the background flow
velocity at this displaced trajectory location to be

U(x(t), t) = U(x∗(t), t) + J(ξ, t)δx (18)

where J is the Jacobian of the background velocity field and
ξ is a point between x and x∗. The power usage is then
given by

P (t) =
||ẋ− (U(x∗(t), t) + J(ξ, t)δx)||32

v3max
. (19)

Let

π(t) =
||ẋ∗ −U(x∗, t)||2

vmax
=
||ẋ−U(x∗, t)||2

vmax
(20)

be the power usage of the optimal trajectory. Then

P (t) ≤
(
||ẋ−U(x∗, t)||2

vmax
+
||J(ξ, t)||2||δx)||2

vmax

)3

(21)

≤
(
π(t) +

||J||2 ||δx)||2
vmax

)3

≤π3(t) + 3π2(t)
||J||2 ||δx||2

vmax

+ 3π

(
||J||2 ||δx||2

vmax

)2

+

(
||J||2 ||δx||2

vmax

)3

.

Given this bound on the power usage, the total energy used
by a vehicle on the trajectory x(t) is bounded by

E ≤E∗ (22)

+ 3
max
t

(||J||2) ||δx||2
vmax

∫ tf

t0

π2(t)dt

+ 3

(
max
t

(||J||2) ||δx||2
vmax

)2 ∫ tf

t0

π(t)dt

+

(
max
t

(||J||2) ||δx||2
vmax

)3

(tf − t0)

where E∗ is the total energy use for the optimal trajectory.
Note that the integral terms in equation (22) are determined
solely by the optimal trajectory and ||J||2 is dependent on

the properties of the background flow field. Of particular
note is the fact that the energy bound is equal to the optimal
trajectory energy usage plus three other terms involving
||J||2 ||δx||2. Since ||J||2 represents the gradient of the
background velocity field and ||δx||2 is the swarm size,
the trajectories are nearly optimal for velocity fields with
spatial gradients that are small on the scale of the swarm
size. Put another way, the trajectories are guaranteed to be
nearly optimal if ||J||2 ||δx||2 � 1

Additionally, we may achieve a better estimate of the typ-
ical energy cost by using ||J||2 along the optimal trajectory
and estimating

C :=
1

vmax
R mean
||x||2=1

(||J x||2) ≈ ||J δx||2
vmax

. (23)

The mean, mean (||J x||2), is numerically approximated
along the optimal trajectory. The estimated energy use is
then given by

E ≈E∗ (24)

+ 3

∫ tf

t0

C(t)π2(t)dt

+ 3

∫ tf

t0

C2(t)π(t)dt

+

∫ tf

t0

C3(t)dt

(25)

where C is defined by equation (23). We still expect this to
be an overestimate of the fuel cost since this is based on a
swarm that moves as a rigid body. In fact, the vehicle swarms
are allowed to rotate and deform, further decreasing the fuel
cost. Additionally, due to the finite swarm size, the vehicles
in a swarm do not travel precisely between the initial and
final points on the optimal trajectory. In fact, they travel from
some neighborhood of the initial location to a neighborhood
of the final location.

IV. NUMERICAL SIMULATIONS

To validate the control scheme presented above, we ex-
amine a simple test case via numerical simulation. This test
case is chosen because it bears some similarities to the time
dependent gyres that commonly appear in ocean flows. A
snapshot of the velocity field is shown in figure 1. The
flow consists of two counter-rotating gyres with a periodic
east/west perturbation.

The velocity field for this flow is defined by the stream
function

ψ(x, y, t) = A sin(πf(x, t)) sin(πy) (26)

where

f(x, t) = a(t)x2 + b(t)x,

a(t) = ε sin(ωt), (27)
b(t) = 1− 2ε sin(ωt).
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Fig. 1. The double gyre velocity field at time t = T/4, maximum eastward
(rightward) perturbation.

The velocity field is then given by

u = −∂ψ
∂y

, (28)

v =
∂ψ

∂x
.

This velocity field is defined on the domain [0, 2] × [0, 1].
To provide a more realistic scenario, the domain is rescaled
to be 200 km by 100 km by simply evaluating (u, v) =
(u(x/L, y/L, t), v(x/L, y/L, t)) where L = 100, 000 m. For
reference, the Red Sea is approximately 200 km wide. The
flow parameters are chosen so that the maximum flow speed
is 1 m/s (A = 1/π), the perturbation of the flow is about 10
km (ε = 0.1) and the period of the time dependent oscillation
is about 87 hours (ω = 2× 10−5).

Each simulation presented here is based on a vehicle or
vehicle swarm beginning x = 10 km, y = 10 km and
traversing the domain to reach the point x = 150 km, y = 50
km. The vehicles are given a maximum speed of 0.3 m/s. The
optimal trajectory is found using OPTRAGEN and SNOPT
as discussed in section III. The vehicles are given smoothing
kernel values of h = 500 m which results in typical vehicle
spacings of around 400 m. The minimum distance between
any two vehicles in any of the swarms tested here was 288
m. Figure 2 shows an overview of one set of nearly optimal
trajectories. This figure plots the traectories of 100 vehicles in
gray, along with their positions every 12 hours (black dots),
the optimal trajectory (red curve), and the goal location (red
×). A zoomed view of the final vehicle positions is shown
so that the structure of the swarm can be seen. The vehicles
closely follow the optimal trajectory with the swarm rotating
and deforming slightly under the influence of the background
flow. Swarms of other sizes have similar behavior.

V. RESULTS

The main results are summarized in figures 3 and 4.
Clearly, the fuel usage bound and estimate discussed in
section III are overly pessimistic, with the bound quickly
rising to more than an order of magnitude larger than the
actual fuel usage. It is clear that the ability of the swarm to
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Fig. 2. An example of the nearly optimal vehicle trajectories in the double
gyre flow. This figure plots the trajectories for the swarm of 100 vehicles.
Vehicle trajectories are plotted as gray curves, vehicle positions are shown
as black dots every 12 hours, the optimal trajectory is shown as a red curve,
and the final goal location is a red ×. The trajectories begin at the bottom
left and end at (150, 50). The zoomed figure at right shows the swarm
structure at the final location.
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Fig. 3. The fuel cost, energy bound, and a priori energy estimate for
the near optimal trajectories. The bound is a significant overestimate of the
actual fuel cost while the estimated fuel cost is much closer to the true fuel
requirements for vehicles in the swarm.

rotate and deform allows for significant fuel savings when
compared to the rigid swarm approximation used to find the
bound on the energy cost. Additionally, it is interesting to
note that some of the vehicles achieve a fuel usage that is
below the optimal trajectory fuel usage. This is because the
vehicles do not begin and end precisely on the chosen initial
and final points due to the finite size of the swarm. This
results in some trajectories in the swarm that may actually
require slightly less fuel than the optimal trajectory.

Despite the pessimistic bound and estimate shown in figure
3, we have still gained much insight into the expected scaling
of the fuel costs. Specifically, we expect the fuel costs to
behave according to the function

E(N) = E∗ + c1N
1/2 + c2N + c3N

3/2. (29)

This is because the swarm radius scales as
√
N as discussed

in section III so substituting R ∝
√
N in equations 23 and 22

and grouping all other terms into constant parameters results
in equation 29. For a given vehicle spacing and scenario,
we can use the data from the simulations to determine the
coefficients in equation (29). Here, we use the values of
the maximum or average fuel costs for swarms of N ∈
{10, 20, 50, 100} vehicles to determine the coefficients of
equation (29) based on the least squares best fit. The results
are shown in figure 4. In each case, the the fit very accurately
describes the data, even for swarms of up to 500 vehicles.
The percent error in the value predicted by this fit is shown
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Fig. 4. The maximum, average, and minimum fuel cost for vehicles in
swarms of various sizes. The curves plotted result from fitting the equation
(29) to the maximum or average fuel costs for swarms of 10, 20, 50, and
100 vehicles.
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Fig. 5. The percent error in the energy cost predicted by equation (29). The
coefficients were determined by a least squares best fit to the data found
for swarms of 10, 20, 50, and 100 vehicles and the data and curves are
shown if figure 4. The error in the predicted maximum energy cost is less
than 10% while the error in the predicted average energy cost is close to
0.1%. Note: this is the error between the predicted and actual average fuel
costs. Since the prediction was determined via a least squares fit based on
N ∈ {10, 20, 50, 100} vehicles, we expect smaller errors in this range and
larger errors in the extrapolation range N > 100.

in figure 5. The error in the predicted maximum energy use
is less than 10% for the cases tested here. The average fuel
usage is more accurately predicted due to the averaging effect
on random variations among vehicles, giving an error that is
around 0.1% or less for most swarm sizes.

VI. CONCLUSIONS

We have developed and presented a method for near fuel-
optimal trajectory planning for swarms of vehicles under the
influence of a large background flow in a open domain. In
flows where the velocity gradients are small on the scale
of the swarm size it is possible to guide the entire swarm
along a pre-computed optimal trajectory. We choose to use
smoothed particle hydrodynamics (SPH) for the control algo-
rithm. However, it is expected that artificial potential control
schemes will provide similar results. We have demonstrated
the capabilities of this method for simulated swarms of
unmanned underwater vehicles ranging in number from one
to 500 vehicles and moving through an ocean-like velocity
field.

We provide an a priori bound on the fuel use for vehicles
in a swarm that moves as a rigid body along the optimal
trajectory. In reality, the deformability of the fluid-based
SPH control scheme produces significantly more efficient
trajectories than this rigid swarm approximation. The energy
cost of the near optimal trajectories takes the form

E(N) = E∗ + c1N
1/2 + c2N + c3N

3/2

where E∗ is the energy cost of the optimal trajectory and the
constants depend on the specifics of the optimal trajectory
and the gradients in the background velocity field. The
coefficients in this equation can be determined via a least
squares fit to a few swarm sizes. Using data for swarms of
10, 20, 50, and 100 vehicles, the coefficients are determined
and provide a prediction of the maximum fuel cost that is
accurate to 10% and the average fuel cost that is accurate to
about 0.1%.

This method demonstrates very promising results for large
swarm guidance in open domains with large velocity fields.
Additionally, the SPH control scheme provides a control
method that is simple to implement and allows for efficient
swarm motion. The SPH scheme enables swarm guidance
through the use of virtual reduced density particles and
provides good collision avoidance capabilities for all test
cases with a typical minimum vehicle spacing of around 400
m and a minimum observed spacing of 288 m.
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