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Abstract— In this work, we present the online Quantum
Mixture Model (oQMM), which combines the merits of quan-
tum mechanics and stochastic optimization. More specifically
it allows for quantum effects on the mixture states, which in
turn become a superposition of conventional mixture states.
We propose an efficient stochastic online learning algorithm
based on the online Expectation Maximization (EM), as well
as a generation and decay scheme for model components. Our
method is suitable for complex robotic applications, where data
is abundant or where we wish to iteratively refine our model
and conduct predictions during the course of learning. With
a synthetic example, we show that the algorithm can achieve
higher numerical stability. We also empirically demonstrate the
efficacy of our method in well-known regression benchmark
datasets. Under a trajectory Learning by Demonstration setting
we employ a multi-shot learning application in joint angle space,
where we observe higher quality of learning and reproduction.
We compare against popular and well-established methods,
widely adopted across the robotics community.

I. INTRODUCTION

Robot learning by demonstration (LbD) has been a field

of vibrant research for several years now. It originally

attracted a great deal of attention as a highly promising

means of teaching robots new skills [1], [2], [3]. Tasks

were previously manually programmed and predefined, an

endeavor which can be rather tedious and time-consuming.

Task demonstration methods include guiding, tele-operating,

vision [4], motion capturing and kinesthetics [5] (manually

moving the robot joints in place).

The objective of LbD entails severe difficulties, for that

reason a variety of methods from different fields need to

be employed, namely methods stemming from machine

learning, computer vision, human-robot interaction. There

are two popular approaches to the problem in question [6]:

trajectory level and symbolic level task encoding. The former

being a lower and the latter a higher level approach.

Statistical Machine learning has been a popular approach

in robotics, with valuable contribution to LbD as well [7],

[8], [9]. This can be mainly attributed to the inherent ability

of statistical algorithms to not only train from the data, but

also generalize learned tasks. Additionally, such methods

perform prediction by means of a full predictive distribution,

rather than point estimates, thus enabling us to also assess

the uncertainty of prediction.

Two well-established approaches towards trajectory level

LbD are the Gaussian mixture regression (GMR) [10], [11]
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and the locally weighted projection regression (LWPR) [12].

Regarding the comparative merits of both methods, it has

been shown that GMR performs better for low dimensional

demonstrations [13], while LWPR should be preferred for

inputs of high dimensionallity, which lie in lower dimen-

sional manifolds, and/or inputs that may contain irrelevant

dimensions.

Several researchers have previously drawn inspiration

from the influential ideas of quantum physics and probability,

with a variety of advances in machine learning stemming

from this source of inspiration. A notable approach is the

quantum mixture model, first introduced in [14]. The model

was later extended for quantum mixture regression (QMR)

in [15] and has proven very effective in a variety of learning

by demonstration applications, yielding higher performances

with a small increase in computational cost.

Online and big-data solutions are also increasingly popular

in the past few years, with a rekindled interest in stochastic

optimization [16], [17]. Online versions of complex algo-

rithms however still remain a formidable challenge. In this

regard, we believe that the field of robotics could highly

benefit from recent advances in stochastic optimization and

that online methods could provide the momentum needed

towards more effective real-life robotic applications. This

belief is reinforced by an increasing amount of work towards

formulating online algorithms for robotic applications, such

as learning robot dynamics [18] and kinematics [19], [20].

Motivated by the aforementioned points, we present a

novel online training algorithm for the quantum mixture

model, which we shall dub the oQMM. The proposed

approach builds upon recent advances in several fields,

such as machine learning, quantum statistics and stochastic

optimization, to yield a powerful framework for incremental

learning and prediction from multiple demonstrations. We

also present an effective component production and pruning

scheme to facilitate learning in cases when the data depart

form the i.i.d.1 assumption.

We demonstrate the efficacy of our algorithm in a synthetic

example, a series of benchmark datasets and a learning by

demonstration task.

II. THEORETICAL BACKGROUND

A. Quantum Statistics

The generalization of conventional probability theory has

given rise to a whole new field of mathematics with par-

ticular applicability in physics, namely the field of quantum
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Fig. 1: Model evolution in time (vertical arrows) and the main underlying concepts associated with each one.

statistics. According to the notion of quantum probability, a

classical probability density can be generalized by a density

matrix, let us denote it as Ψ, with the following properties:

• xTΨx ≥ 0, ∀x: Positive semi-definite.

• Ψ = Ψ†: Hermitian (or self-adjoint)2.

• tr {Ψ} = 1: Normalized.

For instance, a conventional probability density of an event

u having K distinct outcomes with probability p(u = k) =
πk can be described by the following diagonal probability

matrix.

Ψ = diag ([π1, ..., πk]) =

K∑

k=1

πkeke
T
k (1)

with {ek}
K
k=1 being a set of basis vectors of pure states,

such as:

[ek]i =

{
1, i = k

0, i 6= k

and [ek]i is the ithelement of vector ek.

In quantum statistics we are able to extend the probability

matrix Ψ so as to allow the manifestation of non-diagonal

elements. This, in turn gives rise to composite states, formed

as a superposition of the system’s pure states:

Ψ =
K∑

k=1

πkuku
T
k

where a basis vector uk =
[ √

2
3

2
3

√
3
3

]T
, would

mean that this state corresponds to a mixture of the three

system pure states with probabilities 2
9 , 4

9 and 3
9 respectively.

1) Numerical Example: Let us suppose a conventional

mixture of two distributions with probability vector:

[
π1 π2

]T
=

[
0.3 0.7

]T

Under a quantum statistical perspective the system’s prob-

ability matrix is the following:

[
π1 0
0 π2

]
= π1e1e

T
1 + π2e2e

T
2

where e1 =
[
1 0

]T
and e2 =

[
0 1

]T
.

2With † we denote the conjugate transpose of a matrix.

(a) Pure probability state-space system consisted of a
mixture of two distributions with probabilities 0.3 and
0.7.

(b) Quantum probability state-space system constructed by applying
a quantum disturbance γ = 0.1 to the pure state system. We have
expressed the non-diagonal probability matrix using it’s eigenvectors.

(c) Alternative view of the same non-diagonal probability matrix, in
this case not by means of it’s eigenvectors. It should be noted that the
number of alternative representation is unbounded.

Fig. 2: Numerical illustrative example of the relation between

quantum and conventional statistics.

Introducing an off-diagonal quantum disturbance γ = 0.1
to the pure log probability matrix we observe the following

effect:

A = −

[
1.204 0.1
0.1 0.357

]
⇒ eA =

[
0.302 −0.05
−0.05 −0.703

]

It should be noted that adding non-diagonal elements in

that manner always results in positive semi-definite proba-

bility matrices, due to the fact that A is symmetric.

The latter quantum state system can be analyzed with

respect to the probability matrix eigenvectors (fig. 2b) as

follows:

eA = 0.297

[
−0.993
−0.116

] [
−0.993
−0.116

]T

+ 0.708

[
0.115
−0.993

] [
0.115
−0.993

]T

The resulting system is consisted of two quantum classes,

with probabilities 0.297 and 0.708. Each quantum class is

composite and formed by linear superposition of the system’s

pure classes with probability vectors
[
0.987 0.013

]T
and
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[
0.013 0.987

]T
. Of course, the probability matrix can be

also expressed in any other alternative way (fig. 2c).

Concluding the quantum statistical extension of the con-

ventional mixture model can also be viewed as an elegant

mixture of mixtures. Succeeding the concepts of hard clus-

tering (k-means algorithm) and the soft clustering (mixture

model), the quantum extension can be viewed as the next

evolutionary step (fig. 1).

B. Quantum Mixture Regression

The concept of quantum Gaussian mixture models, first

presented in [14], involves the introduction of quantum

states, which are a superposition of pure states. More specif-

ically, let us consider the following matrices, corresponding

to the conventional mixture model:

F = −diag ([lnπ1, ..., lnπK ]) (2)

G(yn) = diag ([ln f1(yn), ..., ln fK(yn)]) (3)

where {πk}
K
k=1 is a normalized set of probabilities, Y =

{yn}
N
n=1, yn ∈ R

D is a set of multidimensional obser-

vations and {fk(·)}
K
k=1 is some set of appropriate density

functions.

Then the log-likelihood of the model is given as follows:

H(yn) = F −G(yn)

Introducing quantum effects to the density matrix F by

means of equal non-diagonal elements γ, yields the following

generalization towards a quantum mixture model:

F = −




lnπ1 · · · γ
...

. . .
...

γ · · · lnπK


 (4)

H(yn) = −
K∑

k=1

K∑

k′=1

B
(n)
kk′Xkk′ =

−




ln(π1f1(yn)) · · · γ
...

. . .
...

γ · · · ln(πKfK(yn))


(5)

B
(n)
kk′ =

{
ln (πkfk(yn)) , k = k′

γ , otherwise
(6)

(Xkk′)ij =

{
1 , i = j

0 , otherwise
(7)

The likelihood of the data under the aforementioned model

is given by:

L(Y ) = p
(
Y | {πk,Θk}

K
k=1

)
⋍

N∏

n=1

tr
{
e−H(yn)

}

tr {e−F }
(8)

Extrema conditions are obtained by direct log-likelihood

optimization as follows:

πk ⋍

1

N

N∑

n=1

φnk, µk =

∑N
n=1 φnkyn∑N
n=1 φnk

(9)

Σk =

∑N
n=1 φnk (yn − µk) (yn − µk)

T

∑N
n=1 φnk

(10)

φnk =
∂ ln tr

{
e−H(yn)

}

∂Bkk

=
tr

{
Xkke

−H(yn)
}

tr
{
e−H(yn)

} (11)

The above derivative follows directly due to linear re-

sponse theory.

The quantum extension of the mixture model previously

described, was recently tailored to a regression setting in

[15], giving rise to quantum mixture regression (QMR).

Where we were able to show it performs remarkably well

at trajectory LbD, yielding state-of-the-art results under a

variety of settings, namely one- and multi-shot LbD.

Predictions are made possible regarding the feature vector

as consisted of a set of predictor and response variables:

yn = [yp
n,y

r
n], with yp

n ∈ R
dp and yr

n ∈ R
dr . With this

regard and due to the properties of Gaussian distributions

[21], the predictive posterior can be formulated as follows:

p
(
yr
n|y

p
n; {πk,Θk}Kk=1

)
= N (yr

n|µ̃, Σ̃) (12)

µ̃ =
∑K

k=1 τk(y
p
n)

[
µr

k +Σ
rp
k (Σp

k)
−1

(yp
n − µ

p
k)
]

(13)

Σ̃ =
∑K

k=1 τ
2
k (y

p
n)

[
Σ

r
k −Σ

rp
k (Σp

k)
−1

Σ
pr
k

]
(14)

where for the quantum mixture regression it holds that

[15]:

τk(y
p
n) =

tr
{
Xkke

−H(yp
n)
}

tr
{
e−H(yp

n)
} (15)

H(yp
n) =

−




lnπ1p(y
p
n|µ

p
1,Σ

p
1) · · · γ

...
. . .

...

γ · · · lnπMp(y
p
n|µ

p
M ,Σ

p
M )




For robotic applications of conventional mixture regression

and Dirichlet process mixture regression we refer to [8],

[22], [11], where trajectory positions serve as predictor and

velocities as response variables yt = [xt,υt].

III. THE ONLINE QUANTUM MIXTURE MODEL

We envision an online training algorithm with the follow-

ing key traits: The capacity to processes data on-the-fly, no

need to store processed data-points and no need to iterate

through the dataset.

To achieve this purpose we shall orient ourselves towards

stochastic gradient ascent methods, known to posses the

desirable traits mentioned. More specifically, averaged and

second-order stochastic gradient algorithms have been shown

to be asymptotically efficient even after a single pass through

the training set [17]. A popular choice is normalizing the
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noisy gradient with the Fisher Information Matrix (FIM)

[23], a quantity also known as the natural gradient, which

captures the Riemannian structure of the parameter space

[24].

A. Proposed Approach

A shortcoming, however, of stochastic gradient ascent is

that the updates may not meet all constrains. The main

problem is focused on the covariance matrix, whose positive

semi-definiteness is not guaranteed at each time-step, a fact

that impairs our ability to perform on-line predictions.

For that reason we shall employ a similar stochastic update

algorithm, based on the EM algorithm, which guarantees

that all constraints imposed are in fact met at each time-

step. The online EM was first introduced in [25]. It was

subsequently generalized in [26], where the authors present

a proof convergence and a proposition of asymptotic equiv-

alency to natural gradient ascent. Moreover, the algorithm

performs simple and efficient updates, making good use of

the sufficient statistics of the exponential family, so as to

avoid redundant calculations. The online EM is summarized

by the following set of equations:

M − step :





s
(i,1)
t = τit = p(i|yt; Θ

(t))

s
(i,2)
t = τityt , ∀i

s
(i,2)
t = τityty

T
t

Updates :
{
S
(i,p)
t = (1− ηt)S

(i,p)
t−1 + ηts

(i,p)
t , ∀i, p

E − step :





πi = S
(i,1)
t , µi =

S
(i,2)
t

S
(i,1)
t

Σi =
S

(i,3)
t −S

(i,1)−1

t S
(i,2)
t S

(i,2)T

t

S
(i,1)
t

where as p(i|yt,Θ
(t)) we denote the responsibility of

cluster i for data-point yt.

The algorithm is guaranteed to asymptotically converge,

provided that the stochastic weights ηt satisfy the conditions

[17]:
∑+∞

t ηt = +∞ and
∑+∞

t η2t < +∞.

In the case of the quantum mixture, the point-wise re-

sponsibilities τit may be approximately updated using eq.

15. We have observed that this assumption works very well

in practice. During our empirical evaluation, we were able

to established that the proposed algorithm converges at least

as fast and achieves state-of-the-art performance.

Concluding, the algorithm requires an inhibition phase,

an equivalent to bootstrapping or warm-up. A period during

which we update the global statistics, but suppress the M-

step until sufficient information has been accumulated. The

stability of each subsequent update can also be facilitated

by processing the data in mini-batches, which accounts for a

notable speed-up and is also reported to lead to performance

gains [27].

During our empirical evaluation we have also compared

against the more robust Student-t mixture model, for which

we have adapted the online-EM algorithm (oSMM) accord-

ingly. The formulation is presented in eq. 16 for reasons

of completeness and since it does not, to the best of our

knowledge, appear elsewhere in the bibliography.

M − step :





s
(i,1)
t = τit =

πit(yt|Θi)∑
K
j=1 πjt(yt|Θj)

uti =
νi+D

νi+δ(yt;µi,Σi)

s
(i,2)
t = τtiuti

s
(i,3)
t = τtiutiyt

s
(i,4)
t = τti lnuti

s
(i,5)
t = τtiutiyty

T
t

Updates :
{
S
(i,p)
t = (1− ηt)S

(i,p)
t−1 + ηts

(i,p)
t (16)

E − step :





πi = S
(i,1)
t , µi =

S
(i,3)
t

S
(i,2)
t

Σi =
S

(i,5)
t −S

(i,2)−1

t S
(i,3)
t S

(i,3)T

t

S
(i,1)
t

νi : ln
(
νi

2

)
− ψ

(
νi

2

)
+ ψ

(
ν
n−1
i

+D

2

)

− ln
(

ν
n−1
i

+D

2

)
+

S
(i,4)
t −S

(i,2)
t

S
(i,1)
t

+ 1 = 0

where

t(yt|Θi) =
Γ
(
νi+D

2

)
|Σi|

− 1
2

(πνi)
D
2 Γ

(
νi

2

) [
1 + ν−1

i δ(yt;µi,Σi)
] νi+D

2

and νi are the degrees of freedom, D the dimensionality

of the observations and δ(·) the Mahalanobis distance.

B. Unit Manipulation (cm)

Manipulating the number of components is important in

online algorithms, especially so when we depart from the

assumption that the data are presented independently and

identically distributed (i.i.d.) to the algorithm. An effective

mechanism of component birth and decay can not only

account for a substantial speed-up, by pruning unneeded

components, but also for a performance boost, by adding

components in areas misrepresented by the model.

Following the analysis in [25], we propose the following

mechanism.

1) Component Pruning and Reset: In case the mass of a

component diminishes, we need to act to remove it or reset

it.

Deleting components is straightforward, however we note

that it is necessary to renormalize global statistics S(i,1).

Resetting a component involves resetting it’s mixing co-

efficient and covariance matrix. The mixing coefficient is

set to 1/K, where K is the number of components, and the

covariance is set broad enough. We have randomly initialized

the covariances to diagonal matrices drawn from a uniform

distribution U [0, 0.1], however this is expected to differ

according to the data variance.

In this case, we also perform an inverse M-step to update

global statistics as follows:

3225



TABLE I: Main hyper-parameters used in all experiments.

M Nm α γ Ni

Synthetic 10 1 0.6 0.09 100

S.-A. [32] 30 1 0.8 0.09 50

pumadyn [33] 30 1 0.8 0.09 50

L8s (t, x) 30 30 0.8 0.09 170

L8s (t, x) + cm - 30 0.85 0.09 30

L8s (
.
x, x) 30 20 0.8 0.09 170

inverse
M − step

:





S
(i,1)
t = π

(new)
i , ∀i

S
(k,2)
t = S

(k,1)
t µk

S
(k,3)
t = S

(k,1)
t Σi+

+S
(k,1)−1

t S
(k,2)
t S

(k,2)T

t

2) Component Production: If one or more data-points are

not represented with sufficiently large likelihood by any of

the existing components, we create a new one centered at

the mean of the misrepresented points and with a sufficiently

large default covariance.

To be more specific, a data-point is considered as misrep-

resented by the current mixture model, when its likelihood

under all current components is below a certain threshold.

Similar to the previous case, the threshold has to be chosen

wisely and depends on the model. We have used a likelihood

threshold of 0.001 for Gaussian densities and 1 for Student-t

densities.

The initial mixing coefficient is set to 1/K.

We should note that the stochastic weights ηt are run sep-

arately for each component so as to diminish as a component

accumulates evidence.

IV. EMPIRICAL EVALUATION

A. Implementation and Setting

Apart from the quantum mixture, we have also imple-

mented online versions of conventional mixture models for

Gaussian (oGMM) and Student-t (oSMM) densities. For the

locally weighted projection regression [12], we have used the

authors’ LWPR library [28], [29]. For the online Gaussian

Process (oGP), we utilize a matlab version of the OTL library

that appears in [30], [31]. Testing was conducted in Matlab

2012b on an Ubuntu Linux PC, i7 3.4GHz, 16GB RAM.

Parameters for the LWPR and oGP were fixed to the

recommended defaults. For the oGP, we have chosen a

moderate number of 50 basis vectors for all experiments.

All other methods, are run with common parametrization

and initialization for impartial comparisons. The main hyper-

parameters for each experiment are presented in Table I,

where M is the number of components, Nm is the mini-

batch size, α is the parameter of the stochastic coefficients

ηt = n−α, γ is the quantum parameter and Ni is the length

of the inhibition phase.

B. Synthetic Experiment

During our experimental evaluation and besides the per-

formance gains achieved by the oQMM, we have also

(a) Online GMM. (b) Online QMM.

Fig. 3: Component #8 has a low rank covariance matrix lead-

ing to numerical instabilities in higher dimensional datasets.

observed consistently higher numerical stability. This could

be attributed to the more balanced component weighting

induced by the quantum effects, as illustrated in the following

synthetic example.

For the purpose of the experiment we have randomly

generated 20 datasets of 5000, 2D data-points, sampled

from an equally weighted mixture of 3 Gaussians with

randomly chosen covariances and deterministically chosen

means sufficiently far apart. We have repeated training over

10 independent runs for each dataset to accumulate statistics

and reduce variance attributed to random initializations. The

model was purposely over-specified with the number of

components set to K = 10.

Under this setting, we observe that the oGMM tends to be

more prone to producing unstable, spurious clusters with a

typical case shown in fig. 3. Examining the components with

regard to the largest eigenvalue of their covariance, we found

that the oGMM produced 445 components with maximum

eigenvalue below 10−4, while the oQMM produced only

2. This effect becomes more intense in higher dimensional

datasets and can lead the oGMM to numerical instability,

whereas the oQMM remains less affected.

C. Benchmark Data

1) Noisy Function Approximation: The first benchmark

is a non-linear function approximation problem under the

presence of noise, proposed in [32] and also adopted in

[25],[12].

y = max
{
e−10x2

1 , e−50x2
2 , e−5(x2

1+x2
2)
}
+N (0, 0.01) (17)

Points drawn from the noisy function, the form of the

noisy surface and the original surface can be seen in the first

3 subplots of fig. 4 respectively.

We have randomly generated 20 training datasets using eq.

17, by drawing 5000 points x from a uniform distribution

U [−1, 1]. In order to account for different random initializa-

tions, we execute each of the oGMM, oSMM and oQMM

10 times for each dataset with common parametrization and

initialization. The LWPR and the oGP are executed once

for every dataset, as they exhibit an almost deterministic

behavior.
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TABLE II: Test-set mean square error.

Method/Dataset Schaal-Atkeson [32]
pumadyn [33]

8fm 8fh 8nm 8nh

LWPR 0.00544± 0.0007 0.0136 0.0887 0.0971 0.1280
oGP 0.04070± 0.0079 0.0234 0.1377 0.0565 0.1432

oGMM 0.00455± 0.0011 0.0444± 0.0128 0.0942± 0.006 0.0819± 0.029 0.1145± 0.020
oSMM 0.00520± 0.0009 0.0383± 0.0117 0.0970± 0.007 0.0683± 0.014 0.1068± 0.011
oQMM 0.00402 ± 0.0012 0.0216± 0.0027 0.0886± 0.003 0.0512± 0.010 0.0934± 0.005

Fig. 4: Best surfaces for all evaluated methods.

The accumulated statistics are presented in Table II. By

applying the student-t test we have established that the

differences of all presented results are statistically significant

at the confidence level of 5% or less. The best predicted

surface for each evaluated method is presented in fig. 4.

The quantum mixture achieves the best results in this ex-

periment, around 13% better than the conventional mixture,

29% better than the Student-t mixture and over 35% better

than LWPR. The online Gaussian process performs poorly

in this experiment.

2) Puma Robot Dynamics: For our second experiment

we consider 4, 9-dimensional datasets from the well-known

Puma robot dynamics benchmark (pumadyn) [33]. The task

is to learn the simulated forward dynamics of a Puma 560

robot arm.

Specifically, the 8 first dimensions are used as inputs,

consisted of joint angular positions and velocities for 3 links

and torque values for two joints. The last dimension is

the target variable and represents the angular acceleration

of the third link. The name of each dataset starts with an

integer indicating dimensionality, followed by two letters

denoting the non-linearity and noise levels respectively (with

f standing for “fairly linear”, n “non-linear”, m “medium

noise” and h “high noise”).

Out of 8192 available data-points, we use the first 7192

for training and the rest for testing. We have executed 50

repetitions of the oGMM, oSMM and oQMM to accumulate

statistics and account for random initialization. The LWPR

and oGP were executed once for each dataset, as their

performance is almost deterministic.

Our results can be seen in Table II. We can observe that

TABLE III: Test-set and trajectory reconstruction mean

square errors. (10−3)

(t, x) (t, x) + cm (x,
.
x)

LWPR 4.221 3.558
oGP 5.947 4.774

oGMM 2.902± 0.6 2.517± 0.6 2.850± 1.7
oSMM 2.986± 0.7 4.240± 0.1 2.214± 0.7
oQMM 2.688± 0.4 2.296± 0.4 2.173± 0.8

LWPR proves especially effective in fairly linear datasets,

regardless of their noise levels, while the oGP is effective

in cases of moderate noise, regardless of the level of non-

linearity. On the contrary, the oQMM seems to perform

well in both aforementioned cases, exhibiting invariant per-

formance regardless the non-linearity or noise level, thus

constituting a more generally applicable method. It should

be noted that at the least challenging dataset 8fm, LWPR

performs better than the oQMM. However, in all remaining

datasets the oQMM achieves equivalent or superior results

to all rival methods.

D. Case Study: Multi-Shot Trajectory Learning by Demon-

stration

Our case study is a multi-shot LbD task, namely drawing

lazy figure 8s, as shown in fig. 5. The task might appear

trivial, however in the high dimensional joint space it entails

severe challenges for learning algorithms and for that reason

is regarded a classical benchmark [12].

In our experiments, we make use of the NAO robotic
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Fig. 5: Experimental setup of NAO robot drawing lazy figure 8s.

(a) Training data: Upper left: Joint positions with respect to the exper-
iment’s drawing plane. Lower left: Angular velocities (rad/s) for each
joint. Right: Angular positions (rad) for each joint. (figure best viewed in
color)

(b) Predicted trajectories obtained by all evaluated meth-
ods. X-Y is the drawing plane of our experiment. (figure
best viewed in color)

Fig. 6: Multi-shot LbD case-study.

platform (academic edition); a humanoid robot with 27

degrees of freedom (DoF), a subset of which is employed

in this case. We have obtained 12 distinct demonstrations

of lazy figure 8s presented to the NAO robot by means of

kinesthetics. Extra care has to be devoted so as each demon-

stration to be performed in consistent speed or alternatively

the trajectories could be subjected to online time warping.

Each demonstration is consisted of 170, 5-dimensional data-

points: 4 joint angle positions x and the time component t.
We have used the first 11 demonstrations for training and

the last for testing. As can be seen in fig. 6a, the dataset is

severely ridden with noise. Furthermore, each demonstrations

has different points of origin and relatively few data-points.

All those characteristics combined constitute a formidable

challenge for any algorithm.

We consider two different learning scenarios. According

to the first, the predictor variable is the time component of

the demonstrated task t and joint angle positions x serve

as response variables. This setting is frequently employed

with Gaussian processes, where time is considered the free

variable of the experiment. The second scenario is a more

challenging one and consists of predictions regarding the

next step velocities
.
x, given previous step joint angle posi-

tions x. This is in fact more challenging as the velocities are

considerably noisier (fig. 6a) and task reproduction requires

predictions of higher precision. In this case the error metric

we employ is the trajectory reconstruction error, calculated

from the predicted velocities.

The results, as shown in Table III, reveal that for the

first scenario (t, x), the oQMM performs better than both

oSMM and oGMM from around 8%−11% and much better

than LWPR and oGP. Regarding the component manipulation

(cm) scheme, we have found that it performs reasonably

well, achieving around 17% higher accuracy with lower

computational costs.

In the case of the second scenario (x,
.
x), the best method

is still the oQMM, with the oSMM also performing at the

same level. In fig. 6b we can see an example of the best

fit of reconstructed trajectories for the oGMM, oSMM and

oQMM. We can see that the shape of the trajectory yielded

by the oQMM is considerably better. Although generally

achieving low reconstruction errors, the component manipu-

lation scheme was not consistent enough in this scenario.
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E. Note on complexity

The fastest method is the online Gaussian process, fol-

lowed by the conventional mixture model. The oQMM is

slightly more computationally intensive than the oGMM.

Finally, the LWPR and especially the oSMM are the most

computationally intensive, with the latter posing a severe

computational burden.

V. CONCLUSION

In this work, we have presented the online quantum

mixture model, a powerful framework for robot learning by

demonstration. Our approach is based on quantum mixture

regression and recent advances in stochastic optimization.

We also provide a component manipulation scheme, which

can result in higher performance and lower computational

costs.

Our method is especially suited for large, complex

datasets. It exhibits higher numerical stability and is gen-

erally applicable regardless the noise or the non-linearity

level of the data. We have also shown that it performs very

well in a demanding multi-shot learning by demonstration

application, where it enjoys higher accuracy of prediction

and trajectory reconstruction.

The implementation is available at the author’s web-

site http://www.korkinof.com and the Personal

Robotics website http://www3.imperial.ac.uk/

personalrobotics.
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