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Abstract— Simultaneous Localization and Mapping (SLAM)
is one of the most difficult tasks in mobile robotics. While
the construction of consistent and coherent local solutions is
simple, the SLAM remains a critical problem as the distance
travelled by the robot increases. To circumvent this limitation,
many strategies divide the environment in small regions, and
formulate the SLAM problem as a combination of multiple
precise submaps. In this paper, we propose a new submap-
based particle filter algorithm called Segmented DP-SLAM, that
combines an optimized data structure to store the maps of the
particles with a probabilistic map of segments, representing
hypothesis of submaps topologies. We evaluate our method
through experimental results obtained in simulated and real
environments.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the
problem of building a map while dealing with uncertainty
in localization. Solving the SLAM problem is a major
requirement to the construction of real autonomous robots
and has been the focus of current research [1], [2], [3].

Although many SLAM algorithms have been successfully
presented, the SLAM remains particularly challenging when
long distances have to be traversed by the robot. To cir-
cumvent this problem, many methods reduce the problem
into solving low-level instances of SLAM. These methods,
referred as submap-based SLAM, independently process
limited regions of the environment, and later adjust the
individual results to compose a solution.

A prominent approach of submap-based SLAM is to use
hybrid maps, that is, combining a topological map with
the metric map of the environment [4] [5] [6] [7]. In
these strategies, the nodes of the graph that represent the
topological map are associated to metric submaps, while its
edges represent the connections between those submaps.

One of the earliest works with hybrid maps was the
Atlas framework [4], where, as in most of the submap-based
algorithms, the uncertainties of each submap are modeled
according to its own coordinate system. Connections between
submaps are detected by a matching process, and refined as
the submaps uncertainties decrease.

Estrada et al. proposes an hierarchical approach [6]. Even
though similar to Atlas, it introduces a loop closing technique
that imposes consistency at the global level. Therefore, it
increases the precision of the resulting global map.

Eliazar and Parr proposes another hierarchical ap-
proach [5], by extending the DP-SLAM algorithm [2] to
a two-levels strategy. On the lower level, the DP-SLAM is
performed inside a small portion of the map to obtain locally
accurate paths. On the upper level, another instance of DP-
SLAM is performed over the best resulting paths from the
lower level. Since the upper level inputs are already refined, a
smaller number of particles is required to obtain good results.

Blanco et al. presented the HMT-SLAM [7], which pro-
poses a unified estimation of the hybrid metrical and topo-
logical path of the robot throughout the environment. Thus,
the particles propagation is based not only on the motion
and observation models of the robot, but also on a transition
model associated to the topological map.

SegSLAM [8] introduces the idea of SLAM based on
segments. A segment represents a limited region of the
environment and is described by multiple submaps. Hence,
different combinations of submaps (one for each segment),
produce different solutions, i.e., different maps.

In this paper we propose a novel submap-based strategy,
that combines the idea of environment segments containing
multiples submaps, introduced by the SegSLAM algorithm,
with an optimized data structure to store the maps of the
particles. The distributed aspect of this structure, introduced
by the DP-SLAM method [2], allows the segmentation of the
environment in multiples submaps. The main contribution of
this paper is the new submap-based SLAM algorithm for
structured environments called Segmented DP-SLAM (SDP-
SLAM). Other contributions are new approaches to estimate
good combinations of map segments and to perform the
matching of maps.

This paper is divided as follows. Section II presents the
theoretical background, describing both the DP-SLAM and
the SegSLAM. In Section III, we introduce the SDP-SLAM
algorithm. In Section IV, we present some experimental
results comparing our method to DP-SLAM and SegSLAM,
in simulated and real environments. And finally, in Section V
we draw the conclusions.

II. THEORETICAL BACKGROUND

A. DP-SLAM

DP-SLAM [2] is a Rao-Blackwellized particle filter
(RBPF) algorithm that uses an optimized structure to store
the maps of the particles. In RBPF-based strategies, the
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particles resampling process requires the copy of multiple
instances of the map. Considering that, at each instant, the
robot scans an area much smaller than the full map, the
variation of each particle map between consecutive instants
occurs only in a small region. DP-SLAM takes advantage
of this fact to introduce an improved map representation.
Basically, it merges all particles maps into only one map
containing the differences observed by each particle, through
a process called DP-Mapping.

DP-Mapping uses two efficient data structures: an ancestry
tree and a modified grid map. The ancestry tree is the
hereditary tree for all active particles of the filter. Its leaves
represent the active particles, while the internal nodes are
the ancestrals of these particles, i.e., the particles from
which they derived. The second structure is a grid map that
contains an observation tree for each cell. If a particle has
an observation for a cell that is different from those made
by its ancestrals, then the cell’s tree is updated adding the
information and observation of that particle. Thus to obtain
the full map associated to a particle it is necessary to consult
the observations made by the particle and by its ancestrals.

To ensure that the ancestry tree does not grow indefinitely,
a pruning process is performed. When a particle does not
generate a child, it is removed from the tree since its
information will not be inherited. In addition, a particle that
generates a single child has its information merged with the
information of its child, to prevent the creation of branches
without ramifications.

Despite all the space optimization, DP-SLAM still requires
a very large number of particles to obtain good results.

B. SegSLAM

SegSLAM [8] is a submap-based SLAM approach that
extends the particle filter estimation step to decide when
a particle should stay in the current submap, re-enter an
existent submap or move into a new submap. Differently
from traditional RBPF SLAM, in SegSLAM, the particles
are sampled from the distribution over, not only, poses, but
also, submaps. The poses are described according the local
coordinate system of the correspondent submap.

Another major distinction is that, while RBPF particles
describe complete trajectory hypothesis, on SegSLAM, the
particles are only responsible to generate submaps of the en-
vironment, which are stored in a structure called Segmented
Map or SegMap. This structure maintains the connections
between the submaps using a graph, and thus to reconstruct
a possible robot trajectory it is necessary to concatenate
compatible consecutive segments. This is done by sampling
paths from the SegMap graph. The combinations of possible
paths are weighted by a technique of submaps matching.
Later, a list of potentially matchable segments is generated,
with their respective positions transformations. In the end,
particles choose matches from this list, or create new seg-
ments if a good matching has not been found.

Even though the increase in the diversity of solutions
resulting from the numerous possibilities of segments com-
binations is beneficial to circumvent the problem of particle

depletion, it considerably increases the search space. It is
difficult to find a good combination of submaps comprising
the entire robot trajectory when the number of segments
grows. Hence, the sampling step in SegSLAM only considers
a local analysis, i.e., the algorithm chooses the best samples
from chains of few segments, not samples of the entire
trajectory.

III. SEGMENTED DP-SLAM

Our proposed method called Segmented DP-SLAM, or
simply SDP-SLAM, combines maps based on segments,
from SegSLAM, to the particles ancestry tree, from DP-
Slam. The idea is to capture the high diversity of solutions, ie.
global maps generated by numerous possibilities of submaps
combinations.

SDP-SLAM is based on the fact that observations made
by the robot within small regions are highly related to
one another, while distant observations are most likely not.
Therefore, the segmentation of the environment in submaps
is feasible. Following the formalizations of HMT-SLAM [7]
and SegSLAM [8], we define the global map of the environ-
ment as

Θ = 〈{θi}i∈Υt , {Ta,b}a,b∈Υt〉 (1)

where Υt is the set of segments known at instant t. θi =

{θ(1)
i , θ

(2)
i , · · · , θ(p)

i } is the set of all metric submaps asso-
ciated to the i-th segment of Υt. Each submap belonging to
θi is generated by one of the p particles of the bottom level
filter. Ta,b = {T (1,1)

a,b , T
(1,2)
a,b , · · · , T (1,p)

a,b , T
(2,1)
a,b , · · · , T (p,p)

a,b }
are the coordinate transformations of all the possible com-
binations between submaps of two adjacent segments a and
b.

The state st of the robot pose at instant t is given by

st = 〈xt , γt〉 (2)

where xt represents the metric robot pose, while γt indicates
to which submap the robot pose is associated.

Knowing these definitions, the posterior distribution of
SLAM considering s1:t and Θ is defined as

p(s1:t,Θ | z1:t,u1:t) (3)

where z1:t and u1:t are, respectively, the sets of observations
and actions made by the robot.

The SDP-SLAM structure overview is presented on Fig-
ure 1. SDP-SLAM is composed of two levels of particle
filters. The bottom level process is responsible to estimate
the segments of the robot path x1:t, the associated local maps
θ1:t and the transformations between submaps T1,2:t−1,t. The
top level process is responsible to estimate the topology of
the global map, in other words, find the best combinations
of submaps γ1:t.

At the bottom level, the operation of the particle filter is
similar to the filter in SegSLAM, where the particles are
only responsible to generate locally accurate submaps. The
key difference lies in the way the maps and trajectories are
constructed, using the DP-Mapping process.
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Fig. 1. SDP-SLAM structure overview.

At the top level, a particle filter is used to estimate
good combinations of submaps of the environment. The
propagation of the particles is made by the particles transition
model, which is a function of the prior set of particles and
the set of all actions and observations made by the robot:

γ1:t = q(γ1:t | γ1:t−1, z1:t,u1:t)

This transition model uses a Probabilistic Graph of Segments
(PGS), that contains weighted connections between submaps
of adjacent segments. PGS represents a Monte Carlo ap-
proximation of the probability distribution of all possible
topologies that can represent the environment. As said,
a segment of the environment contains multiple submaps,
each one built by a different particle. Those submaps are
represented by nodes of the PGS, which are grouped in
levels representing the segments. The connections between
submaps of adjacent segments are the edges of the PGS.

The SDP-SLAM algorithm is presented in Algorithm 1.
The first step (line 1) is the initialization of both particle
filters. At the bottom level, all particles start at the same
position with empty submaps. At the top level, all particles
start with empty submaps combinations, since no segmenta-
tion was performed yet.

In the main loop, the first step (line 2) is the acquisition
of the odometry and sensors measurements. Next, the update
of the bottom level filter is performed to build hypotheses
of local maps. The initial steps are the same performed by
DP-SLAM (line 3). First, particles are propagated inside the
current segment and weighted. Then, the resampling is made,
the ancestry tree is updated through a process of prune and
merge, and the particles observations are updated into the
Distributed Particle Map.

Next, occurs the segmentation decision (line 4). Most of
submap-based SLAM approaches performs the segmentation
practically on a regular time interval or according to error
measures [4] [9]. Our method was tested with a periodic
segmentation at a fixed time and a segmentation based on
the particles dispersion.

Whenever a segmentation occurs, the bottom level particle
filter is stopped and the ancestry tree section regarding the

Algorithm 1: SDP-SLAM algorithm
1 Initialization

while the robot is navigating do
2 Read odometry and sensors measurements.

Bottom level process:
begin

3 DP-SLAM update
4 Segmentation decision

if a segmentation occurs then
5 Ancestry tree anchorage
6 Particles restart

end
end
Top level process:
begin

if a segmentation occurs then
7 Insertion of a new level of nodes in the PGS

end
8 Estimation of submaps combinations
9 Weighting of submaps combinations

10 Update of the PGS
end

end

last segment is anchored, so it cannot be modified later
(line 5). The current set of particles is restarted to allow
the construction of new independent submaps (line 6). At
the top level, a new set of nodes representing the submaps
of the new segment is inserted into the PGS. Among the
information stored in those nodes are the identification of the
particle, required for queries on ancestry tree; and the initial
and final transformations of the submap (the first and the last
robot poses of the submap), used to combine submaps in a
same coordinate system.

The next step is the update of the top level particles (line
7), that are responsible for estimating hypotheses of submaps
combinations. We adopt an elitism strategy, so a set of the
best particles is maintained, while a set of the worst is
eliminated in the resampling step. The remaining particles
are the ones responsible by the diversification of the top
level filter. The submaps combinations associated to these
particles are modified according to queries on the PGS. (How
the probabilities in the PGS are defined will be explained in
the last step of the algorithm.)

Then, the evaluation of the top level particles is performed
through the matching between overlapping submaps of each
sample (line 8). As in SegSLAM, the matching process is
made with the ICP (Iterative Closest Point) algorithm [10].
ICP is a very simple and fast method, but requires that the
two sets of points being compared have a strong association,
otherwise, the method might converge to local minimum
or even not converge. In general, ICP uses the information
about obstacles, disregarding the information about empty
spaces implied by the use of range sensors. However, when
the alignment error of segments is too large, the association
of points might be incorrect, as shown in Figure 2(a), where
points of a wall were associated to points of a wrong wall. In
our case, as shown in (b), we select points from the middle of
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(a) Extracting points from obstacles

(b) Extracting points from the middle of free-space

Fig. 2. Comparison between the matching of submaps extracting points
from obstacles and from the middle of free-space.

free-space regions, like the map merging strategy of Saeedi
et al. [11]. Using these points we reduce ambiguities like the
illustrated in (a).

The last step of our method is the update of the PGS
(line 9). Systematically, samples of submaps combinations
are generated and evaluated by the matching process using
ICP. The result of the matching is a measure of the ICP
error. The measured error of each sample is added to the
accumulated errors of the connections between submaps that
compose that sample. For example, the accumulated error
E1b2a of the connection between γ1b and γ2a is the sum of
the errors from all sampled combinations having γ1b and γ2a.
The idea is that, over time, connections with low accumulated
errors possess great chance to compose good solutions. So,
the probability to choose a pair of submaps is inversely
proportional to the accumulated error of this association. We
compute the inverse of the accumulated error and normalize
the values to obtain probabilities.

p(γ1b, γ2a) =

∑p
i,j=1 1/E1i2j

1/E1b2a
(4)

Figure 3 shows an example of the functioning of SDP-
SLAM. In (a), three submaps of a same segment are depicted
in the map. At this point, the ancestry tree contains only
the particles of the first segment, as shown in (b), while
the PGS only have the three nodes (submaps 1A, 1B, 1C)
of the first segment, as shown in (c). When the method
is processing the second segment, in (d), the ancestry tree
contains the particles of the first and the second segments,
as shown in (e). In (f), the graph of segments contains
two levels of nodes, representing both segments. Then, as
shown in (g), it is possible to combine the submaps of the
two segments and evaluate the sampled combinations. In
(h), we open a parenthesis to show that the ancestry tree

continues to be pruned, like in DP-SLAM. In (i), the weight
of each connection between submaps is updated in the graph
of segments. These estimated weights will be used during
the sampling step of the top-level particle filter. Finally, in
(j), a possible trajectory is reconstructed by combining two
adjacent submaps (1A and 2C). The global map is built
by consulting the observations made by each particle of the
selected branches of the ancestry tree, highlighted in (k). A
transformation T must be applied to put both submaps in the
same coordinate system, as shown in (l). This transformation
is a composition of the final pose from the first submap with
the initial pose from the second submap.

1C

1A

1B

(a) (b) (c)

1C

1A 2A

2C

1B 2B

(d) (e) (f)

1C

1A 2A

2C

1B 2B

(g) (h) (i)

1C

1A 2A

2C

1B 2BT

(j) (k) (l)

Fig. 3. Example of functioning of SDP-SLAM.

IV. EXPERIMENTS

The evaluation of SDP-SLAM was made through experi-
ments in simulated and real environments, that are illustrated
in Figure 4(a) and Figure 5(a) respectively. The simulated
environment contains an inner loop (loop 1) and an outer
loop (loop 2) with lenghts of 28m and 80m, respectively.
The real environment contains three loops, corresponding to
corridors of a building from the Institute of Informatics at
UFRGS. The two inner loops have lenghts of 43m (loop 1)
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and 57m (loop 2), and together form a larger loop of 88m
(loop 3).

We choose these environments because they contain nested
loops that aggravate the particle depletion problem. For in-
stance, during the mapping of an inner loop, a RBPF strategy
discard particles that do not have the highest weights, but that
can be needed later to map an outer loop.

We compared our approach to SegSLAM and DP-SLAM,
the methods which served as the basis for SDP-SLAM.
Regarding the comparison with SegSLAM, we focussed on
the topology estimation step to highlight the differences in
the construction of the global map, keeping the remainder of
the process (such as the matching and the segmentation) the
same of SDP-SLAM. On the other hand, DP-SLAM and
SDP-SLAM could not be compared directly. SDP-SLAM
is a hierarchical method with two different particle filters,
while DP-SLAM has only one. In order to perform a fair
comparison between the methods, we decided to use as many
particles as possible considering the same running times.

Figure 4 shows the resulting maps of the experiments in
simulated environment, where the robot is the red point, the
obstacles are black and the free-space is gray. In (b), we
present the map built with DP-SLAM using 400 particles.
With this number of particles, the method did not properly
close the larger loop. In (c), we show the map built using the
SegSLAM topology estimation step with 60T/10B particles
(60 samples of submaps combinations at the top level and 10
particles to construct the submaps at the bottom level). The
resulting map is good, but it presents some inconsistencies.
Finally, in (d), the result of SDP-SLAM with 60 particles at
the top level and 10 at the bottom level is shown. As it can be
observed, the resulting map is the closest to the environment
ground truth.

The results in real environment are shown in Figure 5. In
this environment the path traversed by the robot was larger
than in the simulated one, thus the methods ended up having
more difficulties, as well as the difference between the results
became more visible. The map built by DP-SLAM using
400 particles is shown in (b), and the result is very poor,
since DP-SLAM was not able to close any loop. As shown
in (c), using the SegSLAM topology estimation, with the
same configuration of 60T/10B particles, the result was better
but not satisfying. Comparatively, the map presented in (d),
obtained by SDP-SLAM using 60T/10B particles, is visually
better than the maps produced by the other algorithms.

Besides the visual comparisons, we also made the eval-
uation of the topology estimations by measuring the mean
alignment error of the solutions, in meters, during the SLAM
process. This measure is given by the mean ICP nearest
neighbor error computed in the submaps matching process.
Figures 6 and 7 show the mean error variation from the
solutions of the experiments in simulated and real environ-
ment, respectively. All lines in these figures have straight
line segments, because the submaps matching process is
only performed when there are overlapping submaps, that
is, during periods in which the robot is closing loops. In
the rest of the process the weights of the samples are not

Loop 1

Loop 2

(a) Ground Truth. (b) DP-SLAM: 400 p.

(c) SegSLAM: 60T/10B p. (d) SDP-SLAM: 60T/10B p.

Fig. 4. Comparison between SDP-SLAM, DP-SLAM and SegSLAM
through experiments in the simulated environment.

Loop 1 Loop 2

Loop 3

Lab

(a) Ground-truth.

(b) DP-SLAM - 400 p.

(c) SegSLAM - 60T/10B p.

(d) SDP-SLAM - 60T/10B p.

Fig. 5. Comparison between SDP-SLAM, DP-SLAM and SegSLAM
through experiments in the real environment.

changed.

Figure 6 shows that, at the closure of the small loop (loop
1), the mean error is low (< 0.5m) for any of the settings

35



Loop 1

Loop 2

0

1

2

3

4

100 150 200 250 300 350

M
e

a
n

 E
rr

o
r 

V
a

ri
a

ti
o

n
 o

f 
th

e
 S

o
lu

ti
o

n
s
 (

m
)

Steps

SegSLAM - 30T/5B particles
SegSLAM - 60T/10B particles
SDP-SLAM - 30T/5B particles

SDP-SLAM - 60T/10B particles

Fig. 6. Mean ICP error variation from the solutions of the experiments in
simulated environment.
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Fig. 7. Mean ICP error variation from the solutions of the experiments in
real environment.

used. The big problem happens when the robot returns to
its initial position, after covering the major loop (loop 2). At
first, the error is large, because the overlap among submaps is
not good in the beginning of loop closures. Later, using the
strategy adopted by SegSLAM, the error oscillates around
2m, while with SDP-SLAM the error continues to decrease
below 1m.

In Figure 7, we observe that the errors reach values nearly
three times higher than in the simulated environment. This
can be explained by a couple of factors. First, the robot
motion model is more inaccurate in the real environment,
and second, the environment is larger, and therefore more
difficult to map. Also, the robot started its path traveling
around the larger inner loop (loop 2), instead of the minor
loop (loop 1). This situation led to a mean error bigger in
the beginning of the experiment than in the rest.

The mean and standard deviation of the ICP error during
the experiments in simulated and real environments are
shown in Table I. The error is smaller using the SDP-SLAM
topology estimation than using the SegSLAM topology esti-
mation. The best results were obtained with the configuration
of 60T/10B particles in SDP-SLAM.

V. CONCLUSION

The results obtained in the experiments showed that
SDP-SLAM generates better solutions than the original

SegSLAM SDP-SLAM
Simulated Real Simulated Real

Particles µ σ µ σ µ σ µ σ
30T/5B 1.43 0.84 8.41 2.20 0.66 0.34 4.50 1.37

30T/10B 1.26 1.04 7.55 2.24 0.58 0.36 4.28 1.48
60T/5B 1.23 1.18 7.04 2.48 0.61 0.40 4.12 1.53

60T/10B 1.15 1.22 6.63 2.56 0.48 0.45 3.86 1.62

TABLE I
MEAN AND STANDARD DEVIATION OF THE ICP ERROR IN SEGSLAM

AND SDP-SLAM DURING THE EXPERIMENTS

DP-SLAM, using a much smaller number of particles.
We also performed experiments comparing SDP-SLAM to
SegSLAM. The evaluation of the topology estimation process
showed that our method indeed searches for solutions with
low alignment errors. As measured in the experiments, the
error associated to the samples of submaps combinations
tends to decrease over time.

As a future work, we intend to improve SDP-SLAM by
making the update of submaps considering the information
associated with other submaps. This will probably improve
the quality of the submaps, but will reduce the possibilities of
submaps combinations. An idea is to apply this strategy only
when a set of submaps are well established (eg. after closing
a perfect loop). Thus, such submaps would be permanent
components of the global solutions.
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