
Optimizing Aspects of Pedestrian Traffic in Building Designs

Samuel Rodriguez, Yinghua Zhang, Nicholas Gans and Nancy M. Amato

Abstract— In this work, we investigate aspects of building
design that can be optimized. Architectural features that we
explore include pillar placement in simple corridors, doorway
placement in buildings, and agent placement for information
dispersement in an evacuation. The metrics utilized are tuned
to the specific scenarios we study, which include continuous flow
pedestrian movement and building evacuation. We use Multi-
dimensional Direct Search (MDS) optimization with an extreme
barrier criteria to find optimal placements while enforcing
building constraints.

I. INTRODUCTION

In this paper, we investigate the use of tools in robotics

and control to improve the design of buildings. We use

methods of optimization and roadmap-based motion planning

to determine how placement of agents and common design

features, such as pillars and doors, can affect the flow of

human traffic through a building. Specifically, we seek to

determine whether it is possible to place design features to

optimize the rate or time it takes for humans to move through

a region or floor plan. Additionally, we attempt to factor

in environmental features and optimization of the environ-

ment that should be of great interest in robotics. A robot

team could be placed in a flow of pedestrians to influence

movement, guide, or provide information. The robots could

self-optimize their configuration given the perceived motion

of the human traffic. In emergency scenarios, a team of

robots could be deployed in order to organize human traffic

and inform them of important information. In the future,

the design of spaces will become increasingly important

for service robots and humans interacting in unstructured

environments such as homes and offices.

We consider three scenarios: maximizing flow in a con-

tinuous traffic problem, minimizing total time in a building

evacuation, and maximizing the number of encounters be-

tween two sets of agents. In these cases, we use methods of

roadmap-based motion planning to simulate the behavior for

a large number of pedestrians. Each pedestrian is represented

by an agent, and is given partial knowledge of the environ-

ment and given a goal position. Each agent will plan a path

towards its destination, based on its knowledge, and adapt

S. Rodriguez and N. Amato are with the Parasol Lab., Dept. of Computer
Science and Engineering, Texas A&M Univ., College Station, Texas, 77843,
USA {sor8786, amato}@tamu.edu

Y. Zhang and N. Gans are with the SeRViCE Lab, Department of
Electrical Engineering, University of Texas at Dallas, Richardson, TX
75080, USA {yxz102220, ngans}@utdallas.edu

*The work of Rodriguez and Amato is supported in part by NSF awards
CRI-0551685, CCF-0833199, CCF-0830753, IIS-096053, IIS-0917266 by
THECB NHARP award 000512-0097-2009, by Chevron, IBM, Intel, Ora-
cle/Sun and by Award KUS-C1-016-04, made by King Abdullah University
of Science and Technology (KAUST).

its path based on new knowledge or environmental factors,

including the presence of other agents.

In the continuous pedestrian traffic scenario, agents are

initialized in one region of the environment and given a

destination in another region. Once agents reach the des-

tination, they are re-initialized to the initial region and pass

through the area again. This way, agents continuously pass

through the environment under consideration. We attempt

to maximize the flow (i.e., person per minutes) through

predefined regions of the environment by placing obstacles

such as pillars in order to influence flow. An example of this

scenario is shown in Figure 2.

In the evacuation scenario, agents are initially placed

throughout an environment. As the simulation progresses,

agents plan evacuation routes given each agent’s environmen-

tal knowledge and mapping. The scenario is concluded when

a predefined percentage of the population has evacuated a

specified area. We attempt to minimize the time to evacuate

the area through placement of doors. We also attempt to

maximize the number of encounters that directing agents

have with agents evacuating the building. An encounter is

defined by passing within a pre-defined distance.

Consider a general optimization problem in the form

{

maximize
x∈Ω

f(x)

subject to c(x) � 0
(1)

where f : Rn → R is the target function to be optimized,

x ∈ R
n is a set of variables, Ω ⊂ R

n is the space on

which f(x) is defined, and c : Rn → R
m are constraints

on x. In our building design tasks the optimization problem,

f(x) can represent the evacuation time, pedestrian flow, or

number of encounters. The variables x are the coordinates of

obstacles, openings, or agents, and Ω is the floor plan of the

building. The dimension of the optimization variable vector

is determined by the number of objects to place. The feasible

range is determined by both the set Ω ∈ R
n, where f(x) is

defined, and the constraints c � 0.

Often there is no explicit expression of f as a function

x, rather f can be evaluated for any particular x ∈ Ω,

and acts something like a black box. Without an explicit

expression for f , the analytical search direction (such as

the gradient direction or Newton direction) is unavailable,

limiting optimization algorithms. In such a case, Multi-

dimensional Direct Search (MDS) is a good option [1], [2].

In MDS, multiple points in the search space are sampled.

This establishes a section of the search space that seems

closer to the optimum, and directs future sampling points.

When constraints are taken into account, many candidate

techniques can be considered. The augmented Lagrangian

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 European
Union

1327

method is always an option [3], by turning the constraints

to punishment terms and adding them to the target function.

Barrier methods are also used to reject the unfeasible points

by giving them unacceptable function values, including ex-

treme barrier [4] and progressive barrier [5]. If viewing the

problem as a multi-object problem, namely, trying to increase

the target function and decrease a constraint violation func-

tion at the same time, so called filtering methods [6] have

been applied to MDS [7]. In our case, the feasible range

is mainly determined by the building map, i.e., the set Ω,

and we cannot place any obstacles or openings outside the

building. Thus, our constraints are usually unrelaxable [5].

Therefore, we employ an Extreme Barrier method rather than

the methods that temporarily allow infeasible points, that is

f(x) = −∞, ∀x /∈ Ω. We refer to our method as MDS-EB.

This paper is organized as follows. Section II briefly de-

tails related research, Section III describes important features

of our roadmap-based multi-agent system, in Section IV

our optimization search strategy is described, our approach

to applying this optimization to virtual environments is

described in Section V, and experimental results are show

in Section VI.

II. RELATED WORK

A. Multi-Agent Systems and Environmental Factors

Surveys of the approaches that have been used to study

crowd simulation and evacuation have been presented in [8],

[9]. Four main approaches are used including flow-based,

cellular automata, activity-based and agent-based models.

In flow-based modeling, the environment is represented by

nodes which represent physical structures such as rooms,

stairs, lobbies, and hallways. Using travel time through nodes

and capacity limits while traversing areas, a macroscopic,

global view of how movement and evacuation may take

place can be obtained. Cellular automata based approaches

discretize the environment and agents are placed in the

underlying grid. This grid often represents valid movements

for the agents but can be extended to represent hazards such

as toxic spills or fires. Activity-based models are concerned

with social factors including a fairly complete set of social

and psychological attributes. Agent-based modeling allows

for the representation of a number of factors, for exam-

ple physical motions, gestures, proximity to other agents,

influence of the environment, age and other social factors

that may be included [9]. It is at this level of detail that

we analyze in our simulations. In [10], the need for agent-

based models to accurately represent real-world scenarios is

described.

In [11] agent panic was simulated when evacuating simple

environments. They also investigated the optimal strategy in

order to escape from a smoke filled room. An approach to

find the optimal evacuation time in simple 2D environments

is described in [12] where the occupants have n possible

exits and use an evacuation function to select routes. The

idea of different levels of agent knowledge and planning

ability is considered in [13]. This is in part due to psychology

studies that show building occupants usually decide to use

familiar exits, such as where they entered the building. Our

research could be used to help redirect people to the best

exit in a given situation. In [14], a system is developed for

simulating the local motion and global way finding behaviors

of crowds moving in a natural manner. They are able to

simulate patient and impatient agents and pushing between

agents. Improvements on the social forces model were made

by considering factors that reduce shaking and vibration

caused by applying social forces in densely crowded areas.

Reactive force flocking behaviors were presented in [15]

where basic local rules are applied to agents including

cohesion, alignment, and avoidance to create realistic looking

flocking motion. In [16], steering behaviors are described

for autonomous characters that integrate the ability to follow

paths using local path information. These flocking techniques

have been shown to add interesting and complex movements

to a group of agents utilizing only those basic behaviors.

A great deal of work has been done studying real buildings

and factors that influence agent movement. The movement

of people in buildings and design considerations that should

be made is presented in [17]. Some interesting aspects to

consider include normal building use, types of populations

and the need to consider evacuation policies. These factors

as well as step geometries and types of handrails can

impact safety and movement of people moving in a building.

There has even been work on studying environmental factors

that can improve the likelihood of people walking which

promotes a healthy lifestyle [18].

Natural movement in realistic environments is important in

studying fine grain agent motion. In [19], an agent-based sys-

tem is used to simulate human movement that can generate

aggregate motion similar to what is found in real buildings.

It incorporates factors such as destination selection, field of

view, and periodically updating the decision. Many different

approaches have been proposed to handle specialized envi-

ronments including pedestrians moving through Penn Station

[20], underground malls [21] and a passenger ship [22].

We have used our roadmap-based with multi-agent sys-

tems to study egress and evacuation behaviors with directing

agents [23], [24], [25]. The roadmap-based approach allows

us to encode complex structures and handle motion and path

extraction in the same way we have basic environments.

We have integrated evacuation with directing agents to

study evacuation strategies [23], [24]. We have also studied

environmental features that effect egress for pedestrian and

vehicle agents [25].

B. Optimization in Building Design

Various optimization algorithms have been used to provide

systematic solutions to building design tasks. Typically, the

focus has been on minimizing the cost of construction or

upkeep of the building. A gradient algorithm is used to

minimize the heating and cooling cost of a building based

on an explicit system model [26]. In [27], building behavior

is simulated by an Artificial Neural Network, and a multi-

objective Genetic Algorithm is used to minimize the energy

consumption while simultaneously improving the thermal

1328

comfort for occupants. In [28], a two-stage solution by

Genetic Algorithm and Ordinal Optimization is applied to

minimize the annual gross energy cost of a manufacturing

plant, taking random variables into account. Sequential Lin-

ear Programming is used to minimize the construction cost

of dividing a building into multiple rooms [29].

III. OVERVIEW: OUR MULTI-AGENT SYSTEM

In this section, we describe the main aspects of our multi-

agent system that impact the overall motion of agents in

a scenario. This includes a description of the agents, their

motion model, the environmental model and metrics we use

to evaluate a scenario. For more information on the roadmap-

based multi-agent system and applications we have studied

previously, please see our prior work [23], [24], [25].

A. Pedestrian Agent Model

In this work we consider scenarios consisting of a set

of N agents, A = a1, a2, ..., aN . An agent ai is repre-

sented by positional, velocity, and acceleration values: ai =
{p,v,a}. These values dictate the agent’s motion state in

the environment. Agents are equipped with a behavior rule

responsible for creating a plan for the agent given its goals

and knowledge of the environment. In the scenarios we

consider here, the behavior results in a route through the

environment.

B. Environmental Representation

Our environmental model allows us to study both basic

and complex environments. The environment is composed

of surfaces that represent the valid space. The agents use

each surface for generating valid roadmaps and determining

if their current state is in the valid space. A surface is

composed of polygons, which when projected down to a

plane, do not overlap (i.e., the barycentric coordinates for

each point in the polygon represent a unique location). The

3D-world coordinates also provide the height component for

agents and nodes on that surface. Valid transitions between

surfaces are allowed if a pre-defined height difference is met.

We utilize our roadmap-based approach to represent

valid motion through potentially complex environments. The

roadmap consists of a set of nodes sampled in the free/valid

space of the environment. The nodes are connected using

simple local planning techniques with a valid edge added to

the roadmap between two nodes if the intermediate nodes

lie in the valid space. An agent that needs a valid path

through the environment can then query the roadmap for a

start and goal configuration by connecting the configurations

to the nearest node in the roadmap in the same connected

component and using basic graph search techniques, a valid

path can be returned.

C. Motion Model

An agent is equipped with force rules, F =
{F1, F2, ..., FM} which determine the force applied to an

agent at each time step given aspects of the environment

perceived at that time. The cumulative forces are used to

update the acceleration, velocity, and position components.

For the scenarios presented here, the agents are equipped

with a goal-based force rule, wall avoidance, nearest neigh-

bor avoidance, and, if perceived, an external object avoidance

force rule. The goal-based force rule guides the agent along

the planned route. Each force is weighted so that a user can

tune the amount of influence each component has on the

agent’s motion.

D. Heterogeneous Agents

Our agents also have the ability to have heterogeneous

values for each component to prevent the appearance of each

agent behaving exactly the same. Examples of heterogeneous

values our agents have include knowledge of the environment

(areas and mapping), maximum velocities and accelerations,

and maximums for each force rule. Without this ability,

agents would appear to move and react in almost the exact

manner which prevents the simulations from looking realis-

tic. Equipping agents with heterogeneous values would also

be useful in representing an actual population where each

person may move at different speeds, with differing levels

of avoidance preferred between neighbors or objects in the

environment.

IV. OPTIMIZATION SYSTEM

A. Multi-dimensional Direct Search

MDS on an n dimensional target function f(x) iteratively

performs a series of operations on a set of n+1 evolving

vertices [1], which defines a simplex. We use v
k
j to represent

each vertex, and the set vk = {vk
0 ,v

k
1 ...v

k
n} to represent the

simplex, where the subscript j ∈ {0, 1, 2...n} denotes the

vertex index, and superscript k denotes iteration number. For

each iteration k, vertices are sorted such that f(vk
0) ≥ f(vk

j)
(for maximization problems). We call vk

0 the incumbent point

and f(vk
0) the incumbent value.

Based on the simplex, MDS generates three different types

of try points. The first type is the reflection try point. As

v
k
0 is the current maximum in the simplex, it is reasonable

to assume this vertex lies in a better region of the search

space than the others. Therefore, we perform a reflection to

generate the set of trial points r
k = {rk1 , r

k
2 ...r

k
n} where

r
k
j = v

k
0 − (vk

j − v
k
0). (2)

If there is a r
k
jr

in r
k, such that f(rkjr) > f(vk

0), where

jr ∈ {1, ...n}, it is possible that better points could be found

further along this direction. So we perform an extension

step, generating a second type of extension try point e
k =

{ek1 , e
k
2 ...e

k
n} where

e
k
j = v

k
0 − λ(vk

j − v
k
0) (3)

in which λ > 1 is the extension parameter. If there is an

e
k
je

in e
k, such that f(ekje) > f(rkjr) > f(vk

0), where je ∈

{1, ...n}, we accept ek to update the vertices, i.e. vk+1
j =

e
k
j for j = 1, 2...n, otherwise we accept rk, i.e. vk+1

j = r
k
j .

If there is no r
k
jr

, such that f(rkjr) > f(vk
0), we perform

a contraction step, generating a third type of contraction try

points c
k = {ck1 , c

k
2 ...c

k
n} where

c
k
j = v

k
0 + θ(vk

j − v
k
0) (4)

1329

in which θ ∈ (0, 1) is the contraction parameter. In this case,

we accept ck to update the vertices, i.e. vk+1
j = c

k
j for j =

1, 2...n. Trial points prediction and simplex update are made

iteratively, until a termination condition is met.

For a maximization problem, pseudocode of the MDS

algorithm is in the Appendix. For minimization problems,

the trial points sequences are also obtained by (2) -(4), but

the criteria for simplex update become swapping all “greater

than” inequalities for “less than”.

Besides the three types of try points, we optionally add

more try points to each iteration to improve the performance

of MDS. They are called poll points [4], and are given by

p
k
j = v

k
0 +∆kDu

k
j (5)

where ∆k is the step length for the kth iteration, D ∈ R
n×m

is a generating matrix, and u
k
j ∈ N

m is a selection vector,

where j is a poll point index. The poll point direction set

given by Du
k
j can be designed to be dense in the entire

space with probability 1, so the poll points have higher

probability to over-perform v
k
0 than the reflection, extension

and contraction points, see the LTMADS algorithm in [4].

B. Optimization Applied to Building Features

Suppose we need to place l features in a 2D plane, e.g.,

placing objects on the building floor in our scenario, the

coordinates of the l objects can be represented by a vector

with dimension 2l. According to the MDS algorithm, we

have an optimization problem with x ∈ R
2l, and we need

2l+1 try points to build the simplex. Each try point is given

by a vector

x =
[

α1 β1 ... αl βl

]T
(6)

where
[

αi βi

]

, i ∈
[

1 2 ... l
]

is the coordinates of the

object-i. The scenario (e.g., evacuation) is simulated for each

of the 2l + 1 vectors in the simplex, and the corresponding

target function values are obtained.

The optimization algorithm proceeds in Fig. 11. When a

try point is unfeasible, i.e., x /∈ Ω, we assign a large magni-

tude negative value to f(x) for a maximization problem, and

a large magnitude positive value for a minimization problem.

The augmented algorithm that avoids infeasible points is

given by Fig. 1.

V. APPLICATION TO ENVIRONMENTAL DESIGN

In this section we describe our application of optimization

techniques to environmental design. We specifically apply

the optimization procedure to placement of agents (pillars

or information providing agents) and door placement in a

building environment. These components can significantly

impact actual usage of a building especially in certain

scenarios.

A. Optimizing the Environment

Pillars represent an architectural component often used for

beautification of an area but can also have an impact on the

motion and flow of agents moving near these components.

There has been work on finding obstacle placements to

1: procedure MDS-EB

2: Obtain f(v0
j) for j = 1, 2...2n+ 1 by simulations

3: j = 1; dim = 2n+ 1;

4: tryType = reflection;

5: J = f(v0
2n+1)

6: while terminating condition NOT met do

7: P = MDS(J)

8: if P feasible then

9: Implement simulation with input P
10: J = the resulting metric
11: else

12: J =

{

−∞ for maximization
∞ for minimization

13: end if

14: end while

15: end procedure

Fig. 1: MDS-EB algorithm

improve pedestrian flow depending on the type of agent

motion [30].

Door placement is another designed feature that can im-

pact overall motion. Door placement is traditionally been

done by architects through standards that have been devel-

oped over the years and for symmetrical purposes. While

these may result in good placements, it would be beneficial

to know what the optimal placement of such features are.

While this type of optimization can be applied to static

objects designed into an environment, we believe this ap-

proach could also be useful for mobile robotic units to place

themselves in an environment so as to influence the flow of

motion or to deliver information to agents as they pass the

robots. In this way, robot teams could determine how to best

place themselves in order to assist in a given scenario.

B. Scenarios

We consider two different scenarios of agent motion in

this work. The first is continuous agent motion for a set of

agents. In this scenario, agents move from one area to another

in the environment. Once the second area is reached, they are

reset to a location in the first area with their next goal set to

another location in the second area. This process continues

for a pre-defined number of time steps.

The second scenario is an evacuation of an area. In this

scenario, agents are equipped with a set of exits of a building

and destination areas. The agents extract routes through the

environment from their location through an exit and to a final

destination.

C. Metrics

We utilize metrics specific to each scenario. In the con-

tinuous flow scenario, we compute the average speed for all

agents on a specified surface in the direction of the flow. This

surface is also the surface where potential pillar locations

are being evaluated during the optimization process. At each

time step, the metric averages the speed in the direction of the

flow for all agents on the surface at that time. These values

are accumulated over the duration of the simulation and the

1330

average speed is returned. In this way, we can determine the

effect the pillar placement has on the speed of agents in a

specific direction.

For the evacuation scenario, we utilize two metrics to

analyze motion. The evacuation time metric reports the time

for a pre-defined percentage of the population to reach the

final destination area. This allows us to capture the overall

effect of the door placement without factoring in the effect of

slow agents. The information dispersement metric returns the

number of evacuating agents that encounter an information

providing agent. An encounter is defined as passing within

a pre-defined distance of the agent.

VI. EXPERIMENTS

We show optimization results for two simulated environ-

ments: a simple corridor and a building environment. These

environments consist of multiple surfaces with our roadmap-

based approach encoding valid transitions for the agents. The

placement of the objects through the optimization process

influences the motion of the agents.

A. Environment and Agent Setup

The simple corridor environment is shown in Fig. 2. In

this scenario, continuous flow is taking place through the

corridor. Agents are initialized at one end of the environment

and select a route that takes them to the other end. The

corridor is composed of three surfaces. The first contains the

initial placements of the agents and one part of the corridor.

The second surface contains the area where pillars will be

placed and where the average speed metric will be calculated.

The final surface contains the destination region. The goal is

to find a pillar placement to maximize the flow rate of agents.

The optimal pillar locations found are shown in Fig. 2 for

one, two, three and four pillars.

In this example, 100 agents are moving through the

environment with a maximum speed ranging from 2.0 to 3.5

m/s. The continuous flow simulation takes place for 5000

time steps before returning the computed average speed for

the agents. The force rules the agents are equipped with

include a goal-based force (Fg), a nearest neighbor avoidance

force rule (Fnn), a pillar avoid force rule (Fp), and wall

avoid force (Fw). The range for these forces varying based

on the heterogeneous settings to allow for agents moving

at different speeds. Overall, the settings of these forces are

approximately |Fg| = 4|Fnn| = 1.5|Fp| = 3|Fw| which sets

the goal-based force with the highest priority, followed by

pillar avoidance, wall, and then nearest neighbor.

The building environment with the optimal door place-

ments is shown in Fig. 3. In this environment, we use

the evacuation metric (in time steps). This environment is

based on the first two levels of a building that houses the

Department of Computer Science and Engineering at Texas

A&M University. The building has been modified to have all

the agents evacuate through a single exit of the building, and

we are optimizing door placement to produce the minimal

evacuation time. In this example, 200 agents are randomly

placed on the two floors of the building with maximum

velocities ranging from 2.85–3 m/s. On average the force

1 pillar 2 pillar

3 pillar 4 pillar

Fig. 2: A corridor environment.

Fig. 3: A two-level building environment with two doors

leading out.

rules are set so that |Fg| = 2|Fnn|. In the agent encounter

scenario, only the first floor of the building in Fig. 3 is used

with four exits available for agents to use. The agents are

initialized in a similar way as in the door placement case.

B. Optimizing Pedestrian Flow Rate Via Pillar Placement

In the corridor scenario, we take flow rate as the optimiza-

tion function J = f(x), where x is a vector of dimension

2n, and n is the number of pillars. The feasible range Ω
is a subset of R

2n, specified as [45:64, -11:11]. The pillars

have a radius of 0.85 m and the agents have a geometric

radius of 1.55 m. The ESC-EB algorithm is used to search

the maximal flow rate through Ω.

For the one-pillar case, the optimization process is shown

in Fig. 4. The solid line in the upper subplot shows the flow

rate changing for every try point. The dashed line shows

the flow rate of the current best try point, which we call

the incumbent point. The incumbent point is always kept in

the simplex for the next iteration and represents the current

best configuration. We see the incumbent flow rate is strictly

increasing, and the try point flow rate converges to it. The

pillar coordinates of each try point are shown in the lower

1331

50 100 150 200
2.54

2.56

2.58

2.6

2.62

2.64

F
lo

w

Current Flow

Incumbent Flow

50 100 150 200

0

20

40

60

P
ill

a
r

#
1

iteration

x

y

Fig. 4: Flow Optimization for 1 Pillar

50 100 150 200

2.55

2.6

2.65

F
lo

w

Current Flow

Incumbent Flow

50 100 150 200

0

20

40

60

P
ill

a
r

#
1

x

y

50 100 150 200

0

20

40

60

P
ill

a
r

#
2

iteration

x

y

Fig. 5: Flow Optimization for 2 Pillars

subplot. It appears that the coordinates converge faster than

flow rate.

Fig. 5 shows results for the two-pillar case. The flow

rate of the try points converges to the incumbent rate as

well, but a little bit slower than the one-pillar case. It is

very interesting to note that the optimized flow rate for two

pillars is faster than for one pillar. It seems counter-intuitive

that adding obstacles can improve flow rate, but this type of

phenomena has been observed in high-density opposite flow

directions where obstacles can be used to maintain flow in

each direction [30].

Optimizations for the three and four-pillar cases are shown

in Fig. 6 and Fig. 7, respectively. We see the pillar positions

converge well, but the convergence of flow rate for all try

points to the flow rate of the incumbent point becomes

slower. This indicates that, in a high dimensional Ω, f(x)
has a very bumpy neighborhood around the optimal point.

Three pillars show a better optimized flow rate than for one

pillar, but worse than the optimized flow rate for two pillars.

The optimized flow rate for four pillars appears to be the

best out of the four scenarios. Investigation of optimizing

50 100 150 200

2.55

2.6

2.65

F
lo

w

Current Flow

Incumbent Flow

50 100 150 200

0
20
40
60

P
ill

a
r

#
1

x

y

50 100 150 200

0
20
40
60

P
ill

a
r

#
2

x

y

50 100 150 200

0
20
40
60

P
ill

a
r

#
3

iteration

x

y

Fig. 6: Flow Optimization for 3 Pillars

20 40 60 80 100 120 140 160 180

2.55

2.6

2.65

2.7

F
lo

w

Current Flow

Incumbent Flow

20 40 60 80 100 120 140 160 180

0
20
40
60

P
ill

a
r

#
1

x

y

20 40 60 80 100 120 140 160 180

0
20
40
60

P
ill

a
r

#
2

x

y

20 40 60 80 100 120 140 160 180

0
20
40
60

P
ill

a
r

#
3

x

y

20 40 60 80 100 120 140 160 180

0
20
40
60

P
ill

a
r

#
4

iteration

x

y

Fig. 7: Flow Optimization for 4 Pillars

the number of pillars and position of pillars is an avenue of

future work. Fig. 8 shows the coordinates of all try points

during the four pillar scenario and illustrates how the four

pillar coordinates converge to their optimal values. For the

one, two and three-pillar cases, there are similar processes.

There are some interesting observations about the optimal

placement, shown in Fig. 2. The two pillar case seems to be

a subset of the three and four pillar case. The structure of

the three pillar case is also similar to that of the four pillar

result. In the three and four pillar case, there seems to be

a predisposition for pillar coordinates that align with each

other in the direction of the traffic flow.

C. Optimizing Evacuation Time Via Door Placement

In the evacuation scenario, we take evacuation time (in

simulation time steps) as the optimization function J =
f(x), where x is a vector of dimension n, and n is the

number of doors. The feasible range Ω is in R
n and deter-

mined by the building environment. The width of the corridor

leading to the exit doors is 37 m with each door having a

width of 6 m.

1332

1333

[4] C. Audet and J. E. D. Jr., “Mesh adaptive direct search algorithms
for constrained optimization,” SIAM Journal on optimization, vol. 17,
no. 1, pp. 188 – 217, 2006.

[5] C. Audet and J. E. D. Jr., “A progressive barrier for derivative-free
nonlinear programming,” SIAM Journal on optimization, vol. 20, no. 1,
pp. 445 – 472, 2009.

[6] R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty
function,” SIAM Journal on optimization, vol. 91, pp. 445 – 472, 2009.

[7] C. Audet and J. E. D. Jr., “Ma pattern search filter method for nonlinear
programming without derivatives,” SIAM Journal on optimization,
vol. 17, no. 1, pp. 188 – 217, 2006.

[8] G. Santos and B. E. Aguirre, “A critical review of emergency evacua-
tion simulation models,” in Workshop on Building Occupant Movement
During Fire Emergencies, pp. 27–52, 2005.

[9] N. Pelechano, J. Allbeck, and N. Badler, Virtual Crowds: Methods,
Simulation, and Control. Synthesis Lectures on Computer Graphics
and Animation, Morgan & Claypool, 2008.

[10] P. M. Torrens, “Moving Agent Pedestrians Through Space and Time,”
Annals of The Association of American Geographers, vol. 102, pp. 35–
66, 2012.

[11] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features
of escape panic,” in NATURE, pp. 487–490, 2000.

[12] S. C. Pursals and F. G. Garzon, “Optimal building evacuation time
considering evacuation routes,” European Journal of Operational
Research, vol. 192, pp. 692–699, 2009.

[13] N. Pelechano and N. Badler, “Modeling crowd and trained leader
behavior during building evacuation,” IEEE Computer Graphics and
Applications, vol. 26, no. 6, pp. 80–86, 2006.

[14] N. Pelechano, J. Allbeck, and N. Badler, “Controlling individual agents
in high-density crowd simulation,” in ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2007.

[15] C. W. Reynolds, “Flocks, herds, and schools: A distributed behaviroal
model,” in Computer Graphics, pp. 25–34, 1987.

[16] C. W. Reynolds, “Steering behaviors for autonomous characters,” in
Game Developers Conference, 1999.

[17] J. Pauls, “The movement of people in buildings and design solutions
for means of egress,” Fire Technology, vol. 20, pp. 27–47, 1984.

[18] N. Owen, N. Humpel, E. Leslie, A. Bauman, and J. Sallis, “Under-
standing environmental influences on walking: Review and research
agenda,” American Journal of Preventive Medicine, vol. 27, no. 1,
pp. 67 – 76, 2004.

[19] A. Penn and A. Turner, “Encoding natural movement as an agent-
based system: an investigation into human pedestrian behaviour in
the built environment,” Environment and Planning B: Planning and
Design, vol. 29, pp. 473–490, 2002.

[20] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” in SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium
on Computer animation, (New York, NY, USA), pp. 19–28, ACM
Press, 2005.

[21] H. Furuta and M. Yasui, “Evacuation simulation in underground mall
by artificial life technology,” in Proceedings of the Fourth International
Symposium on Uncertainty Modeling and Analysis, 2003.

[22] C. W. Johnson and L. Nilsen-Nygaard, “Extending the use of evacua-
tion simulators to support counter terrorism,” in International Systems
Safety Conference, 2008.

[23] S. Rodriguez and N. M. Amato, “Behavior-based evacuation plan-
ning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 350–355,
2010.

[24] S. Rodriguez and N. M. Amato, “Utilizing roadmaps in evacuation
planning,” 24th Intern. Conf. on Computer Animation and Social
Agents (CASA), 2011, in Intern. Journal of Virtual Reality, pp. 67–73,
2011.

[25] S. Rodriguez, A. Giese, N. M. Amato, S. Zarrinmehr, F. Al-Douri, and
M. Clayton, “Environmental effect on egress simulation,” in Proc. of
the 5th Intern. Conf. on Motion in Games, 2012, Lecture Notes in
Computer Science (LNCS), pp. 7–18, 2012.

[26] S. A. Jurovics, “Optimization applied to the design of an energy-
efficient building,” IBM Journal of Research and Development, vol. 22,
pp. 378 – 385, July 1978.

[27] L. Magnier and F. Haghighat, “Multiobjective optimization of building
design using trnsys simulations, genetic algorithm, and artificial neural
network,” Building and Environment, vol. 45, p. 739 746, 2010.

[28] H. Liu, Q. Zhao, N. Huang, and X. Zhao, “A simulation-based tool for
energy efficient building design for a class of manufacturing plants,”
IEEE Transactions on Automation Science and Engineering, vol. 10,
pp. 117 – 123, Jan. 2013.

[29] Building Design Optimization Using Sequential Linear Programming,
Mar. 2007.

[30] D. Helbing, L. Buzna, A. Johansson, and T. Werner, “Self-organized
pedestrian crowd dynamics: Experiments, simulations, and design
solutions,” in TRANSPORTATION SCIENCE, pp. 1–24, 2005.

APPENDIX

1: procedure MDS(f(x))

2: switch tryType
3: case reflection

4: save f(x) as f(rkj−1);
5: if j > dim then

6: if ∃rkjr ∈ r
k : f(rkjr) > f(vk

0) then

7: tryType = extension; j = 1;

8: return e
k
j = v

k
0 − λ(vk

j − v
k
0)

9: else

10: tryType = contraction; j = 1;

11: return c
k
j = v

k
0 + θ(vk

j − v
k
0)

12: end if

13: else

14: return r
k
j = v

k
0 − (vk

j − v
k
0)

15: end if

16: case extension

17: save f(x) as f(ekj−1);
18: if j > dim then

19: if ∃ekje ∈ e
k : f(ekje) > f(rkjr) then

20: v
k
j = e

k
j for j = 1, 2...n

21: else

22: v
k
j = r

k
j for j = 1, 2...n

23: end if

24: tryType = reflection; j = 1;

25: return r
k
j = v

k
0 − (vk

j − v
k
0)

26: else

27: return e
k
j = v

k
0 − λ(vk

j − v
k
0)

28: end if

29: case contraction

30: save f(x) as f(ckj−1);
31: if j > dim then

32: v
k
j = c

k
j for j = 1, 2...n

33: tryType = reflection; j = 1;

34: return r
k
j = v

k
0 − (vk

j − v
k
0)

35: else

36: return c
k
j = v

k
0 + θ(vk

j − v
k
0)

37: end if

38: j = j + 1

39: end procedure

Fig. 11: MDS algorithm

1334

