
Planning for Opportunistic Surveillance with Multiple Robots

Dinesh Thakur∗, Maxim Likhachev†, James Keller∗, Vijay Kumar∗, Vladimir Dobrokhodov‡, Kevin Jones‡,
Jeff Wurz‡ and Isaac Kaminer‡

∗ GRASP Laboratory, University of Pennsylvania, Philadelphia PA
† Robotics Institute, Carnegie Mellon University, Pittsburgh, PA

‡ Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA

Abstract— We are interested in the multiple robot surveil-
lance problem where robots must allocate waypoints to be
visited among themselves and plan paths through different
waypoints while avoiding obstacles. Furthermore, the robots are
allocated specific times to reach their respective goal locations
and as a result they have to decide which robots have to
visit which waypoints. Such a problem has the challenge of
computing the allocation of waypoints across robots, ordering
for these waypoints and dynamical feasibility of the paths
between waypoints. We present an algorithm that runs a series
of graph searches to solve the problem and provide theoretical
analysis that our approach yields an optimal solution. We
present simulated results as well as experiments on two UAVs
that validate the capability of our algorithm. For a single robot,
we can solve instances having 10-15 waypoints and for multiple
robots, instances having five robots and 10 waypoints can be
solved.

I. INTRODUCTION

Consider multiple robots available at different locations
that are needed to visit a number of waypoints for recon-
naissance. Each waypoint can be visited at most once and
because each robot has limited fuel/flight-time capabilities,
it may not be possible to visit all waypoints. This is an
example of Opportunistic Surveillance and also known as the
Team Orienteering Problem (TOP) in which multiple robots
are required to maximize the number of waypoints visited,
subject to an upper bound on the total length (or time) of
travel for each robot. The Orienteering Problem (OP) is the
single robot version of the TOP.

An example of the problem with three robots with their
corresponding goals and six waypoints that the robots must
visit is shown in Figure 1a. The black areas indicate obstacles
or no-fly zones. The planner has to decide which waypoints
can be visited by which robots while proceeding to and
reaching their respective goal locations within their given
time limits. Thus, the problem has three computational
challenges: computing the allocation of waypoints across
all robots, computing the order of visiting waypoints for
each robot and computing paths between any two pairs of
waypoints. Typical existing approaches assume the costs of
transitions between waypoints are known and do not address
the dynamic constraints of the robots [1]. However, the time
to compute the actual transitions can be significant if there
are dynamic constraints such as constraints on the minimum
turning radii of the robots. In this paper, we propose an
approach that folds the computations of transitions into the

(a) Environment with three robots
and six waypoints to be visited.

(b) Planned paths satisfying start
and goal constraints ensuring max-
imum waypoints are visited.

Fig. 1: Environment with three robots and six waypoints.

process of solving the TOP itself. To address the computa-
tional challenges, we formulate the problem as a three-tier
graph search algorithm. In particular, the algorithm solves
waypoints allocation across robots, ordering of the waypoints
for each robot and path planning problem all simultaneously
while providing rigorous guarantees on completeness and
optimality. By interleaving the search across all the three
levels we are able to make it scalable for up to five robots and
ten waypoints. Figure 1b shows the output of our algorithm
for the example given in Figure 1a. Two robots cover two
waypoints each within its alloted time while one robot covers
none. All of these generated paths respect the minimum
turning radius constraints of the robots. In particular these
paths are curves in three dimensional space parameterized
by coordinates {x,y,θ}. The paper describes the algorithm,
analyzes its properties and presents experimental evaluation
in simulation and on a team of two physical fixed-wing aerial
vehicles.

II. RELATED WORK

The Orienteering Problem (OP) and the Team Orienteer-
ing Problem (TOP) are extensively studied in the Opera-
tions Research community. The OP is also known as the
Selective Traveling Salesman Problem (STSP), Maximum
Collection Problem, Bank Robber Problem, Prize Collecting
TSP, among other problems. A detailed survey of the existing
OP and TOP literature is given in [1].

The OP is NP-hard [2] and only a few exact algorithms
have been proposed. With the Branch-and-Bound approach,
problems up to 150 locations have been solved [3], [4].

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5750

Instances up to 500 locations can be solved optimally with
the Branch-and-Cut approach proposed in [5], [6].

Most of the OP research has mainly focused on heuristic
approaches. A stochastic (S-Algorithm) and a deterministic
algorithm (D-Algorithm) is proposed in [7]. A center-of-
gravity heuristic is developed in [2], [8] and five step
heuristic is introduced in [9]. More heuristic algorithms have
been developed to solve the OP [10], [11], [12], [13], [14],
[15].

An exact algorithm to solve the TOP based on column
generation is presented in [16]. A branch-and-price approach
to solve problems with 2-4 team members and up to 100
locations is proposed in [17].

The first published TOP heuristic was developed in [18]
and resembles the five-step heuristic for the OP. A tabu
search heuristic procedure is developed in [19]. Two variants
of a tabu search heuristic and a slow and fast Variable
Neighbourhood Search (VNS) algorithm is given in [20].
Four variants of an ant colony optimization approach for the
TOP is developed in [21]. More recent heuristics approaches
are given in [22], [23], [24].

In all of the above work the costs of transitions between
waypoints are assumed to be given. However, computing
paths that take dynamic constraints of the robots can be
expensive. In fact, we cannot assume that we can plan
optimal paths between all pairs of waypoints for every robot.
In our work, we do not assume the costs of transitions are
given and compute them on the fly instead. Our algorithm
optimizes the overall planning time by interleaving the search
for optimal waypoint assignment, ordering of the waypoints
and planning dynamically feasible paths between waypoints.

Our approach is also related to [25] in the sense that
this work also uses multi-level graph search for a multi-
agent team of robots. Their approach guarantees optimality
only under certain conditions though while we guarantee
optimality under all conditions.

III. ALGORITHM

A. Problem Formulation

We assume we are given N robots with corresponding start
and goal coordinates Si and Gi respectively, 1≤ i≤ N.

Additionally, we are given M waypoints Wj, 1≤ j≤M of
interest. The robot start and goal locations and the waypoint
locations are given by coordinates {x,y,θ}. Each of the N
robots has to travel from Si to Gi within the alloted time
TMAXi . The goal of the planner is to compute N dynamically
feasible paths πi that cover as many waypoints as possible
and minimize the cumulative cost ∑

N
i=1 c(πi) with a constraint

that c(πi)≤ TMAXi∀πi. We assume the cost c(πi) is the time
it takes to traverse πi.

B. Overview of the approach

Our approach is based on a graph-based representation.
We construct and search for a solution three levels of graphs:
a top level graph GT , mid level graph GM and a low level
graph GL. Figure 2 shows the three graph levels. The graph
GT encodes which waypoints have to be assigned to which

Fig. 2: Overview of the approach showing the three levels of representation.

robot. Each edge in this graph GT corresponds to assigning
an additional waypoint to a robot. Given a single robot Ri,
the mid level graph GMi represents the maximum number of
waypoints that can be covered within the time limit TMAXi .
Each edge in the graph GMi corresponds to moving from
one waypoint to another. The cost of the edge is found by
searching the graph GL. Finally, the graph GL represents the
problem of finding a least-cost path that corresponds to going
from one waypoint to another while avoiding obstacles, given
the dynamic constraints of the robot. A detailed description
of the construction of the three graphs is given in Section III-
C.

The three graphs are constructed on the fly as the search
progresses. The search interleaves searching the top level, the
mid level and the low level graph. Such interleaving helps
to focus the search efforts of the low level search on the
problems that are relevant to the mid level search and focus
the mid level search to the problems that are relevant to the
top level search. Another advantage of breaking down the
search into three graphs is that the solutions can be reused
and the overall memory footprint of the search is smaller.
The graph search itself is described in Section III-D.

C. Three level graph representation of the problem

1) Graph GT : Each node q ∈V (GT) is defined as {β}, a
vector of M elements where M is the number of waypoints.
Each element represents a robot assigned to the correspond-
ing waypoint. For example, if M = 3 and N = 2, the node
q = {(2,1,2)} represents that the waypoints W1 and W3 are
assigned to robot R2 while W2 is assigned to robot R1. 0
represents an unassigned waypoint. The start node is always
qstart = {(0,0, · · ·)}, none of the waypoints are assigned.

Each edge in GT corresponds to assigning a single way-
point, the first waypoint that is still unassigned, to one of
the robots. We use succ(q) to denote the set of successor
states of the state q ∈V (GT). For example, consider M = 3,
N = 2, q= {(0,0,1)}, and q,q1,q2,q3,q4 ∈V (GT). The valid
successors of q are q1 = {(0,1,1)} and q2 = {(0,2,1)}, while
q3 = {(1,0,1)} and q4 = {(2,0,1)} are not successors of q,
i.e. q1,q2 ∈ succ(q), while q3,q4 /∈ succ(q). Figure 3a shows
an example of a top level graph transitions with N = 2 and
M = 2.

The cost of the transition from one state to another in
GT corresponds to the cost of the least-cost path obtained
from the mid level graph GM . Since q and q′ only differ

5751

by a single element, the corresponding cost is the cost of
assigning an additional waypoint to the robot. If q = {β},
q′ = {β ′}, q′ ∈ succ(q) and the ith robot is assigned from
q to q′, then c(q,q′) = c∗q′(nSi ,nGi)− c∗q(nSi ,nGi). Here nSi

and nGi represent the mid level start and goal state for the
ith robot and c∗q′(nSi ,nGi) represents the cost of optimal path
in GM with waypoints available for the ith robot according
to the node q′. Similarly, c∗q(nSi ,nGi) represents the cost of
optimal path in GM with waypoints available for the ith
robot according to the node q. Since q is a predecessor state,
this cost is already known. As explained in the Section III-
D.1, an optimal path through GT corresponds to an optimal
assignment of the waypoints to the robots. Let k be the total
number of unvisited waypoints across all agents in q′. If
q′ = qgoal , we add a cost k×PT in addition to the transition
cost c(q,qgoal), where PT = ∑

N
i=1 TMAXi +1 is the penalty for

not visiting each waypoint. The section III-D.1 explains the
choice of such penalty.

c(q,q′) =

{
c∗q′(nSi ,nGi)− c∗q(nSi ,nGi), q′ 6= qgoal

c∗q′(nSi ,nGi)− c∗q(nSi ,nGi)+ k×PT , otherwise
(1)

2) Graph GM: The graph GM encodes the path for a single
robot that goes through as many waypoints as possible that
were assigned to it while minimizing time. Each node n ∈
V (GM) is defined as {α,Ω}, α is a vector of M bits where
a 0 bit indicates the corresponding waypoint is unvisited and
1 bit indicates it is visited. Ω is the index of the waypoint
where the robot is currently at.

In our approach at the mid level, the planner needs to
know the waypoints that have been visited, the current robot
location and the time taken to reach the location. We use a
model very similar to one that is presented in [25]. To model
the waypoints visited and to have a search graph we use a
state coordinate called α which is a variable that represents a
binary number consisting of M bits (for M waypoints). Each
bit indicates whether the corresponding waypoint has been
visited or not. Similar to [25], for notational convenience we
define a function B such that α = BM(P1,P2, · · · ,Pk) is a M-
bit long binary number with 1’s at positions P1,P2, · · · ,Pk,
and 0’s at the rest of the positions. Thus, B5(2,4,5) = 11010
and B3(1) = 001. BM(P1,P2, · · · ,Pk) represents the state in
which only the waypoints P1,P2, · · · ,Pk have been visited.
Since at the start location no waypoints are visited, αstart =
BM(). For the goal state, αgoal is not unique because the
number of waypoints visited can be anything from 0 to M.
If all the waypoints have been visited αgoal =BM(1,2, ...,M),

(a) Top level graph GT with two robots,
two waypoints and state transitions.

(b) Mid level graph GM with two
waypoints and state transitions.

Fig. 3: Top level and mid level graphs.

if none are visited αgoal = BM().
Consider B5(2,4,5). This function does not provide infor-

mation on the current location of the robot. It just tells us
that waypoints 2, 4 and 5 have been covered. In order to
model the current location of the robot and to have a unique
goal state, an additional parameter is required. We use a state
coordinate Ω to represent the current location of the robot.
Ω can be a start location denoted by Ω = 0, a goal location
denoted by Ω = M + 1 or any waypoint location Wj given
as Ω = j, where 1 ≤ j ≤ M. Thus each node n ∈ V (GMi)
is represented as {α , Ω}. If M = 5, n = {B5(2,4,5),4}
represents that the robot has covered waypoints 2, 4, 5 and
its current location is 4. Note, n1 = {B5(2,4,5),4} is similar
to n2 = {B5(4,2,5),4} as the order of visiting the waypoints
does not matter.

Since only one waypoint is visited at a time, any two
vertices in GM are connected iff they only differ by a single
bit in α . The edge direction is from a vertex with a lower
value of α to that of a higher value and different α . We
use succ(n) to denote the set of successor states of state
n ∈ V (GM). If, for example, M = 3, and n = {B3(1),1},
the valid transitions from n are n1 = {B3(2,1),2} and n2 =
{B3(3,1),3}, while n3 = {B3(2),2} and n4 = {B3(2,1),1}
are invalid transitions i.e. n1,n2 ∈ succ(n) while n3,n4 /∈
succ(n), where n,n1,n2,n3,n4 ∈V (GM). Figure 3b shows an
example of a mid level graph transitions with M = 2.

In the mid level graph, if n = {α,Ω}, n′ = {α ′,Ω′}
and n′ ∈ succ(n) then c(n,n′) = c∗(sΩ,s′Ω′). sΩ and s′

Ω′

represent the low level state of the two waypoints corre-
sponding to Ω and Ω′. Thus, the cost of the transition
from one state to another in GM is the cost of the least-
cost path obtained from the low level graph GL. Every
state where Ω = M + 1 is considered to be a goal i.e. a
robot is allowed at any point to go directly to its goal
location. If n′ = ngoal we define c(n,ngoal) = c∗(sΩ,s′Ω′) +
(Number of waypoints not visited in n)× PM , where PM =
TMAX +1 is the penalty for not visiting each waypoint. This
guarantees that the optimal path through GM corresponds
to visiting as many waypoints as possible within TMAX and
spending minimum amount of time to do it. Thus,

c(n,n′) =

{
c∗(sΩ,s′Ω′), if n′ 6= ngoal

c∗(sΩ,s′Ω′)+ (# waypoints not visited in n) × PM
(2)

In addition, any transition from n to n′ is invalidated
whenever time to reach n′ exceeds TMAXi . The time to reach
n′ is given by its g value as explained later in Section III-D.2

3) Graph GL: The formulation of graph-based planning
involves discretization of the configuration space into a
set of states, representing configurations, and transitions
between these states, where every transition represents a
feasible path. We discretize the graph with states s ∈V (GL)
as {x,y,θ}, where x,y represent the position of the robot
and θ represents the orientation of the robot. Once GL is
formed by the discretization of the configuration space into
a set of states, connections between states represent short
feasible paths. This essentially corresponds to lattice based

5752

(a) Motion primitives at different
orientations.

(b) Replication of motion
primitives.

Fig. 4: The low-level graph, GL.

graphs [26], [27] which are well suited to planning for non-
holonomic robotic systems such as passenger vehicles and
UAVs. Figure 4a shows the motion primitives we used in
our experiments for all the 16 possible headings of the robot.
Since we used UAVs for our experiments, the discretization
and transitions between states were designed based on their
kinematic and dynamic constraints. Figure 4b shows how the
graph is constructed by replicating motion primitives during
the search.

For s′ ∈ succ(s), the edge s→ s′ ∈E(GL) is associated with
a strictly positive cost c(s,s′) which is the cost of the action
that connects s to s′. The cost of each transition is given
by the time it takes to execute the corresponding motion
primitive.

D. Graph searches at three levels

The three graph searches are interleaved to generate a
provably optimal solution w.r.t. discretization.

1) Top level Search: The Pseudo-code 1 explains the
Multi Robot Opportunistic Path Refinement algorithm. The
main loop is an A? search on the graph GT which finds a
least-cost path from qstart to qgoal . A? maintains g-values for
each state it has visited so far. g(q) is always the cost of the
best path found so far from qstart to q. The code is initialized
by inserting qstart in OPEN which is a priority queue and
setting g(qstart) = 0. A? prioritizes the states that are chosen
from OPEN based on their f -values, f (q) = g(q). The code
removes states from OPEN and expands them using lines 7
through 13. This repeats until qgoal is expanded or there are
no more states left to expand in OPEN.

During the evaluation of a state q in lines 8 through 10,
costs of transitions are assigned to each of the successor state
q′. The transition cost from q to q′ is obtained from a call
to the mid level graph search (line 8). The exact details of
the mid level search is given in the next section.

To drive the search through other unassigned waypoints
the cost of transition to a goal state must be greater than
the largest path cost. Any path in the graph GT has a cost
that is bounded by ∑

N
i=1 TMAXi as each robot Ri has a limited

travel time TMAXi . We assign the cost of reaching a goal state
qgoal from any other state q as c(q,qgoal) = c∗qoal(nSi ,nGi)−
c∗q(nSi ,nGi) + (number of waypoints not visited across all
agents in qgoal)×PT , where PT = ∑

N
i=1 TMAXi + 1. Thus, the

penalty for a path that has more unvisited waypoints is

Pseudo-code 1 Multi Robot Opportunistic Path Refinement

1: procedure MultiRobotInterleave()
2: OPEN = {qstart}
3: g(qstart) = 0
4: g(q) = ∞, ∀q ∈V (GT) and q 6= qstart
5: while qgoal not expanded do
6: remove q with smallest f (q) from OPEN
7: for each successor q′ of q do
8: c(q,q′) = SingleRobotInterleave(waypoints for

robot i according to state q′) - c∗q(nSi ,nGi)
9: if q′ == qgoal then

10: c(q,q′) += (# waypoints not visited across all
agents in q′) × PT

11: if g(q′)> g(q)+ c(q,q′) then
12: g(q′) = g(q)+ c(q,q′)
13: insert q′ in OPEN with f (q′) = g(q′);

greater than penalty for the path that has minimum unvisited
waypoints. Since the penalty is greater than the sum of the
time to travel for all agents, the path with more unvisited
waypoints is suboptimal. The theoretical proof given in
Subsection IV further shows why this choice of cost function
ensures that the search minimizes the number of unvisited
waypoints.

2) Mid level Search: The Pseudo-code 2 explains the
Single Robot Opportunistic Path Refinement algorithm. The
main loop is A? search on the graph GM which finds a least-
cost path from nstart to ngoal .

During the expansion of a state n in lines 8 through 10,
costs of transitions are assigned to each of the successor state
n′. We use the time to traverse Dubins paths as cost estimates
for this transition denoted as d∗(n,n′). The Dubins path cost
is the optimal path cost in an obstacle free environment. If
the Dubins path traverses through an obstacle, the cost can
be dramatic underestimate. We then call the low level graph
search and get the exact path cost (c∗(sn,s′n′)) and assign it
to the transition cost from n to n′. Figure 5 shows a case
when the low level graph search is called.

To drive the search through as many waypoints as possible
the cost of transition to a goal state must be greater than the
largest path cost. We assign the cost of reaching goal state
ngoal from any other state n as c(n,ngoal) = c∗(sn,sngoal) +
(number of waypoints not visited in n)×PM , where PM =
TMAX + 1. To understand why this ensures that the search
tries to maximize the number of visited waypoints consider
the fact that any path through the graph GM will have the
cost that is bounded by TMAX . As a result any path that does
not go through as many waypoints as possible within the
time TMAX will have a penalty that is higher than the path
that goes through the maximum number of waypoints. Since
the penalty is greater than the time to travel itself, it will
be a suboptimal path while the A? search always finds the
optimal path. The theoretical proof given in Subsection IV
further explains why this choice of cost function ensures the
search maximizes the number of waypoints covered.

Since cost is defined by time and the search is optimal
g(n)+ c(n,n′) represents the time it takes to reach the state

5753

Pseudo-code 2 Single Robot Opportunistic Path Refinement

1: procedure SingleRobotInterleave(waypoints)
2: OPEN = {nstart}
3: g(nstart) = 0
4: g(n) = ∞, ∀n ∈V (GM) and n 6= nstart
5: while ngoal not expanded do
6: remove n with smallest f (n) from OPEN
7: for each successor n′ of n do
8: c(n,n′) = d∗(n,n′)
9: if dubin’s path goes through obstacle then

10: c(n,n′) = c∗(sn,sn′) //from low-level search
11: C(n,n′) = c(n,n′)
12: if n′ == ngoal then
13: C(n,n′) += (# waypoints not visited in n) × PM
14: if g(n)+c(n,n′)< TMAX and g(n′)> g(n)+C(n,n′)

then
15: g(n′) = g(n)+C(n,n′)
16: insert n′ in OPEN with f (n′) = g(n′);
17: return g(ngoal) - (# waypoints not visited) × PM

n′ through the state n. Using this, lines 14 through 16 of
the code ensure that the successor state n′ being pushed in
OPEN does not violate the alloted maximum time condition.

3) Low level Search: The A? search is perhaps one of the
most popular methods for doing a graph search that finds a
least-cost path from a given initial state to a goal state [28].
It utilizes a heuristic to focus the search towards the most
promising areas of the search space. While highly efficient,
A? aims to find an optimal path which may not be feasible
given time constraints and the dimensionality of the problem.

The heuristic of a state h(s) is an estimate of the cost of a
shortest path from current state s to the goal state sgoal . For
the A? to be optimal the heuristics must be admissible and
consistent. For a heuristic to be admissible it must not overes-
timate the distance to the goal, h(s)≤ c∗(s,sgoal). A heuristic
is consistent if h(s) ≤ c(s,succ(s)) + h(succ(s)),∀s 6= sgoal
and h(sgoal ,sgoal) = 0.

An informed heuristic plays a major role in the A?s
behavior. The lower h(s) is, the more states the A? expands,
making it slower.

The most common heuristic used is Euclidean distance.
Since the low level graph GL is a 3D graph with states
{x,y,θ}, the euclidean distance is a significant underestimate
for the A? search. This leads to more expansions and more

(a) Dubins path traversing
through an obstacle.

(b) Low level graph search
using A?.

Fig. 5: Example showing mid level interleaving search

(a) A simple environment along
with the optimal solution.

(b) heuristic = h2D obs

(c) heuristic = hdubins (d) heuristic=max(h2D obs,hdubins)

Fig. 6: Visualization showing the total number of expanded states with
different heuristics.

planning time. Instead we use Dubins optimal path as the
heuristic for the graph search. The Dubins optimal path is
an exact estimate of the path distance from s to sgoal in an
obstacle free environment.

Given a non holonomic vehicle with a constraint on the
minimum turning radius, constant forward speed and sstart
and sgoal , [29] geometrically established that the optimal
path (without obstacles) is one of the six possible config-
urations. All the paths are composed of three segments:
CCC or CSC (C → curved at maximum curvature, S →
straight). Each segment is a constant action over an interval
of time. The shortest path between any two configurations
can always be characterized by one of the six configurations
LSL,RSR,LSR,RSL,LRL,RLR. In the S segment the vehicle
drives straight ahead. During the L and R segments, the
vehicle turns as sharply as possible to the left or to the right
respectively.

Three different heuristics (h2D obs, hdubins and
max(h2D obs,hdubins)) were used to run the numerical
experiments. h2D obs is precomputed by running a 2D
Dijkstra’s search on x,y grid, hdubins is the Dubins path
heuristic and max(h2D obs,hdubins) is the combination of
the 2D Dijkstra’s search and the Dubins heuristic obtained
by taking the maximum of the two. Figure 6 shows an
example of the total number of states that are expanded for
a fixed start and goal location with the use of the above
heuristics. Figure 6a is the obstacle filled test environment
with start locations, goal locations and the planner output.
To visualize the number of states expanded we assign each
grid location (x,y) of the map with a color. Red indicates the
most expansions, 16 in this case, while dark blue indicates
no state expansions. Using this scheme Figure 6b, Figure 6c
and Figure 6d show the results of using different heuristics.
It can be seen that the combination of 2D Dijkstra’s
search and Dubins heuristics has the least number of states
expanded.

5754

IV. THEORETICAL PROPERTIES

We show that the algorithm is optimal in that it finds
paths that go through a maximum number of waypoints
and minimize the path costs. We divide the proof into two
theorems. First we prove that given a single robot an optimal
path can be found that maximizes the number of waypoints
visited and minimizes path cost. Using this theorem we then
prove that the multi-robot algorithm is optimal.

Theorem 1: Given a set of motion primitives, a path found
through the graph GM visits as many waypoints as possible
within the alloted time TMAX while minimizing cost of the
path.

Let ḠM ⊂ GM be the mid level graph that contains only
the states through which the goal can be reached within the
time bound TMAX . Let π̂ḠM

be the solution obtained by the
planner with the cost ∑

k̂+1
i=1 c(ni−1,ni) where k̂ is the number

of waypoints covered in this solution.
We define,

c(π̂ḠM
) = ∑

k̂+1
i=1 c(ni−1,ni)+(M− k̂)×PM , where n∈V (GM),

n0 = nstart ,nk̂+1 = ngoal , M = Total number of waypoints and
PM = TMAX +1.

Lemma 1: All edges ∈ E(ḠM) are optimal w.r.t the
discretization of state space and action space since they are
obtained from the low-level optimal graph search except for
the edges connecting into goal states which have costs equal
to the cost of least-cost path plus the penalty.

Lemma 2: As we run an optimal A? search on the pruned
graph ḠM , π̂ḠM

is the least cost path.
We need to Prove:

1) k̂ is the maximum number of waypoints that can be
covered.

2) ∀πḠM
with fixed number of waypoints k̂,

∑
k̂+1
i=1 c(ni−1,ni) is the minimum cost.

Proof:
1) We prove by contradiction. Assume there is a path π̃ḠM

that goes from start to goal whose time does not exceed TMAX
and has a larger number of waypoints k̃ > k̂.

c(π̂ḠM
)≤ c(π̃ḠM

) from Lemma 2.

⇒ ∑
k̂+1
i=1 c(ni−1,ni) + (M − k̂) × PM ≤ ∑

k̃+1
i=1 c(ni−1,ni) +

(M− k̃)×PM

⇒ (k̃ − k̂) × (TMAX + 1) ≤ ∑
k̃+1
i=1 c(ni−1,ni) −

∑
k̂+1
i=1 c(ni−1,ni)
Any path cost in GM is bounded from above by TMAX .
⇒ (k̃− k̂)× (TMAX +1)≤ TMAX
This leads to a contradiction since k̃ > k̂. Thus, the

maximum number of waypoints that can be covered is k̂.
2) Assume another solution π̇ḠM

∈ ḠM that has same
number of waypoints, k̇ = k̂.

c(π̂ḠM
)≤ c(π̇ḠM

) from Lemma 2.

⇒ ∑
k̂+1
i=1 c(ni−1,ni) + (M − k̂) × PM ≤ ∑

k̇+1
i=1 c(ni−1,ni) +

(M− k̇)×PM

⇒ ∑
k̂+1
i=1 c(ni−1,ni)≤ ∑

k̇+1
i=1 c(ni−1,ni) since k̇ = k̂.

Hence, ∑
k̂+1
i=1 c(ni−1,ni) is minimum ∀πḠM

with fixed
number of waypoints k̂.

Theorem 2: The path found through GT has the minimum
total number of unvisited waypoints and total path costs
across all robots.

Let ḠT ⊂GT be the top level graph that contains only the
states through which the goal can be reached within the time
bound TMAXi for each robot. Let π̂ḠT

be the solution obtained
by the planner and k̂ be the number of unvisited waypoints
in this solution.

We define,
c(π̂ḠT

) = ∑
N
i=1 c(πi)+ k̂×PT , where PT = ∑

N
i=1 TMAXi +1.

Lemma 1: All edges ∈ E(ḠT) are optimal since they are
obtained from the mid-level optimal graph search except the
edges connecting into goal states which have costs equal to
the cost of least-cost path plus the penalty. This is proved in
Theorem 1.

Lemma 2: As we run an optimal A? search on the pruned
graph ḠT , π̂ḠT

is the least cost path
We need to Prove:

1) k̂ is the minimum number of unvisited waypoints.
2) ∀πḠT

with fixed number of unvisited waypoints k̂,
∑

N
i=1 c(π̄i) is the minimum cost, subject to c(π̄i) ≤

TMAXi∀πi .
Proof:

1) We prove by contradiction. Assume a solution that has
a less number of unvisited waypoints. Consider a path π̃ḠT

such that it has less unvisited waypoints where k̃ < k̂.
c(π̂ḠT

)≤ c(π̃ḠT
) from Lemma 2.

⇒ ∑
N
i=1 c(π̂i)+ k̂×PT ≤ ∑

N
i=1 c(π̃i)+ k̃×PT

⇒ (k̂− k̃)×PT ≤ ∑
N
i=1 c(π̃i)−∑

N
i=1 c(π̂i)

⇒ (k̂− k̃)× (∑N
i=1 TMAXi +1)≤ ∑

N
i=1 TMAXi

This leads to a contradiction since k̃ < k̂. Thus, the
minimum number of unvisited waypoints is k̂.

2) Assume another solution π̇ḠT
∈ ḠT that has same

number of waypoints, k̇ = k̂.
c(π̂ḠT

)≤ c(π̇ḠT
) from Lemma 2.

⇒ ∑
N
i=1 c(π̂i)+ k̂×PT ≤ ∑

N
i=1 c(π̇i)+ k̇×PT

⇒ ∑
N
i=1 c(π̂i)≤ ∑

N
i=1 c(π̇i) since k̇ = k̂.

Hence, ∑
N
i=1 c(π̂i) is minimum ∀πḠM

with fixed number
of waypoints k̂.

V. EXPERIMENTAL ANALYSIS

In our experiments we use fixed-wing UAVs. Model
complexity can be greatly reduced by removing the verti-
cal degree of freedom and working with constant altitude
planar paths and further reduced by fixing airspeed to be
constant. For constant speed applications, minimum turning
radius is directly set by the upper bound on bank angle
(rmin = V 2/(g× tan(φmax))), where g is the gravitational
constant and φmax is the maximum angle of bank that can be
achieved. The fundamental concept that must be captured
by a planner is that turning is accomplished by rolling
the vehicle for which there is an associated response lag.
These physical constraints tend to reduce the fidelity of
path planners which abstract dynamics away to work strictly
with kinematic bounds on turning radius. As a consequence,
motion primitives in the graph GL are tailored to fit the
gradual build-up of bank angle, which governs turning flight.

5755

(a) Environment with four
robots and four waypoints with
5% obstacle density

(b) Environment with four
robots and ten waypoints with
5% obstacle density

Fig. 7: Simulation experiments environment examples

A. Simulation Experiments

For testing the algorithm in simulation an area of 10
square kilometers was discretized into 25 by 25 meter grids.
Heading was discretized into 16 directions, thus altogether
400× 400× 16 states in the low level graph GL. Motion
primitives were generated to achieve a turning radius of 270
meters for the simulated UAVs. Tests were conducted with
varying number of robots and waypoints. Table I shows the
planning time for our algorithm with three robots situated
at fixed locations and different numbers of waypoints with
no obstacles. In Table II the obstacle density is set to five
percent. For a given number of waypoints, planning time was
averaged over 20 randomly generated maps and waypoints
locations were randomly chosen. All experiments were run
on a PC with a 2.7 GHz Intel Core i7-2620M processor with
4 GB of RAM. Figure 7 shows two such randomly generated
test scenarios.

B. Field Experiments

The Naval Postgraduate School (NPS) UAV lab has de-
veloped a Rapid Flight Test Prototyping System (RFTPS) to
enable on-board integration of advanced control algorithms
from concept to flight test. A new approach to path following
and coordination was developed in [30]. For our tests we
used two SIG Rascal UAVs shown in Figure 8c.

These algorithms were flight tested at Camp Roberts, CA
where NPS conducts UAV experiments. Further details can
be found in [31]. A typical scenario involving two UAVs
and four waypoints is illustrated in Figure 9. The site is
roughly 6x4 sq-km. The red polygon outlines the boundary

TABLE I: Planning time (seconds): varying robots and varying number of
waypoints with no obstacles

aaaaaaa
UAV

Waypoint
5 7 9 11

3 0.1 0.85 2.11 9.14
5 0.98 6.40 12.43 83.40

TABLE II: Planning time (seconds): varying robots and varying number
of waypoints with five percent obstacle density

aaaaaaa
UAV

Waypoint
5 7 9 11

3 38.63 65.15 84.79 136.70
5 60.48 74.60 108.23 182.13

(a) Mobile Ground Control Station (b) Interior of GCS

(c) Two SIG Rascal UAVs

Fig. 8: Experimental Setup for field tests

of cleared airspace at the Camp Roberts range. The paths
generated by the planner are shown in dark blue and green.
For the UAVs, motion primitives were generated to achieve
a turning radius of 270 meters which is twice the rmin.
This allocates half of the aircraft turning authority to the
planner and the other half to disturbance rejection. Results
of these experiments validated that paths generated by the
planner are feasible. Even in high winds the average error
between the commanded path and the tracked path was not
more than 50m which is equivalent to two seconds at the
planned velocity. The supplemental video presents one of
the experimental run at Camp Roberts.

VI. CONCLUSION

The Orienteering Problem and the Team Orienteering
Problem have been extensively studied in the Operations
Research community where they are usually formulated as
an optimization problem. In this paper we studied the OP and
the TOP with respect to mobile robots with dynamic con-
straints, particularly the bounds on turning radius and its rate
of change. While others have investigated orienteering by
assuming the costs between the locations to be given, to our
knowledge this is the first attempt to combine orienteering
with the dynamic constraints of the robots. We formulate the
OP and the TOP as a graph search problem and address the

Fig. 9: Plot showing plan generated for two UAVs and four waypoints and
the tracked positions of two UAVs

5756

dynamic constraints of the robots. We also explored the use
of Dubins Curves as heuristics for graph search algorithms.
A combination of Dubins Curves and 2D Dijkstra’s search
as heuristics for the A? search of a 3D graph gave the
best results. Further, we solved the OP and TOP using
the Single Robot Opportunistic Path Refinement and Multi
Robot Opportunistic Path Refinement algorithm respectively.
We established in theory that our algorithm is optimal i.e.
the robots cover a maximum number of waypoints in the
minimum amount of time with respect to the discretization
of state space and action space. We validated the outputs of
our algorithm by testing it in simulation and flight tests using
SIG Rascal UAVs.

In future work we would like to bring in methods that
trade off optimality for runtime with provable bounds on
suboptimality in order to scale to large teams of UAVs and
20-100 waypoints. Also, in many cases the paths generated
for the individual robots must be replanned to accommodate
waypoints added in the mission while executing. This re-
quires replanning in real time and during flight. Currently,
the algorithm is centralized and we are exploring the search
direction that will allow decentralization.

VII. ACKNOWLEDGMENTS

We would like to acknowledge the Joint Interagency Field
Exploration (JIFX) organizers at the Naval Postgraduate
School who enabled us to validate these algorithms in a
flight test setting at their McMillan Airfield, Camp Roberts,
CA facility. Furthermore, we gratefully acknowledge support
from ONR grants N00014-09-1-1031 and 10936907.

REFERENCES

[1] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, “The
orienteering problem: A survey,” European Journal of Operational
Research, vol. In Press, Corrected Proof, 2010.

[2] B. Golden, L. Levy, and R. Vohra, “The Orienteering Problem,” Naval
Research Logistics, vol. 34, pp. 307–318, 1987.

[3] G. Laporte and S. Martello, “The selective travelling salesman prob-
lem,” Discrete Appl. Math., vol. 26, no. 2-3, pp. 193–207, 1990.

[4] M. K. R. Ramesh, Y. Yong Seok, “An optimal algorithm for the
orienteering tour problem,” ORSA Journal on Computing, vol. 4, pp.
155–165, 1992.

[5] M. Fischetti, J. J. S. Gonzalez, and P. Toth, “Solving the orienteering
problem through branch-and-cut,” INFORMS J. on Computing, vol. 10,
no. 2, pp. 133–148, 1998.

[6] F. S. M. Gendreau, G. Laporte, “A Branch-and-Cut algorithm for the
undirected selective traveling salesman problem,” Networks, vol. 32,
pp. 263–273, 1998.

[7] T. Tsiligirides, “Heuristic Methods Applied to Orienteering,” Journal
of the Operational Research Society, vol. 35, pp. 797–809, 1984.

[8] L. B.L. Golden, Q. Wang, “A Multifaceted Heuristic for the Orien-
teering Problem,” Naval Research Logistics, vol. 35, p. 359366, 1988.

[9] I.-M. Chao, B. L. Golden, and E. A. Wasil, “A fast and
effective heuristic for the orienteering problem,” European Journal of
Operational Research, vol. 88, no. 3, pp. 475–489, February 1996.

[10] C. P. Keller, “Algorithms to solve the orienteering problem: A
comparison,” European Journal of Operational Research, vol. 41,
no. 2, pp. 224 – 231, 1989.

[11] R. Ramesh and K. M. Brown, “An efficient four-phase heuristic for
the generalized orienteering problem,” Computers and Operations
Research, vol. 18, no. 2, pp. 151–165, 1991.

[12] B. L. G. Qiwen Wang, Xiaoyun Sun and J. Jia, “Using artificial neural
networks to solve the orienteering problem,” Annals of Operations
Research, vol. 61, no. 1, pp. 111–120, 1995.

[13] M. Gendreau, G. Laporte, and F. Semet, “A tabu search heuristic
for the undirected selective travelling salesman problem,” European
Journal of Operational Research, vol. 106, no. 2-3, pp. 539 – 545,
1998.

[14] M. F. Tasgetiren, “A genetic algorithm with an adaptive penalty
function for the orienteering problem,” Journal of Economic and
Social Research, vol. 4, no. 2, pp. 1–26, 2001.

[15] Y.-C. Liang, S. Kulturel-Konak, and A. E. Smith, “Meta heuristics for
the orienteering problem,” in Proceedings of the 2002 Congress on
Evolutionary Computation CEC2002, D. B. Fogel, M. A. El-Sharkawi,
X. Yao, G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, Eds.
IEEE Press, 2002, pp. 384–389.

[16] S. E. Butt and T. M. Cavalier, “A heuristic for the multiple tour
maximum collection problem,” Computers and Operations Research,
vol. 21, no. 1, pp. 101–111, 1994.

[17] S. Boussier, D. Feillet, and M. Gendreau, “An exact algorithm for
team orienteering problems,” 4OR: A Quarterly Journal of Operations
Research, vol. 5, pp. 211–230, 2007.

[18] I.-M. Chao, B. L. Golden, and E. A. Wasil, “The team orienteering
problem,” European Journal of Operational Research, vol. 88, no. 3,
pp. 464–474, February 1996.

[19] H. Tang and E. Miller-Hooks, “A tabu search heuristic for the team
orienteering problem,” Comput. Oper. Res., vol. 32, no. 6, pp. 1379–
1407, 2005.

[20] C. Archetti, A. Hertz, and M. Speranza, “Metaheuristics for the team
orienteering problem,” Journal of Heuristics, vol. 13, pp. 49–76,
2007.

[21] L. Ke, C. Archetti, and Z. Feng, “Ants can solve the team orienteering
problem,” Computers & Industrial Engineering, vol. 54, no. 3, pp.
648–665, 2008.

[22] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V.
Oudheusden, “A guided local search metaheuristic for the team
orienteering problem,” European Journal of Operational Research,
vol. 196, no. 1, pp. 118 – 127, 2009.

[23] H. Bouly, D.-C. Dang, and A. Moukrim, “A memetic algorithm
for the team orienteering problem,” 4OR: A Quarterly Journal of
Operations Research, vol. 8, pp. 49–70, 2010.

[24] W. Souffriau, P. Vansteenwegen, G. Vanden Berghe, and D. Van Oud-
heusden, “A path relinking approach for the team orienteering prob-
lem,” Comput. Oper. Res., vol. 37, no. 11, pp. 1853–1859, 2010.

[25] S. Bhattacharya, M. Likhachev, and V. Kumar, “Multi-agent Path
Planning with Multiple Tasks and Distance Constraints,” IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2010.

[26] M. Likhachev and D. Ferguson, “Planning Long Dynamically-Feasible
Maneuvers For Autonomous Vehicles,” International Journal of
Robotics Research (IJRR), 2009.

[27] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning
control sets for constrained motion planning in discrete state spaces,”
in Proceedings of the 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’05), August 2005, pp. 3231 –
3237.

[28] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems, Science, and Cybernetics, vol. SSC-4, no. 2, pp. 100–
107, 1968.

[29] L. E. Dubins, “On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents,” American Journal of Mathematics, vol. 79, pp. 497–
516, 1957.

[30] E. Xargay, V. Dobrokhodov, I. Kaminer, A. Pascoal, N. Hovakimyan,
and C. Cao, “Time-critical cooperative control of multiple autonomous
vehicles: Robust distributed strategies for path-following control and
time-coordination over dynamic communications networks,” Control
Systems, IEEE, vol. 32, no. 5, pp. 49 –73, oct. 2012.

[31] J. Keller, D. Thakur, V. Dobrokhodov, K. Jones, M. Pivtoraiko,
J. Gallier, I. Kaminer, and V. Kumar, “A computationally
efficient approach to trajectory management for coordinated aerial
surveillance,” Unmanned Systems, vol. 01, no. 01, pp. 59–74, 2013.

5757

