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Abstract— Most local robot navigation algorithms are based
on the concept of velocity obstacle, a mechanistic approach to
the navigation problem in which a solution is engineered from
scratch. Over the years, a number of different velocity obstacle
variants have been developed to effectively handle multi-robot
systems. In parallel, an alternative, human-inspired approach
for robot navigation has been recently proposed, which derives
from the observation and modeling of crowds of pedestrians.

We discuss similarities and differences among two broadly
used obstacle-velocity variants, namely Hybrid Reciprocal Ve-
locity Obstacle and Optimal Reciprocal Collision Avoidance,
and the human-inspired approach. How do these differences
(which are often subtle) impact performance, and why? We an-
swer these questions through extensive simulation experiments,
wherein we evaluate the the algorithms for safety, trajectory
efficiency, and emergence of collective behaviors, in different
challenging multi-robot scenarios using both ideal and realistic
models for robots and sensing.

I. INTRODUCTION

Local navigation and collision avoidance is a fundamental
task in mobile robotics. The problem is commonly solved
using reactive algorithms, which at each control step decide
the desired motion towards a target (e.g., a waypoint provided
by an higher-level path planning algorithm) accounting for
the presence and expected motion of the perceived obstacles.

Early studies dealt with static obstacles sensed by range
sensors [1], explicitly considering non-holonomic motion
constrains [2], and using decision trees to react to trouble-
some situations [3]. Among the many proposed techniques
to cope with moving obstacles, which include potential
fields created around obstacles [4], [5], stochastic dynamic
programming [6], and many others (see [7] for an overview),
the most commonly adopted ones are based on the concept
of velocity obstacle [8], i.e., the set of all velocities that will
eventually result in a collision. The remaining velocities are
safe, and the robot chooses the best one among these.

When many agents implementing the same navigation
technique share the same space, velocity obstacle methods
may lead to undesirable behaviors, such as oscillations or
excessive deviations from the optimal trajectories. Several
methods have been proposed to improve the implicit co-
ordination among the agents. For instance, an agent may
take only half of the responsibility to avoid an on-course
collision, assuming that the other agent will do the same.
In this case, one should consider the so-called reciprocal
velocity obstacle [9] from the set of safe velocities. This
enables trajectories that are both smooth and collision free,
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provided that robots are able to exactly perceive the position
and speed of each other, and that some coordination exists,
such that the robots choose to pass each other from the same
relative side, which prevents oscillatory behaviors.

Two common approaches to enforce the latter condition
are: restricting the safe velocity space to half-planes con-
structed from the tangent spaces of velocity obstacles, trun-
cated by a finite time horizon (Optimal Reciprocal Collision
Avoidance, ORCA [10]), or, artificially enlarging one side of
the reciprocal velocity obstacle (Hybrid Reciprocal Velocity
Obstacle, HRVO [11]). Both techniques can be applied to
non-holonomic differential driven robots [12], [13] with
localization and sensing uncertainties (an implementation for
the Robot Operating System (ROS) is also available [14]). In
general, velocity obstacle approaches can take into account
specific mobility constraints as well as nonlinear or unpre-
dictable motion of obstacles [15], [16]. Moreover, Lalish
and Morgansen [17] recently studied explicit coordination
techniques for escaping from collision-prone trajectories.

Instead of designing an ad-hoc navigation algorithms
from the drawing board, one may wonder how nature has
solved the same problem, being local navigation techniques
a key feature of human and animal behavior. How do such
techniques work? Many studies tried to answer this question,
also motivated by the need of creating simulations of human
crowds which are accurate (for guiding architectural design
of safe public spaces and events) or even just plausible-
looking (for animating virtual characters in movies or video
games [18]). In particular, pedestrian navigation in crowds
has been modeled by a repulsive potential field based on
neighbors’ positions (social force [19]). Improvements of
such a model can account for information on neighbors’
velocities [20] and integrate the desired velocity given by
a reciprocal velocity obstacle planning [21].

An alternative accurate approach for explaining pedestrian
behavior was recently proposed by Moussaid et al. [22],
where the agent uses a simple heuristic to choose an head-
ing which minimizes the expected distance to the target
while avoiding possible collisions. The heuristic is shown to
model very accurately the behavior of crowds. In previous
work [23], we built on such heuristic with the goal to pro-
vide a human-like (and, consequently, more human-friendly
because of being more predictable) robot navigation tech-
nique, which was also shown to yield macroscopic emergent
behaviors similar to those observed in human crowds [24].

Main contributions. In this paper, we consider two pop-
ular obstacle-velocity variants HRVO [11] and ORCA [10],
as well as our human-like approach, HL [23]. First, in Sec-
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tion II, we discuss similarities and differences among their
core mechanisms. Then, in Section IV, we report the results
of an extensive simulation campaign (amounting to a total
of 4 years of simulated time) where the different algorithms
are evaluated in various multi-robot navigation scenarios
(described in Section III), quantifying both the safety and the
performance (efficiency) aspect of the resulting trajectories.
Robot navigation literature has mostly focused on the former
aspect, whereas crowd modeling literature was primarily
interested on computational performance, which is critical
when simulating crowds comprising thousands of agents.
Trajectory efficiency is rarely investigated quantitatively in
either field, to the point that, to the best of our knowledge,
no quantitative comparison of different reactive local naviga-
tion algorithms has been published before (comparing local
navigation methods is an interesting problem in itself, and
its inherent challenges are discussed in [25]).

II. MODELS

In this section we describe the inner workings of the
main velocity obstacle algorithm (A-VO), of two reciprocal
velocity obstacle variants (A-HRVO and A-ORCA), and of
the human-like algorithm (A-HL).

The following 2D reference frame shown in Figure 1 is
used for all algorithms. A moving agent a is directed towards
a target point ~t. We first consider a circular holonomic agent,
characterized by radius ra, position ~pa, current velocity ~va,
and maximal speed vmax

a . At each control step, the agent
senses the environment and selects a new desired velocity
~v des
a in order to safely navigate towards ~t. In the following,

we describe how a reacts when detecting a moving obstacle
o with radius ro, position ~po, and velocity ~vo. All symbols
denote values at the current time.

A. Selection of Desired Velocity with a Single Obstacle

1) Velocity Obstacle (A-VO [8]). The velocity obstacle
VOo is defined as the set of velocities that would lead to
a collision with the obstacle o under the assumption that o
keeps its current velocity. VOo is constructed in the velocity
space by translating the collision cone Co (i.e., the set of
velocities that eventually lead to a collision if o remains at its
current position) by the vector ~vo. In order to avoid collisions,
at each control step the agent decides for an optimal velocity
outside VOo.

A-VO does not dictate a specific choice of velocity outside
of the forbidden set VOo. Typically, one chooses the velocity
within the safe available velocity space (depicted in green in
Figure 1) that deviates least from the preferred velocity
~v pref
a = vmax

a
~t−~pa
‖~t−~pa‖

, that is, the velocity with maximal speed
headed straight towards the target:

~v des
a = arg min

~v∈{~v∈R2/‖~v‖6vmax
a }\V Oo

‖ ~v − ~v pref
a ‖. (1)

If no constraints on acceleration are imposed, ~va is set to
~v des
a at the end of the control step.

2) Reciprocal Velocity Obstacle (A-RVO [9]). When the
obstacle o is an agent that is also adjusting its velocity,
oscillations and unsafe trajectories may occur when using
the plain A-VO algorithm, because there is no guarantee
that the desired velocity chosen by a remains safe after the
concurrent change of velocity by o.

If the agent knows that o is in fact another agent imple-
menting its same behavior, the issue can be addressed by
taking half of the responsibility to avoid the collision: then,
the collision cone Co is moved by 1

2~vo+
1
2~va instead of by ~vo,

yielding to the reciprocal velocity obstacle RVOo|a. If both
agents choose the desired velocity from the complement of
RVOo|a, they will escape the collision course in one control
step, provided that both choose to adjust the velocity towards
the same (relative) side (i.e., either both are steering left, or
both are steering right). Instead, an oscillatory behavior may
occur.

3) Hybrid Reciprocal Velocity Obstacle (A-HRVO [11]).
In order to force such implicit coordination for steering,
the reciprocal velocity obstacle RVOo|a is asymmetrically
enlarged. In particular, if ~va is in the left half-plane respect
to the bisector of RVOo|a, then the right half of RVOo|a
is substituted with the right half of VOo, as depicted in
Figure 1. If ~va lies instead in the right half-plane, the op-
posite occurs. The resulting forbidden area is named hybrid
reciprocal velocity obstacle, HRVOo|a. Intuitively, agent a
takes half of the responsibility to avoid a collision when
choosing to pass to the left, whereas full responsibility is
taken if choosing to pass to the right.

The A-HRVO approach leads to safe paths without oscilla-
tory behaviors, even when more than two agents are involved.

4) Optimal Collision Reciprocal Avoidance (A-ORCA
[10]). Let ~v ∗a represent an optimal velocity that agent a
would like to maintain. In the following, we set ~v ∗a = ~va,
where ~va is the current velocity of a (see below). In A-
ORCA a finite time horizon τ is considered: beyond τ future
collisions are ignored. Consequently, the velocity obstacle
VOo (with apex at ~v ∗o ) is truncated to VOτo . In practice, this
removes the apex of VOo, which corresponds to the velocities
that would lead to a collision after a larger amount of time.

Let ~q be the point on the border of VOτo that is nearest to
~v ∗a , and let ~u be the vector connecting ~q to ~v ∗a :

~q = arg min
~v∈∂VOτo

‖ ~v − ~v ∗a ‖, ~u = ~q − ~v ∗a ; (2)

also, let ~n be the outwards normal of VOτo at ~q. The half-
plane ORCAo|a is defined as the half-plane perpendicular to
~n at point ~va

∗ + 1
2~u. Its complement ORCAo|a is the set of

forbidden velocities induced by obstacle o on agent a.
Similarly to A-RVO and A-HRVO, the A-ORCA agent

takes half of the responsibility to escape from a collision
course by adding 1

2~u to its velocity, expecting o to do the
same by adding − 1

2~u to its velocity, which would result in
collision-free paths. It is additionally possible to formally
prove smoothness and safety of the resulting paths. It has
also been proven that ORCA half-planes are the largest set
that can ensure this result (hence the name optimal).

2623



Fig. 1. Illustration of the main entities and notations for A-VO, A-HRVO, A-ORCA, and A-HL.

The time horizon τ represents a critical parameter in A-
ORCA, which greatly affects navigation performance in a
given environment (in Section III-A we test the effect of
different values for τ ). Also the choice of which velocity to
use as ~v ∗a influences the algorithm behavior. For consistency
with other algorithms, hereafter we set ~v ∗a to the current
velocity ~va, which is directly observed by the other agents
and thus does not need to be explicitly communicated, and
still yields a good behavior [10].

5) Human-Like Navigation (A-HL [23]). The A-HL al-
gorithm works in a significantly different way than the
approaches based on velocity obstacles. For a given agent a,
the behavior of A-HL is centered on the computation of the
function fo(α). fo(α) maps an angle α to the free distance
that the agent could travel (bounded by a finite horizon H)
before colliding with o, under the following assumptions: (i)
a moves at its maximum speed vmax

a ; (ii) o keeps its current
velocity (see [26] about how to compute f ).

Once fo(α) is computed, the agent chooses the desired
direction αdes as follows. Let ~co(α) = fo(α)~e(α) be the
expected point of collision with o, where ~e(α) denotes the
unit vector in direction α. Let s(α) denote the segment
connecting ~pa and ~co, and let d(·, ·) denote the distance
between a segment and a point. Then:

αdes = arg min
α∈[0,2π]

d
(
s (α) ,~t

)
. (3)

Intuitively, the agent moves towards the direction that
ensures to reach a point as close as possible to the target
before colliding with o.

To assure a safe behavior, the agent cautiously selects the
desired speed vdes

a in order to allow itself to stop in a fixed
time η within the free distance Do(α

des) ∈ [0, H], as seen
in direction αdes at the current time:

v des
a = min

(
vmax
a ,

Do

(
αdes

)
η

)
. (4)

The algorithm additionally smooths out the velocity profile
following the same behaviors as observed in pedestrians
and human drivers. In particular, velocity is adjusted over
a fixed time interval τ to ~v des

a = vdes
a ~e(αdes), according

to an exponential law, d~v
dt = ~v des−~v

τ , which is numerically

integrated at each control step. Controlled laboratory exper-
iments measured η = τ = 0.5s for pedestrians in normal
walking conditions [26].

B. Multiple Obstacles

If multiple obstacles are visible, the extension of all the
previous navigation behaviors is straightforward. In A-VO
and its relatives, the agent takes the forbidden velocity space
as the union of the forbidden set induced by the obstacles

FVO =
⋃

o∈Visible obstacles

VOo (5)

and search for an optimal velocity outside of FVO. VOo
is substituted by RVOo|a, HRVOo|a and ORCAo|a in the
corresponding algorithms.

In the case the set of the allowed velocities turns out to
be empty, different solutions, with different grades of safety
guarantees, are available. In particular, for A-VO, A-RVO,
A-HRVO, and A-ORCA, it is possible to:
• remove from the computation of FVO the furthest

agents, and repeat it until an allowed velocity is found;
• add a penalty term to the penetration of the FVO and

minimize the cost function

cost(~v) =
w

tc(~v)
+ ‖ ~v − ~v pref ‖, (6)

where tc(~v) is the time up to the first upcoming collision
when moving at velocity ~v, and w is a weight that fixes
the tradeoff between performance and safety;

• choose the velocity that minimizes penetration in FVO.
Alternatives only available in A-ORCA consist of:
• reducing the time horizon τ ;
• setting ~v ∗ = ~0 until upcoming collisions are cleared, to

guarantee that at least ~v = ~0 is a valid choice.
Handling multiple obstacles in A-HL simply requires to

account for all visible obstacles when building

f(α) = min
o∈visible obstacles

fo(α), D(α) = min
o∈visible obstacles

Do(α),

then the approach proceeds as described.
Figure 2 shows a configuration in which the paths resulting

from the different behaviors are very diverging.
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Fig. 2. Illustration of different paths taken by A-HRVO, A-ORCA, and A-
HL algorithms given an initial condition and velocity vector for the agents.
Each colored line represents the path the agent would take in the following
3 seconds if all robots were driven by the indicated algorithm. Points along
the path mark intervals of 0.5 seconds. The initial condition was selected
by randomly sampling possible configurations and choosing the one with
the highest difference among the paths produced by the three algorithms.

C. Non Holonomic Agents

All algorithms described above assumed an holonomic
agent which is capable to immediately adjust its speed in
any direction. Instead, we now consider a two wheeled
differential driven agent a with wheel axis wa and current
heading αa. There are various possibilities to adapt the above
algorithms accordingly to its mobility constraints.

1) Holonomic Desidered Velocity. A agent may compute
~v des as if it was holonomic. Then, the desired linear speed
is defined as vdes = ||~v des|| and the angular speed as

ωdes =
αdes − α
τrot

, (7)

so that a rotates in a fixed time τrot towards the direction αdes

of ~v des. Finally, one translates linear and angular speeds into
left and right wheel speeds wdes

L = vdes − w
2 ω

des, wdes
R =

vdes + w
2 ω

des, limited to the maximal speed of wheels.
2) Effective Center. Following [12], the second possibility

is to consider the agents as being contained into an effective
circle with a forward-shifted center πa = pa + ρa~e(αa)
and radius ra + ρa. The advantage of this transformation
is that there is a invertible map T between wheel speeds
and velocities of the effective center, such that the agent
is able follow an arbitrary path of its effective center like
it were holonomic. In the following we fix ρa = wa

2 so
that the transformation is T (wL, wR) = ~̇π = ||va||~e(α) +
ρaα̇~e⊥(α) = wL+wR

2 ~e(α)+wR−wL
2 ~e⊥(α), where ~e (pointing

forwards) and ~e⊥ form an orthonormal frame attached to
the robot. One computes ~v des for the effective circle and
transforms it back to wheel speeds with

wdes
L = ~v des · (~e(α)− ~e⊥(α)) , wdes

R = ~v des · (~e(α) + ~e⊥(α)) .

The maximal speed that the effective center is able to reach
in all directions is vmax

eff =
vmax
a√
2

. In turn, this reduces the
maximal selected wheel speed to vmax

eff too.
Other possibilities include the addition of constraints that

reduce the admissible velocity space over velocities that are
actually reachable by the agent before the next control step.

D. Safety Guarantees

Let us assume that agents are equipped with perfect
sensors, and that they adjust their desired velocity once every
finite time step ∆t. In order to prevent collisions, one can add
a safety margin m to the physical radius of the obstacles, then
artificially force that agents that enter into the safety margin
of an obstacle o to nullify the components of ~v des

a which
point towards o. This is exactly how safety is enforced in A-
HL, where fo(α) = Do(α) = 0 for all α that point towards
o when the distance between a and o is less than m.

For an agent with no constraints on acceleration, moving
together with agents with the same upper bound on speed
vmax, collision-free behavior is ensured if m > M =
2vmax∆t. If the agents employ the A-HL behavior with speed
modulated by τ > 0, the bound is instead M = 2vmax(∆t+
τ), because the agents need an additional amount of space to
come to a complete stop. Note that M represents an upper
bound on the minimal safety margin required for collision-
free behavior. In practice, much shorter safety margins can
be safely adopted.

Non-holonomic agents demand extra care when their se-
lection of desired velocity does not take the motion con-
straints into account (Section II-C.1) because they need addi-
tional space to turn towards the desired heading. In the worst
case scenario, when two facing robots moving at full speed
do an half turn, the space needed between them when moving
accordingly to Equation (7) with α̇ = ωdes and αdes = π

is given by 2∆x = 2
∫ t(π2 )

0
vxdt = 2

∫ π
2

0
vmax cos(α)dαα̇ =

2vmaxτrot
∫ π

2

0
cos(α)
π−α dα

∼= 0.8vmaxτrot. This needs to be added
to M to ensure safety. If the controller is based on A-HL with
τ > 0, is is necessary to add another finite term proportional
to τ . The point here is that it is always possible to ensure
safety by a large enough safety margin provided that the
agents follow the rule above. The tradeoff is that a larger
safety margin generally leads to worse performance because
it reduces the available free space.

When sensing is imperfect due to inaccuracies or a limited
field of view, the above guarantees do not hold. Then, one
should search for an optimal tradeoff between safety and
performance (like pedestrians and drivers unconsciously do).
We investigate such tradeoff in Section III-A.

E. Comparisons

All algorithms we considered above have a common trait:
they anticipate future collisions by using the current sensing
information for position, velocity, and shape of the agent
and of surrounding obstacles1. All use a linear prediction of
the obstacles’ trajectories to compute a time-to-collision es-
timate, then select the velocity that minimizes their deviation
from the straight line towards the target.

A-RVO, A-HRVO and A-ORCA explicitly share the col-
lision avoidance responsibility amongst agents, which leads
to improved performance. A-HL indirectly obtains the same

1In contrast, methods based on potential fields (also known in sociology
as social forces) do not explicitly perform this sort of extrapolation.
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effect by modulating velocities smoothly using the τ param-
eter: an agent, while smoothly turning to avoid others, has
sufficient time to acknowledge the obstacles’ actions.

All considered algorithms only use currently sensed infor-
mation and bear no history or state information, i.e. they
are purely reactive and stateless2; at the same time, all
algorithms proactively avoid collisions and anticipate the
motion of others.

The most prominent peculiarity of A-HL is that it performs
a one-dimensional search over the direction of the desired
velocity, choosing the one that minimize the spatial distance
to the target. A-VO and all derivatives, instead, perform a
search over (a subset of) the two-dimensional velocity space:
then the desired speed is chosen in order to minimize the
velocity-space distance to the optimal velocity – i.e. the
velocity directed towards the target with maximal speed.
Note that because A-HL acts to minimize space distance,
in no circumstances it will dictate to move farther away
from the target. Instead, A-ORCA and A-HRVO may exhibit
such behavior, when the forward half of the velocity space is
forbidden (i.e., when moving backwards is the only solution
to avoid a future collision).

Another peculiarity of the A-HL algorithm is that it does
not explicitly exclude directions that could lead to future
collisions: such directions are just penalized in the search
of the desired direction. Instead, A-VO and its derivations
irreversibly forbid all velocities leading to a collision, unless
forced by the absence of alternatives (i.e., an empty set
of safe velocities, as discussed in Section II-B). In other
words, A-VO and its variants start by searching for the
set of safe velocities, then select the one that maximizes
performance, whereas A-HL greedily selects a direction
maximizing performance (accounting for obstacles), and only
as a second step it accordingly adjusts the speed in order to
ensure safety.

When no safe velocity is available, A-RVO minimizes the
cost function of Equation (6)

costRVO(α, v) =
w

g(α, v)

v

vmax +
∥∥∥~e pref − ~e(α)

v

vmax

∥∥∥ , (8)

where g(α, v) = tc(~v)·v indicates the distance that the agent
could travel before any collisions in direction α when moving
at an arbitrary speed v. This bears some resemblance to, but
differs significantly from, the cost function optimized by A-
HL (with a target at distance dt in Equation (3)):

costHL(α) =

∥∥∥∥~e pref − ~e(α)
g(α, vopt)

dt

∥∥∥∥ . (9)

III. EXPERIMENTAL SETUP

Simulation experiments are performed with a custom
simulator including an accurate physical simulation of the
environment and a model for sensing inaccuracies. Robot
navigation controllers are evaluated at a frequency of 10Hz.
The system was used to run a large batch of simulated

2This does not necessarily apply to the sensing subsystems. For instance,
history of obstacles’ positions could be maintained in order to determine
their speed.

Fig. 3. The three navigation tasks considered in the simulations.

experiments in parallel on a 180-nodes cluster: data reported
below are equivalent to a total of 4 years of simulated time.

A. Simulation Scenarios

We consider three navigation tasks, illustrated in Figure 3:
• Cross, in which agents need to travel back and forth

between two targets located at the opposite vertices
of a square with an edge of 4 meters, This creates a
crossroad in the middle where robots frequently need
to adjust their trajectories in order to avoid collisions.
It provides a realistic testing scenario for robots.

• Circle, in which agents initially placed at regular inter-
vals along a circumference of radius 5 meters need to
exchange the position with the agent located at the op-
posite point with respect to the center. It is a commonly
used scenario in A-VO studies and it provides a sort of
benchmark scenario.

• Infinite corridor, in which two groups of agents travel
towards opposite directions in a corridor of width w,
varied from 0.5 to 4 meters in the experiments. We
simulate a finite-length section of the corridor, of length
l = 16m. Its two ends “wrap around” and connect with
each other, as they were the lateral surface of a cylinder.
This is a setup which is commonly considered in crowd
analysis literature [26].

Simulations are run using two different robot models: an
ideal holonomic robot, and a small, differential-driven (non-
holonomic) robot with the same dynamical characteristics
as the foot-bot robot platform [27]. Both models share the
same physical characteristics: radius r = 8.5 cm, wheel axis
13 cm, vmax = 30 cm/s. Up to a scale factor, the foot-
bot robot also well represents the characteristics of other
common differential-driven robots.

In real robot implementations, perception of the envi-
ronment (i.e., positions of navigation targets and of other
robots) is commonly affected by major sensing inaccuracies,
which in turn affect navigation performance and safety.
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To address this issue, in our simulations we consider two
different sensing models. A perfect sensing model, in which
all robots within an assiged range are perfectly detected, and
a realistic, camera-based sensing model, in which neighbors
are only perceived when not occluded and within a given
angular field of view (centered on the direction the robot is
currently facing). Moreover, neighbor localization and speed
estimation is affected by a fixed angular (bearing) error and
a depth (range) error proportional to the neighbor’s distance.

In previous work [23], the adopted simulation and sensing
models were validated and compared to a real implementa-
tion on a swarm of fully-autonomous foot-bot robots. The
robots solved a local navigation task using the on-board A-
HL algorithm using a sensing subsystem based on a low-
resolution embedded camera.

B. Algorithms and parameters

Simulated agents are provided with sensing information
according to the considered sensing model (perfect or re-
alistic). At each control step, at a rate of 10Hz, an agent
feeds this information to the selected algorithm, and issue
speed commands to drive the simulated wheel actuators.
Physics’ simulation runs at an higher rate and yields a
realistic rendering of robot dynamics.

For comparisons, We consider four different navigation
algorithms For holonomic robots we used ORCA, HRVO and
HL, which directly controls the movements of the robots.
Non holonomic robots are controlled with ORCA, HRVO
and HL as described in Section II-C.1, by translating the
holonomic desired velocity into wheel speeds. In addition,
we also consider ORCA-NH, which explicitly takes into
account the non-holonomicity of the robot when computing
the desired wheel velocities, as discussed in Section II-C.2.

1) HL. We use the implementation described in [23] based
on the model of Section II-A.5, with parameters τ = 0.125s
and η = 0.5s, which yield a reactive but at the same time
smooth behavior. The desired angle is determined by splitting
the field of view in 100 angular steps.

2) HRVO. We use the implementation provided by the
C++ HRVO Library [28], which is based on the model
described in Section II-A.3. The desired velocity is found in
the velocity space through a linear optimization technique.
The implementation does not have free parameters.

3) ORCA. We use the implementation provided by the
C++ RVO2 Library library [29], which is based on the
model described in Section II-A.4. The desired velocity is
found in the velocity space through a linear optimization
technique. The time horizon H is a free parameter which
we investigate in a specific experiment below. In other
experiments, we report several values for H , selected among
those maximizing performance. A large time horizon allows
the robot to anticipate crowding and avoid congestion, but
at the same time penalizes it with a reduction of speed and
a longer, more conservative path.

4) ORCA-NH. We use the same controller as ORCA, but
apply it to the effective center and effective radius (see
Section II-C.2) of the non-holonomic agents. Note that,

unlike in [12], the same geometric transformation is not
applied to perceived obstacles that are non-holonomic agents.

C. Performance Metrics

For each scenario and navigation algorithm, we compute
the following performance measures:

• Safety of the swarm, measured by the number of colli-
sions per hour per agent.

• Relative throughput of the swarm, which indicates the
efficiency in navigating towards the targets. This mea-
sure is defined for the cross task as the total amount of
targets that the robots were able to reach, divided by the
amount of targets that the robots could reach in the same
time while traveling in straight lines (i.e., ignoring any
collision). In the circle task, throughput is defined as the
minimal time it would take for one robot to reach the
opposite side (when traveling in a straight line) divided
by the actual time it took, and averaged over all robots.
In the corridor task, the relative throughput is given by
the average speed directed towards the target divided
by the maximal admitted speed of the robot. Relative
throughput for NH-ORCA takes into account the lower
maximal speed that a robot is allowed to achieve, in
such a way that it is not penalized.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We initially investigate the safety of the different algo-
rithms and its relation to throughput in relation to different
choices for the safety margin (Section IV-A). Then, we dis-
cuss the throughput of the different algorithms (Section IV-
B). Finally, we discuss the emergence of collective behaviors
(Section IV-C). The results of all simulations experiments are
reported in Figure 4.

A. Safety

Figure 4a shows the amount of violation of a defined safety
margin of m = 20cm. The figure reports the probability that
at least one obstacle penetrates into this margin by more
than a given amount (x axis). This information can guide
the choice for a safe and efficient value of m. HL and
ORCA result to be significantly safer than HRVO: for these
algorithms a margin of m = 6cm is found to be sufficient.
In Figure 4b, similar results are shown when using non
holonomic robots. In this case, plain ORCA becomes less
safer and occasionally violates safety margins by more than
10cm, while the ORCA-NH variant proves to be much safer.

Choosing a larger value for m not only improves safety,
but it also hinders throughput: the resulting tradeoff is inves-
tigated in Figure 4c, using foot-bots with realistic sensing
and limited field of view. The HL algorithm performs well
by yielding safe operation (less than 10 collisions per hour)
and large throughput for any choice of the safety margin. In
contrast, safety of ORCA strongly depends on m’s choice.

In all the simulations experiments that follow, m was set
to 6cm.
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Fig. 4. Simulation results (see text). Thin lines above and below each plot represent 95% confidence intervals.

B. Throughput

Figure 4d explores how the time horizon parameter H
of the ORCA algorithm affects the performance of robots
with different sensing ability. Although such robots react
differently to different values of H , values from 5 to 15 sec-
onds yield good performance in most cases. This information
guided our choice for H in the subsequent simulations.

Interestingly, robots with perfect sensing suffer from a
time horizon larger than 15s, since they become overly
cautious as they account for the trajectories of their peers.
In comparison, robots with realistic sensing tend to perform
much better in the same conditions, since most peers are
invisible because of occlusions, which locally allows for
more direct trajectories.

Figure 4e shows how different algorithms cope with in-
creasingly crowded scenarios. As expected, all algorithms re-
duce their performance when more robots are used, as longer

and more complicated trajectories are required to navigate
around others and avoid collisions. HL outperforms other
algorithms in these scenarios, especially when a relatively
large number of robots is considered. This can be explained
by the greedy characteristic of HL (see Section II-E).

Figure 4f reports the same results when using realistic in-
stead of perfect sensing. Results do not change significantly,
however, now ORCA with H = 10 consistently outperforms
ORCA with H = 5, whereas with perfect sensing the
opposite was true. This can be explained by the fact that a
large time horizon leads to a more preemptive and cautious
behavior, which is an advantage in case of unreliable sensing,
and a disadvantage otherwise.

C. Emerging Behaviors

Figure 4g reports the throughput figures obtained when
solving the circle task, which is especially challenging since
the center of the circle becomes very crowded. In this case,
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HL has been shown [24] to yield an interesting emerging
behavior in which, despite the absence of any explicit co-
ordination, all agents pass on the same relative side of the
center, thus creating a sort of “whirlpool” which turns out
to be a very efficient solution to the problem. HRVO, which
includes an intrinsic symmetry-breaking mechanism, yields
the same behavior, and in this scenario enjoys a much better
throughput compared to all ORCA-based algorithms.

When two groups of agents navigate through a corridor
in opposite directions, emergent behaviors have also been
observed both in humans [26] and robots implementing
HL [24]: agents tend to organize in ordered lines, which
minimizes the need to avoid others [26]. Figure 4h puts
the algorithms in the same situation, and quantifies how
fast these ordered formations are reached by computing
an order index as defined in [26], which ranges from 0
(random distribution of agents going in either directions)
to 1 (agents traveling in the same direction are clustered
in lines). We observe that both HL and ORCA reach an
ordered configuration within 40-50 seconds, but according
to significantly different dynamics. Figure 4i considers the
same scenario, but reports how throughput changes as the
corridor is narrowed. Both HL and ORCA robots manage
to efficiently negotiate corridors as narrow as 1.5 meters.
In contrast, ORCA-NH, owing to their inability to reach an
ordered configuration, yield very low throughput when the
corridor is less than 2 meters wide.

V. CONCLUSIONS AND ONGOING WORK

We considered three local navigation techniques for mo-
bile robots, namely Hybrid Reciprocal Velocity Obstacle
(HRVO), Optimal Reciprocal Collision Avoidance (ORCA)
and a human-like algorithm (HL), and we discussed their
internals and highlighted differences and similarities. A
simulation study considering several challenging settings and
based on both ideal and realistic robot models has shown that
the different techniques yield widely variable performance,
with HL often outperforming the others.

Ongoing work is focused on extending this comparative
study by considering additional path quality metrics. For
instance, when robots share spaces with human users, one
should aim at generating friendly and acceptable trajectories.
In this case, smoothness and predictability may be more
significant measures of performance than throughput.
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