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Abstract— This paper presents a novel vision-based localiza-
tion and mapping algorithm using image moments of region
features. The environment is represented using regions, such as
planes and/or 3D objects instead of only a dense set of feature
points. The regions can be uniquely defined using a small num-
ber of parameters; e.g., a plane can be completely characterized
by normal vector and distance to a local coordinate frame
attached to the plane. The variation of image moments of the
regions in successive images can be related to the parameters
of the regions. Instead of tracking a large number of feature
points, variations of image moments of regions can be computed
by tracking the segmented regions or a few feature points
on the objects in successive images. A map represented by
regions can be characterized using a minimal set of parameters.
The problem is formulated as a nonlinear filtering problem. A
new discrete-time nonlinear filter based on the state-dependent
coefficient (SDC) form of nonlinear functions is presented. It is
shown via Monte-Carlo simulations that the new nonlinear filter
is more accurate and consistent than EKF by evaluating the
root-mean squared error (RMSE) and normalized estimation
error squared (NEES).

I. INTRODUCTION

In this paper, we introduce a localization and mapping

algorithm that represents the scene using arbitrary shapes,

such as planar features or 3D objects. By analyzing the

variation of image moments of various segmented regions,

3D geometric information of the objects is estimated. The

estimated geometric information of the objects is used to

localize the robot. Typically, SLAM algorithms represent

the information about its environment using a dense set of

point features. To reduce the computational complexity of

SLAM filtering, there have been efforts to extract geometric

features, such as small edges (called edglets), lines, angles,

etc [1]–[4]. In this paper, we propose to use a minimal

set of attributes to represent a region; e.g., a planar region

feature can be defined using a normal vector and distance to

a local coordinate frame attached to the plane from the world

coordinate frame. The algorithm in this paper represents a

map using planar region features. An extension to 3D objects

can be achieved with the same framework. Motivated by

our recent work in [5], [6], we also propose a new optimal

nonlinear filter based on a state-dependent coefficient (SDC)

form of a nonlinear system. The filter minimizes the variance

of the state estimation errors using convex optimization and

is similar to discrete-time EKF in terms of implementation.
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Image moments provide generic representation of encod-

ing the global characteristics of the objects. The concept of

using image moments for the visual SLAM is novel and

has not yet been presented in the literature. Typically, the

outdoor or indoor scene is partially structured with higher

level shapes, such as planar surfaces of arbitrary shapes or

3D shapes. This paper exploits the structure of an indoor

environment or the partial structure of complex outdoor

scenes, such as a riverine environment. The representation

of a scene using planar objects of arbitrary shape reduces

the state space for the SLAM algorithm. Another advantage

of using higher-level structures is that the computational

complexity in data association step is reduced.

Data association in visual SLAM requires matching nu-

merous feature points in successive images. Large and rapid

camera displacements result in erroneous feature matching

that can lead to outliers. In order to reduce computationally

expensive data association and feature matching between

successive images, region tracking is a more robust and

less resource intensive method. We take advantage of im-

age moments that are invariant to rotation, translation, and

scaling, such as Hu’s moments [7] to perform data associ-

ation/tracking for visual SLAM and to estimate the param-

eters of various region features. In certain scenarios, region

tracking might be a very difficult task. In such cases, regions

can still be represented using a smaller set of feature points.

Once a region is segmented and tracked in the successive

image frames, the variation of image moments of the tracked

regions can be computed to estimate the parameters of the

regions (the normal vector inversely scaled by the depth of

the plane) in the camera frame. This information can be used

to localize the camera in the world frame and to create a

better map of the environment than a sparse map created

using feature points.

The contributions of the paper are:

• Image moments are used to track the region features

in the images and extract the parameters of the regions

in the camera frame, which are used to represent the

map. The use of region features reduces the number of

landmarks; significantly reduces the dimension of the

states for the navigation filter; and provides a better

(possibly more meaningful) representation of the map

which may be useful for a decision making stage.

Another advantage is that the image moments capture

the aggregate properties of the features and are more

robust than the point feature-based computation.

• We present a new optimal discrete-time SDC-based non-

linear estimator, which is more accurate and improves

the consistency of the nonlinear filter compared to the
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Steps 2 and 3 are coupled in the sense that Step 2 uses

linear and angular velocities of the camera estimated by

the filter in Step 3 and Step 3 uses the output of Step

2 as measurements. Hence, this is a coupled estimation

problem. The algorithm pseudo-code is given in Algorithm

1. Even though steps 2 and 3 are coupled, the mapping and

localization part are decoupled where the map is created

using least-square estimator and the camera/robot is localized

using an optimal nonlinear filter.

IV. IMAGE MOMENTS AND GLOBAL CHARACTERISTICS

OF STRUCTURES

In this section, a relationship between the variation of

image moments and the parameters of higher-level structures

is presented. Only a case of planar objects is shown here

but a similar development for spherical or cylindrical objects

can also be derived [14], [15]. Let O be the planar object

and I (t) be the image of the object observed at current

time t. Image moments of the segmented object m̄ (t) =
{mij | i, j = 0, .., n1} and the corresponding central moment

µij (t) are defined as

mij =

∫∫

I(t)

xiyjdxdy (1)

µij =

∫∫

I(t)

(x− x̄)
i
(y − ȳ)

j
dxdy (2)

where i, j defines the order of the moment, x and y are

the image pixel coordinates, (x̄, ȳ) is the centroid of the

image segment. The variation of the image moments, mij

and µij , of a planar object is related analytically to the

camera velocities as follows [14]

ṁij = Lmij
(θ1, θ2, θ3,mij) v̄ (3)

µ̇ij = Lµij
(θ1, θ2, θ3, µij) v̄ (4)

where Lmij
and Lµij

are the interaction matrices [14],

v̄ (t) =
[

vC ωC
]T

∈ R
6, vC (t) = [vx, vy, vz] denotes

the camera linear velocity expressed in the coordinate frame

C attached to the camera, ωC = [ωx, ωy, ωz] is the camera

angular velocity, θ (t) ,
[

θ1 θ2 θ3
]T

∈ R
3 are the

parameters θ related to the normal vector n̄ of the planar

object measured in the camera frame by [14]

θ = [θ1 θ2 θ3]
T = −

n̄

d
(5)

where d is a perpendicular distance to the planar object from

the origin of the camera. The Z coordinate of a point on the

planar object in the camera frame C can be obtained using

1

Z
= θ1x+ θ2y + θ3. (6)

The interaction matrices are given by

Lmij
=

[

mvx mvy mvz mωx mωy mωz

]

(7)

Lµij
=

[

µvx µvy µvz µωx µωy µωz

]

(8)

where the details of the terms in (7) and (8) are given in

[14]. Observing that the right-hand side of (4) is linear in

θ (t) , (4) can be rewritten in the following form

ṁij = J
(

mij , v
C
)

θ+g
(

mij , ω
C
)

+w1 (9)

where J : Rn1 ×R
3 → R

n1×3 and g : Rn1 ×R
3 → R

n1 are

given in Appendix A and w1 is a process noise represented

using a normal distribution N
(

0, Q̄
)

. To define the planar

object in the map, n̄ and Z should be estimated that are

related to θ by (5) and (6). The parameter θ can be estimated

by using (9), variation of the image moments mij and

camera velocities measured in C. The camera velocities are

measured in the IMU coordinate frame, denoted by B. The

velocities in C and B are related by vC = RC
Bv

B and

ωC = RC
Bω

B .

A. Computation of the Parameters of the Plane

The parameters θ can be computed using a linear unbiased

estimator given the measurements of mij and three or more

image moments of the image segment. The estimate θ̂ (t) ∈
R

3 of θ (t) is given by

θ̂ =
(

JT Q̄−1J
)−1

JT Q̄−1 (ṁij − g (mij , ω)) (10)

The estimator (10) minimizes the cost function

Jc =
(

ṁij − Jθ̂ − g
)T

Q̄−1
(

ṁij − Jθ̂ − g
)

(11)

The covariance of the estimate, denoted by S ∈ R
3×3 is

given by
S =

(

JT Q̄−1J
)−1

(12)

The estimator is simple to implement and provides an

unbiased optimal estimate in the sense of the least variance.

The estimated parameter θ̂ are used as measurements for the

SLAM filter. The inverse depth 1
Z

coordinate of any point on

the object in the camera coordinate frame can be computed

using θ̂ and the relationship in (6). Since the computed

inverse depth is noisy due to image segmentation noise and

quantization noise of image moments, it is filtered using

a Kalman filter using 1
Z

as a measurement and following

inverse depth dynamic model

d

dt

(

1

Z

)

= (−ω2x+ ω1y)
1

Z
+ vz

1

Z2
(13)

The 3D coordinates of a point in camera reference frame can

be computed using the estimated Z, the camera calibration

parameters and location of a point in the image using the

relationship

X =
xZ

f
, Y =

yZ

f
. (14)

where f is the focal length of the camera and [X,Y, Z] are

the 3D coordinates of the feature points in the camera frame.

V. NAVIGATION PROBLEM FORMULATION

In this section, a formulation of the navigation problem

is presented. The landmarks are represented using planar

structures, which are defined using parameters of a plane

instead of range and bearing to each of the feature points

belonging to the plane. The navigation filter estimates the
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camera position, linear velocity, IMU biases using the mea-

surements of positions of features in the region (e.g., the

center of mass of the region) estimated in the camera body

frame C using the estimator in Section IV-A. The map is

estimated in the camera frame C using the estimator in

Section IV-A and is transformed into the world frame W
using the estimated states of the camera. The coordinate

frame attached to the IMU is denoted by B.

A. State Vector

Let the state vector for SLAM be defined by xv =
[

r (t) , vB (t) , ab
]T

, and xl is a set of Nl landmarks xl =
[x1, x2, .., xNl

] ∈ R
3Nl , i = 0, 1, .., Nl, where each land-

mark is denoted by a vector xi = [Xi, Yi, Zi]
T
. The vehicle

state xv is composed of the robot position r ∈ R
3 measured

in W , the robot linear velocity vB ∈ R
3 measured in B, and

the bias in the measurements of linear acceleration denoted

by ab measured in B. The landmark vector xl consists of

the points on the regions.

B. Process Model

The dynamics of a vehicle can be represented by

ṙ = RW
B vB , v̇B = − [ω]

×
vB + a− ab +

(

RW
B

)T
g,

ȧb = nab, ẋl = 0 (15)

where g ∈ R
3 denotes the gravity vector expressed in W ,

RW
B denotes a rotation matrix from B to W , nab denote

zero-mean, uncorrelated process noise.

C. Measurement Model

The measurement model is formed using the normalized

coordinates of the points on the planar regions measured in

the camera frame C. Using (6), the feature point xC
i ∈ R

3

can be estimated in C and is related to the point xi in W

by xC
i = RC

B

(

RB
W

)T
(xi − r) + TC

B where RC
B is a rotation

and TC
B is the translation between camera-IMU coordinate

frames. The components of the measurement vector y (t) ∈
R

2Nl are given by

yi =

[

XC
i

ZC
i

,
Y C
i

ZC
i

]

+ ν i = 1, .2, .., Nl (16)

where ν is a zero-mean noise with covariance S. We also

use the attitude data obtained using a 3-axis magnetometer

to compute the rotation between W and C. Hence, the

quaternion q ∈ R
4 is a measured along with the linear

acceleration a and angular velocity ω from the IMU package.

The SLAM formulation uses a parametric description

of higher-level structures as landmarks instead of a dense

cloud of feature points to describe higher-level structures.

Parametric description of landmarks using higher-level struc-

tures reduces the large state space of the standard SLAM

formulation and would significantly reduce the computation

time of the SLAM filter. Let nC
i ∈ R

3, i = 1, 2, .., n
denote the normal vectors to the planar objects in the camera

coordinate frame C. The vectors nC
i and n̄i are related by

nC
i = RC

BR
B
W n̄i. (17)

Using (17) and the attitude data, normal vector of the features

and the feature points on the planar regions can be estimated

in the world frame W .

D. Feature Tracking

Once a new planar patch is detected in an image, it can

be tracked in successive images by computing the centers of

gravity of the planar objects in the new image and compare

them with the centers of gravity from the previous images.

We use Hu’s invariant moments [7] for this task. From two

successive images of a planar object, normal vector to the

plane and position of the center of gravity can be computed in

the camera reference from C. The newly-computed landmark

is used to augment the measurement vector y. To track the

segmented landmarks in the images, Hu’s moments are used

which are invariant to rotation, translation and scaling. Hu’s

moments are derived from central moments defined in (2).

For certain scenes it is hard to extract region features directly.

In that case, a planar region can be represented using a small

set of feature points.

E. Filter Formulation

In this section, a filter for the SLAM formulation proposed

in Section V is developed. The filter is based on a state

dependent coefficient (SDC) form and is a modification of

the filter in [5], [6].

1) Stochastic Nonlinear System Representation: Consider

a dynamic system represented by a stochastic differential

equation

ẋv = f (xv, t) +B (x)w2 (18)

y = h (xv, t) + ν (19)

where xv (t) is the filtering state, y (t) ∈ R
m is the measure-

ment, f (xv, t) : R
9 × R → R

9, h (xv, t) : R
9 × R → R

m,
B (x) ∈ R

9×d1 , and w2 and v are d1 and m-dimensional
white noise processes. The nonlinear functions f (xv, t) and
h (xv, t) are given by

f (xv, t)=





RW
B vB

−[ω]
×
vB+a−ab+RB

W g

0



 , h (xv, t)=

[

XC
i

ZC
i

,
Y C
i

ZC
i

]

.

(20)
The nonlinear functions (20) can also be expressed in a

state dependent coefficient (SDC) form

f (xv, t) = A (xv, t)xv =





0 RW
B 0

0 −[ω]
×

−I

0 0 0



 xv (21)

and

h (xv, t)=C (xv, t)xv=[ −f1
(

xC
i

)

RC
B

(

RB
W

)T
0 0 ]xv

(22)

where the nonlinear function f1
(

xC
i

)

takes following two

forms

f1
(

xC
i

)

=

[

1
ZC

i

0 0

0 1
ZC

i

0

]

, f1
(

xC
i

)

=







0 0
XC

i

(ZC
i )

2

0 0
XC

i

(ZC
i )

2







(23)

The nonlinear functions f (xv, t) and h (xv, t) can be rep-

resented in the SDC form using f (xv, t) = A (xv, t)xv
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and h (xv, t) = C (xv, t)xv where functions A (xv, t) :
R

9 × R → R
9×9 and C (xv, t) : R

9 × R → R
m×9. For

a given nonlinear vector function, various forms of SDC

parametrization exist such that f (xv, t) = Ai (xv, t)xv

where i = 1, .., s1 and h (xv, t) = Cj (xv, t)xv where

j = 1, .., s2.
2) Observer Equations: The estimated state is propagated

using the SDC-based stochastic observer for the system in

(18) as

x̂−

v (t+ dt) = x̂v (t) + f(x̂v, t)dt (24)

where x̂−

v (t+ dt) ∈ R
9 is the propagated state and the error

covariance is propagated using

P−

i (t+ dt) = Ai (x̂v, t)P (t)Ai (x̂v, t)
T
+B (x̂)QBT (x̂)

(25)

where Ai (x̂v, t) , ∀i = {1, .., s1} are SDC parametrization,

P−

i (t+ dt) ∈ R
9×9 is the propagated error covariance

and Q ∈ R
d1×d1 is a process noise covariance. The state

estimates are corrected when the current measurement y (t)
is obtained using

x̂v (t+ dt) = x̂−

v (t+ dt) +K (x̂v, t+ dt)
(

y (t)−h(x̂v, t)
)

(26)

The observer gain K (x̂v, t+ dt) ∈ R
n×m is given by

K = P̄ (η, t+ dt) C̄T (x̂v, t)R
−1 (27)

where C̄ = 1
s2

∑

Cj , and the covariance matrix P̄ (η, t+ dt)
is obtained using a convex combination

P̄ (η, t+ dt)=

q
∑

k=1

ηkPk (t+ dt) ,

q
∑

k=1

ηk=1, ηk ≥ 0 (28)

where η = {ηk| k = 1, ..., q = s1 × s2} are weight

parameters and Pk (t+ dt) , ∀k = {1, .., q} are obtained

using

Pk (t+ dt) =P−

i (t+ dt)− P−

i (t+ dt)

CT
j (x̂v, t) S̄

−1Cj (x̂v, t)P
−

i (t+ dt) (29)

where Pk (t+ dt) ∈ R
n×n is the corrected error covariance

corresponding to the parametrization Cj , S̄ ∈ R
m×m is the

measurement noise covariance, the index k = {1, .., q}, i =
{1, .., s1}, j = {1, ...s2}. An algorithm based on posterior

Cramer-Rao lower bound (PCRLB) to update the weights ηi
is presented in next section.

3) Fisher information for selection of weight parameters:

Fisher information matrix FIM I represents the inverse of

CRLB [33], which in turn lower bounds the error covariance

of the filter

I−1 = CRLB ≤ E
[

(xv − x̂v) (xv − x̂v)
T
]

= P̄ (η, t+ dt) .

(30)

The Fisher information I of (30) is a theoretical bound and

can only be estimated with the real data. The filter is efficient

if the equality in (30) is achieved which is only possible

for a linear dynamic and measurement model with additive

Gaussian noise characteristics. Since the error covariance of

the SDC filter P̄ depends on the weight parameters ηk we

TABLE I: Comparison of the Average Errors

RMSE Average NEES Mean

SDC-based Estimator 14.7956 8.8423

EKF 15.7246 14.5679

can compute an optimal P̄ by choosing ηk according to some

objective function. We choose to maximize the determinant

of the information matrix, which represents the amount of

information used by the filter or minimizes the ellipsoidal

uncertainty of the estimated error covariance. To compute ηi
a following optimization problem is formulated

max
ηk

log det (I (ηk))

sub to P̄ > 0,

q
∑

i=1

ηk = 1, ηk ≥ 0 (31)

where the optimization objective is heuristic in the sense

that the theoretical value of I is a property of a particular

nonlinear dynamics and measurement equation and not the

particular approximation of the nonlinear system. The in-

tuition behind the optimization problem in (31) is that the

information content in the representation the various SDCs

(which is an approximation) is maximized or equivalently

the uncertainty in the state estimation is minimized by

optimally weighing each individual SDC parametrization.

This optimization problem is referred to as a D-optimization

problem and is a convex problem, which can be solved effi-

ciently using the interior point tools [34]. The optimization

problem requires a computation of I which can be achieved

in a Riccati-like recursive form using algorithm in [33].

Alternately, an equivalent convex optimization problem can

be solved

min
ηk

log det
(

P̄ (η)
)

sub to P̄ > 0,

q
∑

i=1

ηk = 1, ηk ≥ 0 (32)

where the equivalence of objective functions −log det (I)
and (30) is used [34]. An alternate convex objective function

trace(P̄ (η)) can be used in (32) to minimize the variance of

the state estimation errors. The convex optimization problems

can be easily solved by fast interior point methods.

VI. SIMULATIONS AND EXPERIMENTS

A. Numerical Simulations

Numerical simulations are conducted to test the perfor-

mance of the moment-based SLAM framework presented

in this paper. Selection of image moments to compute the

depth of features in the image plane is based on condition

number of the J matrix in Section IV-A. For the simulation

we use s = (m00, xg, yg, µ11, µ02, µ20) as set of features.

The condition number of J gives a sensitivity criteria for

selection of image moment features. It is observed through

simulations that the above combination of moment features

gives us the least noisy estimation result. The localization

and mapping results for 150 seconds are shown in Fig. 2.
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Algorithm 1 MomentSLAMAlgorithm

Data: linear acceleration a, angular rates ω, attitude q,

images It
Result: state xv (t), map xl (t), map points inside regions

while imu data do

Propagate the states using (21)

Propagate P using (25)

if measurement then

Segment image

Match regions using Hu’s moments

Compute moments m00, xg , yg, µ00, µ11, µ02, µ20

Estimate θ̂ using (10)

Estimate 1
ZC

i

using (6) and filter it using KF using

(13) and measurement 1
ZC

i

Estimate xC
i using (6) and (14)

Correct the state using (26)-(29)

end

if dense map of region is required then

Estimate xC
i inside the region in W

using estimated R and corresponding image pixels

end

end
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Region 2

Fig. 2: Localization and mapping of planes using information

extracted by variation of image moments. Blue line shows

true robot trajectory, red dashed line shows estimated robot

trajectory. Red stars show the true landmark locations, blue

stars show estimated landmark locations. Any point inside

the region can be estimated using the parameters of the plane,

as depicted by blue stars.

To compare the consistency of the proposed estimator and

EKF, average NEES is computed over 25 Monte-Carlo runs

of each estimator ( [35], [36]). The plots of individual NEES

and their average value for the proposed estimator and EKF

are shown in Fig. 3. The bounds of the double-sided 95%

probability concentration region for 3-dimensional robot

pose state for 25 Monte-Carlo runs are computed using

χ2
(3×25) distribution. The upper and lower bounds of 3.9797

and 2.0202 are shown using two solid red lines in Fig. 3.

To compare two estimators for the accuracy of estimation,

average room-mean squared error of the robot pose for 25
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(a) SDC-based estimator
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(b) EKF

Fig. 3: Comparison of average NEES for 25 Monte-Carlo

runs. Solid black line shows the averaged NEES value.

Dotted gray lines show NEES for individual runs. Two red

solid lines show the 95% consistency region.

Monte-Carlo runs is reported in Table I along with the mean

value of the average NEES.

B. Experimental Setup

The experimental platform for the experiments result in

this paper consists of a camera-IMU combination. We plan to

conduct experiments on a quadcopter equipped with rigidly

mounted camera and IMU in outdoor environments. We use

the IMU embedded in the autopilot unit called ArduPilot

- an open source unmanned aerial vehicle (UAV) platform.

The IMU provides measurements of the linear acceleration

and the angular velocity at 200Hz and the camera images

were stored at 15fps. The IMU and camera data is time-

synchronized. To estimate the relative IMU camera rotation

the IMU-camera calibration toolbox [37] is used; assuming

the relative translation can be neglected. The camera intrinsic

parameters were estimated offline using the Matlab toolbox

and are assumed constant. Images are captured with reso-

lution 640× 480 pixels. The accelerometer and gyro biases

were initialized by keeping the platform static for about 60
sec and averaging out the measured linear acceleration and

angular velocity. Accordingly, their corresponding variances
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Fig. 4: Experimental platform.

were used to initialize state covariance matrix. The initial

position of the world coordinate frame W is assumed to be

same as the starting position of the IMU coordinate frame.

C. Experimental Results

This section describes preliminary experimental results of

the algorithm on the indoor office scenario. Our current

efforts are to conduct experiments with data collected in dif-

ferent scenarios, e.g., outdoor semi-structured environments

and testing the algorithm for a longer period of time to

reconstruct a large map.

In Fig. 5 a region tracking sequence is shown by tracking

four corner features of the region based on a LK feature point

tracker. The regions are associated in the successive images

by computing the invariant image moment values and using

a small threshold (set to 0.1) to compare the Hu’s moment

as described in Section V-D. The algorithm described in

Algorithm 1 is implemented in Matlab. To estimate the

image moments we choose s = (m00, xg, yg, µ11, µ02, µ20)
as the set of moments, which corresponds to the area of

the region, and X and Y location of the center of gravity

of the region, and three central moments respectively. This

particular set of moments is less susceptible to noise. The

image moments in consecutive images are stored and the

derivative of each moment ṁij is computed using a fourth

order finite difference method. The corresponding J and g
vectors for these moments are given in Appendix I. The

estimator in (10) is used to generate the measurement for

the filter in Section V-E. The X − Y plot (top-down view)

of the camera estimated position is shown in Fig. 6.

VII. CONCLUSION

In this paper, we introduced a new vision-based SLAM

algorithm which incorporates higher-level structures, such as

planar surfaces in visual navigation by using the variation of

the image moments of the planar regions in 2D images. The

map is represented by using regions instead of a large number

of feature points. We have derived a camera-IMU SLAM

formulation which represents the scene using a minimal

set of parameters. We have conducted Monte-Carlo runs of

the simulated environment and compared the performance
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Fig. 6: 2D X-Y plot of the estimated position of the camera

motion.

of the proposed estimator to EKF. The RMSE and NEES

comparison shows that the proposed estimator outperforms

EKF in terms of accuracy and consistency. We have reported

preliminary experimental results conducted using an indoor

office scene to reconstruct camera trajectories. Our current

efforts focus on testing the proposed algorithm in various

outdoor environments and using discrete moments instead

of continuous moments using discrete point features.
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APPENDIX I

DERIVATION OF MATRICES IN SECTION IV

The image moment dynamics in (3) can be written in the
form (9). The matrices J and g in (9) are derived for a
planar object as J = [J00, Jxg

, Jyg
]T , where the elements

of J
(

mij , v
C
)

and g (mij , ω) in (9) are given by:

J00=





−avx+3axgvz
−avy+3aygvz

2avz



 Jxg =





−xgvx+
(

x2

g+4n20

)

vz
−ygvx+(xgyg+4n11v) vz

−vx+xgvz





(33)

Jyg =





−xgvy + (xgyg + 4n11) vz
−ygvy +

(

y2

g + 4n02

)

vz
−vy + ygvz



 (34)

where nij = µij/m00, and µij is a centered moment, and

g00=3aygωx−3axgωy

gxg
=(xgyg+4n11)ω1−

(

1+x2
g+4n20

)

ωy+ygωz

gyg
=
(

1+y2g+4n02

)

ωx−(xgyg+4n11)ωy−xgωz (35)
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