
  

  

Abstract— Much attention has not been paid to analysis of the 
open-loop stability for gravity counter-balancing of parallel 
mechanisms or closed-chain mechanisms. The open-loop 
stability is crucial especially in passively counter-balanced 
mechanisms where no actuators are involved. Passive hands-on 
device is such an example. A general stiffness model is derived 
for general closed-chain mechanism including counter-weight 
model. As a measure of the open-loop stability, we employ the 
determinant of the stiffness matrix. A parallel mechanism 
having 3 translational DOF (degree of freedom) is employed as 
an exemplary device. An antagonistically counter-balancing is 
found the most stable method. We conduct dynamic simulation 
and experiment to confirm the open-loop stability of the system.  
 

I. INTRODUCTION 

Counter-balancing mechanisms have been employed 
extensively in many different applications such as static 
balancing parts in automotive industry, gravity compensation 
for industrial robot, service robot, home furniture, medical 
devices, construction machines in heavy industry, and so on. 

Especially in robot applications, the concept of 
counter-balancing mechanism has been widely employed to 
compensate for gravity load of links and resultantly increase 
the payload of the robot. There are two ways of 
counter-balancing; counter-weight and passive spring.  

In the design of haptic mechanism, Laliberte and Gosselin 
[1] investigated counter-balancing of a 3-DOF planar parallel 
mechanism by attaching a counter-weight and spring at some 
links and joints. Wang and Gosselin [2, 3] designed 3-DOF 
and 6-DOF spatial parallel mechanisms in a similar manner. 
Tahmasebi, et al [4] designed a 5-bar parallel mechanism by 
using actuator as a counter-weight. 

In the design of rehabilitation devices, Agrawal and 
Agrawal [5] designed a gravity-balancing auxiliary 
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parallelogram mechanism by using springs at some links and 
joints. 

In the design of medical device, Nakamura, et al [6] 
designed a gravity-balancing serial mechanism using timing 
belt by attaching a counter-weight at the end point of the lower 
link. Nakamura, et al [7, 8] designed a gravity-balancing 
parallelogram mechanism by using an adjustable moment arm. 
Nakamura [9] designed a balancing chair for medical 
apparatus. Lessard, et al [10] designed a 5-bar 
gravity-balancing parallel mechanism by using torsion springs 
at joints. In the design of service robot, Park, et al. [11] 
designed a counter-balancing serial mechanism by attaching a 
spring at each joint. 

Need for counter-balancing mechanism is expected to grow 
much specially in the area of smart hands-on devices. The 
medical microscope being used in operation room is such an 
example. Devising mechanisms handling a heavy load with 
less human power is also demanding at factory or warehouse.  

Although there have been quite a few counter-balancing 
designs for several purposes, a little attention has been paid to 
analysis of the open-loop stability. As a matter of fact, analysis 
of the open-loop stability is significant in the design of passive 
hands-on devices, because such devices do not employ any 
motors as opposed to the feedback control scheme using 
actuators. It is noted that in a state of static equilibrium 
between weights of the hands-on device and the 
counter-weight, the system tends to oscillate like a spring once 
the system is perturbed from its equilibrium state. Yi and 
Freeman [12] analyzed the open-loop stability of a serial type 
manipulator when the manipulator maintained a contact with 
environment. Yi and Freeman [13] suggested a general 
stiffness model for redundantly actuated parallel mechanisms 
with which the open-loop stability was analyzed in part. 
However, there has not been any prior work that analyzes the 
open-loop stability when any robot mechanism is balanced by 
counter-weight or spring. Thus, in this paper we would like to 
generalize the stiffness model of parallel mechanisms for 
analysis of the open-loop stability. 

This paper can be organized as follows. In section II, the 
kinematics is shortly described. Section III deals with the 
general stiffness model for parallel mechanisms by 
incorporating counter-weight model. In section IV, the 
open-loop stability is analyzed with one exemplary parallel 
mechanism having three degrees of freedom. As a result, an 
antagonistically counter-balancing is suggested as a 
sub-optimal design for ensuring open-loop stability. 
Furthermore, in order to ensure the open-loop stability and 
minimize the restoring force throughout the workspace, an 
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adjustable moment arm is designed at joints where 
counter-weights are installed. Section V demonstrates the 
experimental result to show the feasibility of the proposed 
counter-balancing mechanism.  Lastly, we draw conclusion. 

II. KINEMATICS AND NOMENCLATURE 

A. Kinematics Modeling 

1. Open-chain kinematics 
For a given open-chain manipulator, adopting the standard 

Jacobian uGφ    representation for the velocity of a vector of 

P dependent (output) coordinates u in terms of a set M  
independent input coordinates φ , we have 

uu Gφ φ =  
 . (1)

To represent the second-order kinematics, a particular matrix 
formulation is chosen in which the non-linear, velocity related 
components are expressed in terms of a three-dimensional 

coefficient array uHφφ   , (note that it consists of purely 

configuration dependent second-order partial derivatives) [14]. 
Generally, the acceleration vector u  of a set of P dependent 
coordinates u is represented in terms of the M independent 
coordinates φ  as 

u T uu G Hφ φφφ φ φ   = +   
   . (2)

2. Closed-chain kinematics 
Based on the previous open-chain kinematics, the 

following discusses the closed-chain kinematics of general 
closed-chain or parallel mechanisms. The kinematic modeling 
methodology for closed-chain systems is illustrated here in 
terms of R , rM -DOF chains connected to a common object 
moving in an N -dimensional space (see Fig. 1). In general, 
each chain may have different degrees of freedom ( rM ). 

The first goal here is to obtain the closed-chain kinematic 
model ( p

aS ) of general closed-chain mechanisms as follows 

( ) ,p p p
a a aaS G H   =      (3)

where p
aG    and p

aaH    denote the first- and second-order 

internal KIC relating the dependent coordinate set (expressed 
as ‘ p ’) to the independent coordinate set (minimum actuation 
set, expressed as ‘ a ’), respectively. This kinematic model will 
be useful to obtain the dynamic and stiffness models of general 
closed-chain mechanisms. 

1r = 2r =

3r =

4r =

r R=

1r R= −

1r = 2r =

3r =

4r =

r R=

1r R= −

 

Figure 1.  Closed-Chain Mechanism. 

Then, the forward kinematics model ( )u
aS  of general 

closed-chain mechanisms is given by 

( )u u u
a a aaS G H      = ,  (4)

where u
aG    and u

aaH    denote the first- and second-order 

KIC relating the common object/end-effector coordinate set to 
the minimum actuation set, respectively. 

 

2.1. Forward kinematics in higher-orders 
Given the velocity and acceleration vector of a set of 

common coordinates, the open tree structure of a multi-chain 
mechanism yields the joint velocity and acceleration relations 
for the “ r ” chains as follows; 

u
r ru Gφ φ =  

  (5)

( ), 1, 2, 3, ,u T u
r r r r ru G H r Rφ φφφ φ φ   = + =   

     (6)

Eq. (5) implies that for a common task space velocity 
vector u , there are (R-1) relations relating one of the joint 
velocity sets to each of the other sets. This can be expressed as 

( )1 1 , 2, 3, ,u u
r rG G r Rφ φφ φ   = =   

   . (7)

The linear relations of Eq. (7) can be rearranged and 
regrouped according to the independent coordinate velocity 
set φa  and the dependent coordinate velocity set φp  as 

p
p a aGφ φ =  
  . (8)

Eq. (8) shows the first-order IKIC (internal kinematic 
influence coefficient) matrix of the given closed system. And a 
relationship between the total joints and the independent joints 
is obtained as  

a aGφφ φ =  
   (9)

where 

[ ]
a p

a

I
G

G
φ

 
  =        

. (10)

Since the joints of the thr  chain ( rφ ) are composed of 

some of the independent and dependent joints, rφ  can be 
expressed in terms of independent joints of the total system by 

r r a aGφφ φ =  
  , (11)

where an augmented matrix r aGφ    is obtained from p
aG    

by properly arranging of the independent and dependent joints 
in the thr  chain. Thus, the forward kinematics for the common 
object space is obtained by embedding the first-order IKIC 
into one of the pseudo open-chain kinematic expression as 
follows; 

u u
r r a au G Gφ φ φ   = =   

  , (12)
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where the forward Jacobian is determined by 

u u r
a r aG G Gφ

φ     =      . (13)

By the same augmentation method employed in Eq. (12), 
the second-order forward kinematics in terms of independent 
joints can be easily obtained as 

u T u
a a a aa au G Hφ φ φ   = +   
   . (14)

C. General Stiffness Modeling 

In a state of static equilibrium among actuator torques, 
gravity loads at links, and externally applied loads, the system 
tends to oscillate like a spring once the system is perturbed 
from its equilibrium state. Yi and Freeman [13] introduced a 
general stiffness model for general closed-chain mechanism 
driven by abundant number of actuators.  

However, we need to modify the previous stiffness model 
for passive hands-on devices, which do not take any motor 
action to control of the oscillatory motion of the system, but 
employ counter weight instead. In such systems, analysis of 
the open-loop stability is significant and thus the stiffness 
model will be used as a means to analyze the open-loop 
stability of the system.  

 

Figure 2.  Multi-Loop Mechanism. 

The system dynamics of general closed-chain systems can 
be represented in terms of a minimum(independent) 
coordinate set equal in number to the minimum number of 
inputs required to completely describe the system kinematics 
(see Fig. 2). The system’s effective torque *

aT , felt at a set of 

“independent” joints aφ , is described in terms of the system’s 

effort sources( aT  and pT ), the effective gravity loads ( GTφ ), 

externally applied loads or upper counter-balance loads 
( upperc

uT ) at the operation space, and lower counter-balance 

loads ( lowerc
uT ) at the joint space as follows 

* upper lower
T T T C Cp G u

a a a p a a u aT T G T G T G F Tφ
φ     = + + + +      (15)

where 

( )

1 2

1

,

, 1, 2, ,
j

TG G G G
R

M
TG i c i

j j j g
i

T T T T

T G F j R

φ φ φ φ

φ φ
=

  =  


  = = 





 (16)

( )

1 1

2 2

1 2

,

cos 0

cos
,

0 cos

, 1, 2, ,

lower lower lower

lower

lower lower lower lower

c c c
a a g

c a

c ac
a

j c j a

c c c c
g g g j g

T G F

l

l
G

l

F f f f j R

φ
φ

φ

  =  
  
  
    =        
  = = 



 

(17)

i
j gF : gravity load at the i-th link of the j-th chain 

lowerc
gF : counter weight at three base joints 

1 cl : moment arm at the base joint of the first chain 

An effective restoring force ( )*
aTΔ  is generated against 

external disturbances, and its behavior can be modeled as a 
spring action with respect to the system’s “independent” 
inputs ( aφ ) as follows 

( )* *
a aa aT K φ Δ = − Δ  , (18)

where the total system stiffness *
aaK    for the independent 

system inputs and is defined as 

( )
( ) [ ]

( )
( )

*
*

upper

lower lower

a
aa

a

TF p F p
aa a pp a

T p
p aa

T T TG
aa a a

Tc u
u aa

Tc c
a aa

T
K

K G K G

T H

T H G V G

F H

F H

φ φ φ
φ

φ
∂

  = −  ∂

       = + +       

 − + 

     − + +     

 − + 

 −  









 (19)

where 

[ ] [ ]

( ) ( )

1 2

1

,

, 1, 2, ,

T

j

M Ti i c
j j g j

i

V I B B B

B F H j Rφφ
=

  =  


   = =   




 
 (20)

In (19), the first row includes the feedback stiffness matrix (or 
passive stiffness) at the independent/dependent joints and the 
second row is the stiffness matrix due to antagonistically 
fighting actuator torques [13]. These components in the first 
and second rows will not appear in the passive hands-on 
devices. The third row corresponds to the stiffness matrix due 
to the gravity loads of links and the upper platform. The 
fourth and fifth rows correspond to the stiffness due to upper 
counter-balancing and lower counter-balancing, respectively. 
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In our problem, only the components of the third, fourth, fifth 
rows will remain. The positive definiteness of the effective 
stiffness matrix will describe the open-loop stability of the 
system. 

III. OPEN-LOOP STABILITY ANALYSIS 

A. Exemplary Parallel Mechanism 

The open-loop stability is analyzed with one exemplary 
parallel mechanism having translational three degrees of 
freedom. Fig. 3 shows a well-known three degree-of-freedom 
translational mechanism [15]. Three identical limbs connect 
the moving platform to the stationary platform. Each limb 
consists of an upper arm (planar four-bar parallelogram) and a 
lower arm. 

We consider three methods of counter-balancing (see Fig. 
3). The first method is based on the operational space where 
the top platform is pulled upward as shown in Fig. 4(a) to 
balance the gravity loads of links (It will be called “upper 
counter-balancing”), the second method is based on the joint 
space where a counter-weight is hanged at the extended-end of 
proximal links as shown in Fig. 4(b) (It will be called “lower 
counter-balancing”), and the third method is combing both 
methods (It will be called “antagonistic counter-balancing”) as 
shown in Fig. 4(c). The stiffness matrix associated with each 
case is written below each figure. 

 

Figure 3.  Three dgree-of-freedom translational mechanism. 

 
 

(a) Upper counter-balancing 

( ) [ ]

( )
*

upper

T T TG
aa aa a a

Tc u
u aa

K T H G V G

F H

φ φ φ
φ       = − +       

 + −  




 

(b) Lower counter-balancing 

( ) [ ]

( )

*

lower lower

T T TG
aa aa a a

Tc c
a aa

K T H G V G

F H

φ φ φ
φ       = − +       

 + −  





 
(c) Antagonistic counter-balancing (combination of (a) and (b)) 

( ) [ ]

( ) ( )

*

upper lower lower

T T TG
aa aa a a

T Tc c cu
u aa a aa

K T H G V G

F H F H

φ φ φ
φ       = − +       

  + − + −   



 
 

Figure 4.  Methods of counter-balancing. 

B. Open-loop Stability Analysis 

As a measure of the open-loop stability, we employ the 
determinant of the stiffness matrix (i.e., product of eigenvalues 
for the stiffness matrix). Table 1 includes the simulation 
parameters. Fig. 5, Fig. 6, and Fig. 7 show the simulation 
results of the open-loop stability analysis of the three 
counter-balancing methods. In the Z direction, the lower 
counter-balancing method is relatively stable ( [ ]det 0K > and 

closer to zero) as compared to the other cases (see Fig. 5). 
However, in the X and Y directions, the lower 
counter-balancing method is unstable ( [ ]det 0K < ) (see Figs. 

6 and 7). On the other hand, the upper counter-balancing 
method is stable in all directions. However, the magnitude of 
the determinant is fairly large, which implies a large restoring 
force toward the equilibrium position. Intuitively, a small 
restoring force is desirable for the system to be used as a 
passive hands-on device. 

As a compromise of the lower and upper 
counter-balancing methods, we combine the two approaches 
as shown in Fig. 4(c). As a result, the determinant is always 
positive and its magnitude is relatively smaller. Thus, we 
adopt this antagonistic counter-balancing method to design a 
passive hands-on device. 

TABLE I.   SIMULATION PARAMETERS 

Link Parameters Dynamic Parameters 

1 120j l mm=

2 150j l mm=  

Radius of the upper plate  
70tr mm=  

Radius of the lower plate 
100br mm=  

Mass of 1j l 0.349kg=

Mass of 2j l 0.183kg=  

Mass of the upper plate 1.969 kg=  

Mass of the upper counter-weight 
1.446upperM kg=  

Mass of the lower counter-weight 
1.446j lowerM kg= ( )1, 2,3j =  

upperc

gF

1
lowerc

gF

3
lowerc

gF

2
lowerc

gF

upperc

gF 1
lowerc

gF

2
lowerc

gF

3
lowerc

gF
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Figure 5.  Simulation result of the open-loop stability analysis in the Z 

direction. 
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Figure 6.  Simulation result of the open-loop stability analysis in the X 

direction. 
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Figure 7.  Simulation result of the open-loop stability analysis in the Y 
direction. 

C. Adjustable Moment Arm 

The antagonistic counter-balancing was found to have the 
best open-loop stability. However, still a small restoring force 
exists in the neighborhood of the equilibrium position upon 
perturbation. So, in order to ensure the open-loop stability and 
minimize the restoring force throughout the workspace, an 
adjustable moment arm is designed at base joints where 

counter-weights are installed as shown in Fig. 8. In other 
words, the moment arm at base joints is calculated and its 
length is adjusted such that a static equilibrium can be 
sustained at every position. Conclusively, the upper 
counter-weight is fixed (passive), but the lower 
counter-weight is actively adjusted by changing the moment 
arm of the counter weight. A small motor was employed to 
change the length of the moment arm.  

 
Figure 8.  Adjustable moment arm model. 

IV. EXPERIMENTAL RESULT 

We developed a 3-DOF translational mechanism as shown 
in Fig. 9. This mechanism consists of a 3-DOF translational 
parallel mechanism, an upper counter-weight connected by the 
some pulleys and wire, the three lower counter-weights 
located at three base joints, the adjustable links for minimizing 
restoring force, a hands-on tool, and three encoders at three 
base joints for forward kinematics. 

 
Figure 9.  3 DOF parallel mechanism. 

Initially, we set the center location of the mechanism as the 
equilibrium position and pull the hand-on tool to the X and Y 
direction, respectively. And then we measured the restoring 
forces. Fig. 10 denotes a simplified model of the Fig. 4(c) and 
Fig. 8. Fig. 11 shows the test environment for the force 
measurement. A force sensor is mounted at a platform in the 
left-side and a wire connects the hands-on device to the force 
sensor. Pulling the hands-on device to the X or Y direction, a 
restoring force is measured.  Table II denotes the measured 
force data in the X direction. It is easily noted that Case I 
corresponding to the fixed link yields some restoring force but 
that Case II corresponding to the adjustable link does not feel 
any restoring force along the pulled direction owing to 

Adjustable moment arms

upperc

gF

1
lowerc

gF

3
lowerc

gF

2
lowerc

gF
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changing its equilibrium position continuously. Zero restoring 
force in Case II implies that the system is perfectly 
counter-balanced. Thus, the operator does not feel any force 
when he pulls the hands-on device in any direction. Thus, he is 
able to handle the end-tool as in the free space without paying 
any effort. 

    

(a) Case I : with the fixed link    (b) Case II : with the adjustable link 

Figure 10.  Comparison of two models. 

 
Figure 11.  Test environment to measure the restoring force 

TABLE II.  FORCE MEASUREMENT RESULT IN THE X DIRECTION 

 Distance (mm) 20 30 40 

Case I Force (N) 0.7 1.3 1.8 

Case II Force (N) 0.0 0.0 0.0 

 
The video clips attached to this paper include the following 
contents.  

(i) A multi-body dynamic simulator (“DAFUL” made of Virtual 
Motion Co. [16]) is employed to simulate the open-loop 
stability of three counter-balancing methods 

(ii) Demonstration of the restoring force for the fixed link 
(iii) Demonstration of the zero restoring force for the adjustable 

link. 

V. CONCLUSION 

Need for counter-balancing mechanism is expected to grow 
much specially in the area of passive hands-on devices. In 
such case, analysis of the open-loop stability is very important. 
The major contribution of this paper is the inclusion of a 
general stiffness model and a measure to analyze the 
open-loop stability. Through both dynamic simulation and 
experiment, we demonstrated the effect of the open-loop 
stability.  

Such a passive hands-on device with full counter-balancing 
introduced in this paper can be beneficially employed for 
minimally invasive Otologic surgery. Otologic surgery 
requires high manipulation speed just like the surgeon’s 

operation and safeguard for small critical organs such as facial 
nerves since they are located under the bone. An image-guided 
Otologic surgery based on such a passive hands-on device is 
our ongoing research topic. 
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