
Inversion Based Direct Position Control and Trajectory Following for
Micro Aerial Vehicles

Markus W. Achtelik, Simon Lynen, Margarita Chli and Roland Siegwart

Abstract— In this work, we present a powerful, albeit simple
position control approach for Micro Aerial Vehicles (MAVs)
targeting specifically multicopter systems. Exploiting the dif-
ferential flatness of four of the six outputs of multicopters,
namely position and yaw, we show that the remaining outputs
of pitch and roll need not be controlled states, but rather
just need to be known. Instead of the common approach of
having multiple cascaded control loops (position - velocity -
acceleration/attitude - angular rates), the proposed method
employs an outer control loop based on dynamic inversion,
which directly commands angular rates and thrust. The inner
control loop then reduces to a simple proportional controller on
the angular rates. As a result, not only does this combination
allow for higher bandwidth compared to common control
approaches, but also eliminates many mathematical operations
(only one trigonometric function is called), speeding up the
necessary processing especially on embedded systems. This
approach assumes a reliable state estimation framework, which
we are able to provide with through previous work. As a result,
with this work, we provide the missing elements necessary for
a complete approach on autonomous navigation of MAVs.

I. INTRODUCTION

Inspired by the work of Wang et. al [1], this paper
describes a two-loop controller design for rotor-based MAVs
which is based on nonlinear dynamic inversion. Recently,
Mellinger and Kumar showed in [2] that a quadcopter is
only differentially flat on four outputs, namely position and
yaw. This means that the four inputs of thrust and angular
acceleration can be expressed solely using the flat outputs
and their derivatives. The remaining outputs of roll and pitch,
do not explicitly appear and are just functions of the desired
accelerations. Therefore, there is no reason for these two
states to be controlled states, but rather, they just need to
be known – which we can perfectly achieve with our state
estimation framework [3], [4] presented in earlier work.

Relevant to this paper is the work on controlling quad-
copters for performing precision maneuvers, such as flips
and balancing an inverted pendulum while flying [5], [6],
[7], [8]. These works have been carried out at the Flying
Machine Arena (FMA) of ETH Zurich equipped with a high-
precision external tracking system. The difference of these
approaches and the one by Mellinger and Kumar is that the
FMA works rely on “perfect” state estimation from a motion

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7) under grant
agreement n.266470 (myCopter). Markus Achtelik and Simon Lynen are
currently PhD students, Margarita Chli is deputy director and senior re-
searcher at the Autonomous Systems Lab (ASL), and Roland Siegwart is full
professor at the ETH Zurich and head of the ASL. (email: {markus.achtelik,
simon.lynen, margarita.chli}@mavt.ethz.ch, r.siegwart@ieee.org).

Fig. 1: Trajectory based on 11th order polynomials . The local coordinate
frames along the trajectory show the vehicle’s attitude, while the blue and
red arrows show the velocity and acceleration respectively.

capture system, and thus, do not focus on how to exploit
information from inertial sensors onboard the MAV.

In this paper, we show how to directly command angular
velocities in an outer control loop and a simple angular rate
controller as the inner control loop. The motivation for using
this two-loop design is manifold. Firstly, by skipping the
common cascaded position-velocity-attitude loop, we obtain
increased bandwidth, allowing for aggressive maneuvers.
Secondly, as shown in the subsequent sections, the math-
ematical formulation of this approach gets substantially sim-
plified and thus is computationally very efficient: throughout
the whole control loop, there is only one atan2() operation
that has to be computed, which makes the approach perfectly
suited for computationally limited micro-processors. Thirdly,
this approach allows for a separation of the position control
problem from vehicle-specific parameters, which promotes
general applicability: a rate loop can be easily implemented
on any multicopter-like platform with a simple controller
based on gyro readings (i.e. no sophisticated state estimation
required for the inner loop). Thrust is simply expressed in
terms of acceleration since the mass of the vehicle is known.
As a result, this approach hides vehicle-specific parame-
ters from the position control loop, permitting transparent
employability on different MAVs, be it a quadcopter, or a
hexacopter with/without motor failure.

Drawing inspiration by [1] and [2] the contributions of
this work are the following. We extend the two-loop design
proposed in [1] and adapt it to our vehicle with the given
control inputs. We show how to implement the low level
rate control loop for a hexacopter and how we can estimate
vehicle-specific parameters, such as the moment of inertia
and propeller constants. Then, we show our extension to the
minimum snap trajectories presented by Mellinger and Ku-
mar [2]. Lastly, we show how using the proposed controller,
we can exploit the states computed by our powerful state
estimation framework [3], [4].

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2933

The remainder of the paper is organized as follows: after
a brief description of our helicopter platform, we present the
key properties of our state estimation framework and how
the overall system is implemented. Section III describes our
controller in detail and Section IV how suitable trajectories
are generated. Results are shown in Section V and conclu-
sions are drawn in Section VI.

II. SYSTEM SETUP

Our setup consists of a micro helicopter equipped with
an Inertial Measurement Unit (IMU), a monocular down-
looking camera and an onboard computer. The helicopter
is the “FireFly” hexacopter from Ascending Technologies
(Fig. 4). Compared to the “AscTec Pelican” it has improved
vibration damping for the sensors (camera, Flight Control
Unit (FCU)) and can tolerate failure of one rotor. The FCU
features two 60 MHz ARM 7 microprocessors, the Low-
Level Processor (LLP) and the High-Level Processor (HLP),
as well as an Inertial Measurement Unit (IMU). The LLP is
delivered as a black box, and responsible for all low level
tasks that are required for manual flight operation, while
the HLP is dedicated to custom user code. It can access all
relevant data (angular rates, linear acceleration, rotor speeds)
from the LLP over a high-speed interface almost delay-
free. In return, it can access the LLP on different control
levels: On the highest level, it can send GPS waypoints.
On an intermediate level it can send attitude, yaw-rate and
thrust commands. In the following, we work with the lowest
command level: we send individual rotor speed commands
to the LLP, which forwards those directly to the motor
controllers.

For the computationally more demanding tasks like our
Extended Kalman Filter for state estimation and our visual
navigation framework [4], [3], the FireFly is equipped with
a “MasterMind” embedded 1.86 GHz Core2Duo onboard
computer from Ascending Technologies.

A. State Estimation

For our control approach it is key to have a fast and reliable
framework for state estimation. For this purpose, we use the
powerful EKF (Extended Kalman Filter) based state estima-
tion framework described in [4], [3]. For completeness, here
we briefly summarize the essentials and point out the key
properties needed for the controller.

Position or pose measurements are fused with IMU read-
ings (linear acceleration and angular velocity) in an EKF
framework. The findings of [9], [10], [11] are applied to
not only estimate the pose and velocity of the MAV, but
also the sensor biases, the scale of the position estimates
and the (inter-sensor) calibration between the IMU and the
pose/position sensor in real-time.

B. MAV Platform and Onboard Hardware

The state variables of the filter may vary according to
the application and sensor setup. However, we identified a
part of the state that stays constant, which is of interest for
this work. It is composed of the position of the IMU p in

Fig. 2: Setup depicting the helicopter body w.r.t. a world reference frame.
R or q denote the attitude of the helicopter and p denotes the position w.r.t.
the world frame

the world frame, its velocity v and its attitude quaternion q
describing the rotation of the IMU w.r.t. the world frame. In
the following, we use the rotation matrix R(q), or short R,
denoting the attitude of the helicopter. The columns of R
can also be interpreted as the unit vectors of the helicopter’s
body coordinate system: R =

[
xB yB zB

]
. Fig. 2 shows

the coordinate frames with the respective variables. We also
add the gyro and acceleration biases bω and ba to the state,
which yields the following part of the filter state vector xf :

xf =
[
pT vT q bTω bTa . . .

]T
(1)

For a detailed description and analysis of the EKF frame-
work, we refer to [4], [3].

C. System Overview

How the whole system works and how its components
interact, can be seen in Fig. 3. Since IMU readings are
available at 1 kHz at the HLP of the FCU, we compute
the less expensive EKF state prediction on the HLP at the
same rate. This provides estimates of p, v and q to the
position controller and lets us correct the IMU readings,
also needed by the controller, for their biases. The controller
computes individual rotor speed commands and sends those
to the LLP. The covariance propagation and update, as well
as the EKF measurement update stage run on the Core2Duo
computer due to their complexity. This approach lets us
handle the fast dynamics of the helicopter, while allowing
the computation of an ideal Kalman gain based on the
uncertainties of the state and the measurements. More details
on this distribution of EKF tasks can be found in [3]. Smooth
trajectories (Section IV) are generated on the Core2Duo
computer and are used as reference and feed forward signal
for the controller.

Fig. 3: System overview: the computational demanding tasks are executed
on the Core2 computer, while the less intensive and time critical parts are
executed on the high-level micro processor at a rate of 1 kHz. The EKF
propagation part provides a current state estimate and IMU bias corrections
to the controller, which obtains its reference (Ref) and feed forward (FF)
signals from the trajectory generator

III. CONTROLLER

Our proposed two-loop controller design is comprised
of an outer (position) control loop and an inner (rate)

2934

loop. Following an explanation of the approach, we show
how control allocation works with the hexacopter and how
vehicle-specific parameters can be estimated.

A. Direct Rate Control

In this section, we derive a position controller, that directly
commands angular rates, eliminating the need for the attitude
control loop commonly used.

1) Dynamic Inversion: With the method of dynamic inver-
sion, feedback linearization is applied to our desired outputs
(position p, yaw ψ), transforming the nonlinear system to
a linear one. This lets us apply well known and understood
linear control system techniques [12], [1], and it furthermore
facilitates trajectory generation. We define pseudo control
commands u for the linear system, which we finally turn
into control commands available from the vehicle. We ignore
air drag here and will explain in Section III-B how this can
be handled.

The velocity v is simply the first derivative of the position
p. The acceleration a (seen in the world frame) depends on
the thrust T , attitude R and gravity g:

a = R ·
[
0 0 T

]T − [0 0 g
]T

(2)

Taking the first derivative of a, i.e. the jerk j, and using
the chain differentiation rule with Ṙ = R · bω×c, where ω
expresses body-fixed angular velocities, yields:

j = R · bω×c ·
[
0 0 T

]T
+R ·

[
0 0 Ṫ

]T
(3)

Due to the cross product (b×c), only the x- and y- compo-
nents of ω remain, so that we can write:[

ωy −ωx Ṫ
]T

= (RT · j)/T (4)

With R =
[
xB yB zB

]
, i.e. the unit vectors defining

the body coordinate system of our helicopter, we obtain the
desired inversion to vehicle controls

ωx = −yT
B · j/T (5)

ωy = xT
B · j/T (6)

Ṫ = zB
T · j (7)

ωz is simply, as derived in [2]:

ωz = ψ̇ · zT
W · zB (8)

B. Outer Control Loop

With Eq. (5) to Eq. (8) at hand, we can compute feed
forward control signals to follow a specified trajectory gen-
erated with the methods in Section IV. However, as there
are model uncertainties and disturbances, we need an error
controller to keep the vehicle on the desired trajectory.

For ψ, this can be achieved with a simple P(I)- controller
generating ψ̇ and does not need any further investigation.
From our state estimation framework (Section II-A), we
get estimates for position p, velocity v. Accelerations aB

expressed in body coordinates can be measured with the
accelerometers.These can be bias corrected and expressed
w.r.t. world coordinates with our estimates of the acceleration

bias ba and attitude R. That way, we can design a state
feedback controller for every single axis, that turns errors of
p, v and a w.r.t. the desired reference into pseudo jerk (j)
commands. Using the inversion from Eq. (7) we can finally
compute the desired vehicle commands.

Having the measured, rather than the not (model based)
estimated acceleration in the state feedback loop has the nice
property that disturbances like wind gusts or air drag can be
directly measured and be compensated for. In contrast, with
common cascaded approaches, disturbances would first inte-
grate to velocity before the controller can react; and would
be converted back into an appropriate control command.

The inversion from Eq. (7) works fine for the angular
rates ω, but this inversion also computes a desired change
of thrust, i.e. a change of rotor speed. However, this entails
some problems, since thrust is a direct function of the rotor
speeds and the latter is the only input we have. A naive
solution would be to integrate Ṫ over the control period and
obtain a thrust command from that. A more well-founded
solution can be best explained via the following example
since it is a little counter-intuitive: consider the helicopter
hovering and leveled. We have the thrust vector with thrust
T pointing downwards with the system expected to have
2nd order integration behaviour. The situation changes when
the helicopter starts turning around its x- and/or y- axis:
as evident from Eq. (3), angular velocity ωx, ωy causes
a change of acceleration, resulting in 3rd order behaviour.
However, the thrust T (2nd order behaviour) remains at that
instant. Looking back at the pseudo commands that we apply
to the system, we come to the conclusion that we have two
different system inputs: simplified around the hovering point,
there is acceleration caused by the thrust acting in the zW
axis and jerk caused by ωx, ωy acting in the xW and yW
axis. As soon as the helicopter is not leveled anymore, both
inputs get combined.

We therefore define the two 3-dimensional pseudo controls
ua for acceleration and uj for jerk, both expressed in
world coordinates. For the pseudo-commands, the axes are
decoupled so that we can have dedicated controllers for each
axis. As a result, the linear 3rd order system now is:

ẋ = A · x+B · u , (9)

where

A =

0 1 0
0 0 1
0 0 0

 B =

0 0
1 0
0 1

 x =

pv
a

 u =

[
ua
uj

]
(10)

The decoupling of the inputs works that way, since we see
from Eq. (4) that ω relating to uj is independent from the
change of thrust. This system can now be stabilized with a
linear state feedback error controller K that can be designed
by pole placement or LQR techniques. We obtain for the
pseudo commands:

uerr = −K · (xref − x) (11)

Where xref is the reference trajectory, which is either 0 for
hovering or a trajectory that we generate with the method in

2935

Section IV. With uff being the feed forward signal from the
trajectory generation, we obtain our final control signal:

u = uerr + uff . (12)

Rearranging the components of ux, uy and uz into our 3D
pseudo commands ua and uj , we can compute all vehicle
controls according to Eq. (2), (5), (6) and (8) that we can
work with in the next section:

ωz = ψ̇ · zT
W · zB T = zT

B · ua + g (13)
ωx = −yB · uj/T ωy = xB · uj/T (14)

C. Inner Loop and Control Allocation

For the inner angular rate control loop on ω, we use a
simple proportional controller for each axis, that command
angular accelerations ω̇. In order to convert this into rotor
speed commands, we need to have a look at the inner
dynamics of the helicopter, which we will show for our case
of a hexacopter. This would also be the place to implement
the reactions towards rotor failure.

Each rotor produces a force F = kn · n2, where n is the
rotational speed of a rotor and kn a rotor constant. Also,
depending on F , each rotor creates a torque M around its z-
axis: M = km ·F , where km is again a rotor constant [1]. We
assume that the moment of inertia matrix I of the helicopter
has only diagonal entries. The mass of the helicopter is
denoted as m. Looking at the geometry of the hexacopter
(Fig. 4), we can now express the forces and torques as
follows, with l being the boom length, s = sin(30◦) and
c = cos(30◦):

[
ω̇
T

]
︸︷︷︸
ui

= I−1 ·

forces, thrust︷ ︸︸ ︷
K ·


s 1 s −s −1 −s
−c 0 c c 0 −c
−1 1 −1 1 −1 1
1 1 1 1 1 1


︸ ︷︷ ︸

A

·

n
2
1
...
n26


︸ ︷︷ ︸

n

(15)

I =

[
I 0
0 m

]
; K = diag(

[
l kn l kn kn km kn

]
) (16)

K determines a parameter matrix, where we already factored
out all vehicle specific parameters, whereas A determines an
allocation matrix for a generic hexacopter as shown in Fig. 4.

To obtain the desired rotor speeds ni, we need to solve
for n and compute its element-wise square root. This is
straightforward for a regular quadcopter, as A is directly
invertible, but is not the case for the hexacopter. As a
solution, we propose to compute the pseudo-inverse A†.
This minimizes the Euclidean norm of n and is thus the
most energy efficient solution. Since we factored out the
vehicle-specific parameters beforehand, A† only needs to be
computed once and can be stored. We finally obtain for n:

n = A† ·K−1 · I · ui (17)

These operations are fast to compute, since K−1 and I are
diagonal matrices and every entry just affects a single row

Fig. 4: Our FireFly hexacopter with body coordinate system (x forward, y
left, z up), rotor turning directions and rotor geometry.

of A†. Given I , m and K, we can now choose the gains of
the rate controllers in a “metric space”. How to obtain K
and I is shown in the next section.

D. System Parameter Estimation

While only a few parameters, namely l and m, can be
easily and accurately measured, this is complicated and prone
to errors for the moment of inertia matrix I and the rotor
constants km and kn. In addition, when measured separately,
errors might add up and yield incorrect values for the
mapping between n and ui. Since we already factored out
all vehicle specific parameters in Eq. (15) and the matrices
K, I are diagonal, there is only one parameter per row left
that maps n to ui:

ui = diag (k) ·A · n; k =
[
kωx

kωy
kωz

kT
]

(18)

We can estimate the parameters in question by a quick
manually-controlled flight exhibiting some excitation to the
vehicle. All that is needed are acceleration measurements
in the body z-axis, angular rate measurements from the
gyros as well as the rotor speeds. If our state estimation
framework is run in parallel, we can also compensate for
the gyro and acceleration biases. Therefore, we assume
for the following that these measurements are already bias
compensated. Parameters like kn appear for many axes,
but for simplicity, we estimate the mappings separately for
each axis. In the following, Ai denotes the i-th row of the
allocation matrix A.

For kT , there is just a linear mapping between FT =
A4 ·n and T . Simple averaging of measurements first does
not handle noise well, and second, was shown to yield
wrong results [13]. We therefore use the maximum likelihood
estimator proposed in [13] to iteratively find the correct
value for kT . Noise parameters for az can be found in the
data sheet. The rotor speed measurements itself would be
accurate, but we have to account for quantization noise since
we can unfortunately obtain ni only in a range from 1. . . 200.
The mapping crpm between these measurements and revo-
lutions per minute (rpm) is crpm = 40 for both the AscTec
Hummingbird and Pelican helicopters, and crpm = 50.75
for the FireFly (constants provided by AscTec). Converted
to rad/s we obtain the motor constant cm and noise σm:

σm =
1√
12
· cm; cm = crpm/60 · 2π (19)

2936

We cannot determine kωx,y,z
directly as above, since we

cannot measure ω̇. However, we can filter it with a two
dimensional Extended Kalman Filter. The problem is nonlin-
ear since the noise of the system input is the squared rotor
speed. We show our method exemplary for the x-axis, but
it is applicable in the same manner for the remaining axes.
We define our state as x =

[
ωx kωx

]T
, and the following

differential equations govern the state (for simplicity, we
omit the subscripts):

ω̇ = k ·A1 · n; n =
[
(n1 + nn)

2 . . . (n6 + nn)
2
]T

(20)

k̇ = 0 (does not change over time) (21)

Where ni, i = 1 . . . 6 are the rotor speeds and nn is zero
mean white Gaussian noise as obtained in Eq. (19). For the
measurement, we have z = ω. With these equations at hand,
we can perform the standard EKF procedure as described in
[9] in order to find a good estimate for k.

In practice, only a few seconds of flight with varying ω
and az were necessary for finding good values for k. An
example for the estimation of kωx can be seen in Fig. 5.
We determined the values of k as follows, which may serve
as a starting point, but is subject to vary, depending on the
vehicle setup:

k =
[
5.5 · 10−5 4.5 · 10−5 2.5 · 10−6 6.7 · 10−6

]
The different values for the x- and y- axis are no surprise:
the mass of the battery is more centered around the x-axis
of the helicopter, causing different moment of inertia.

0 5 10 15 20 25 30

-5

0

5

10

x 10
-5

t [s]

k ω
,
x

Fig. 5: Estimation of the parameter kωx . The helicopter was manually flown
with rates of ≈ ±2 rad/s

E. Remarks on Actuator Saturation

We do not provide an in depth study of actuator saturation
here, as this would go beyond the scope of this paper.
However, we can have a look at actuator saturation at two
different levels: In the planning or trajectory generation
phase, one can already incorporate saturation during the
time optimization described in Section IV with some safety
margin, assuming moderate disturbances. As a result, seg-
ment times can be adjusted accordingly. In case of stronger
disturbances, techniques like Pseudo Control Hedging (PCH)
as suggested in [1] could be applied. In this case, since our
trajectory generator is fast, the trajectory can be re-planned
and adapted to the current situation.

IV. TRAJECTORY GENERATION

For the controller described in the previous section, we
need to generate smooth trajectories in a way that the vehicle
is able to follow. We decided to adapt the minimum snap
trajectory approach by Mellinger and Kumar [2] to our

needs. Their approach uses a set of N th order polynomials
with more degrees of freedom than equality constraints (like
start/end point), and leaves the remaining constraints to a
solver, optimizing a quadratic cost function and inequality
constraints. We want to have the feed forward signals for ω
continuous and differentiable (c.f. Eq. (4)) and thus require
the derivative of the jerk or 4th derivative of the position, i.e.
the snap, to be continuous.

We extend our approach presented in [14], where we just
needed a single polynomial segment, to planning a path with
multiple segments, enabling smooth flights through multiple
waypoints. These waypoints can either be user-defined or
set from a path planning or obstacle avoidance algorithm. In
contrast to [2], we chose to optimize over the integral of the
squared norm of the acceleration instead of snap, minimizing
the energy that the helicopter needs. Compared to snap,
acceleration directly translates into permanent additional
thrust that all the motors have to provide, while snap just
causes particular motors to spin up/down quickly. We kept
our implementation flexible in order to be able to experiment
with velocity, jerk or snap as well.

With our outer control loop from the previous section
working on each axis separately, we can plan trajectories
also separated for each axis. It is only important, that the
segments for each axis stay synchronized, i.e. have the same
start and end times. Instead of an overall path time, we work
with M segment times Tm; m = 1 . . .M . This simplifies
the math and computational effort for the cost function,
and avoids numeric problems for large values of t (10th

power of t or higher) For optimizing a segment over the oth

derivative of the position, we obtain the following quadratic
optimization problem, subject to some equality constraints
which we explain below:

fm(t) = t · cm ; t =
[
1 t t2 . . . tN−1

]
(22)

min
∫ Tm

0

∥∥∥dofm(t)

dto

∥∥∥ (23)

Where f(t) is a N th order polynomial with N+1 coefficients
c0 . . . cN of the position. Start-, end- or intermediate equality
constraints of the oth derivative at time t for a segment can
be formulated as follows. Usually, at the beginning and at
the end of the path, this is the position and all its derivatives
set to zero, while there is only a position constraint with its
derivatives left free for intermediate points.

dofm(t)

dto
= bm,o (24)

What is left is to ensure continuity between the segments,
where the derivatives of the position (or even the position)
were left free, and can be formulated as the following
equality constraint:

dofm(Tm)

dto
− dofm+1(0)

dto
= 0 (25)

A nice property of the above optimization problem is
that there are no inequality constraints, which makes it
solvable with a closed form solution. However, this still

2937

depends on a fixed time Tm to travel along the trajectory.
Nonlinear optimization with the time as additional param-
eter and inequality constraints are costly (and numerically
problematic), therefore we were seeking for a simple and
fast solution. We solve the aforementioned problem with a
conservative estimate for each Tm. A good starting point
is to assume average maximum speed over the straight
connection between the waypoints. We compare the extrema
to pre-defined maximum values for each derivative on each
segment. Then, we scale the path time according to the
derivative that is closest to its maximum value:

c(o) = abs((
dof(t)

dto
)/co,max); n = 1 . . . 4 (26)

Tm,new = max(c(o)) · T (1/argmax(c(o))) (27)

We then recompute the optimization problem with the new
path time Tm,new, which is fast since we do not have inequal-
ity constraints in the optimization problem. It is important to
note, that this time-scaling has to be done synchronized for
the 3 coordinate axes that belong to one segment, such that
their segment times are equal.

After having obtained a feasible path, we obtain the
reference position p, velocity v, acceleration a and jerk j
from the set of polynomials and their derivatives. We then
update the control commands with the feed forward signal
uff =

[
aT jT

]T
according to Eq. (12). With Eq. (13), a

gets fed forward to the thrust, and with Eq. (14), j gets fed
forward to the angular rates around the x- and y- axis.

V. EXPERIMENTS

We performed all experiments in the Flying Machine
Arena [5], which is equipped with a Vicon motion cap-
ture system providing us with sub-millimeter pose accuracy
that we use as ground-truth in comparisons. We also use
the Vicon system for the pose measurements of our state
estimation framework in order to isolate the evaluation on
the performance of the proposed controller from potential
visual SLAM inaccuracies. For a more realistic test setup,
we introduce uncertainty in the Vicon readings used as input
in the system, to reflect the typical values when flying our
MAV outdoors with vision based navigation relatively close
to the ground: we reduced the Vicon rate to 20 Hz and added
noise with σ = 1 cm.

A. Hovering and Simple Waypoint Following

For the first experiment of desired performance corre-
sponding to hovering at the same spot, we obtained a RMS
error in position of 2.2 cm with a maximum of 6.1 cm. In
a subsequent experiment, we used our trajectory generator
explained in Section IV to fly over a distance of 3 m. The
path is slightly diagonal to demonstrate the successful time
synchronization between the decoupled axes. The result can
be seen in Fig. 6, where we have small errors in position and
the vehicle follows the desired trajectory closely. Note that
despite the vehicle made large changes in attitude, its position
in the z-axis stays constant, showing that our allocation and
feed-forward commands work well.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

t [s]

p
o
s
it
io

n
 [
m

]

x

y

z

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

t [s]

v
e
lo

c
it
y
 [
m

/s
]

v

x

v
y

v
z

Fig. 6: Diagonal flight over a distance of 3 m with a speed of up to 2m/s
and acceleration up to 2.5m/s2. The thicker lines illustrate the desired
trajectory, while the thin lines show the actual position (top) / velocity
(bottom). The position in the z- axis remains constant despite large changes
in the attitude.

−0.5 0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

position x [m]

p
o
s
it
io

n
 y

 [
m

]

snap optimized

jerk optimized

acceleration optimized 0 2 4 6 8
−2

0

2

v
e
lo

c
it
y
 [
m

/s
]

0 2 4 6 8
−4

−2

0

2

a
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

0 2 4 6 8
−10

−5

0

5

t [s]

je
rk

 [
m

/s
3
]

Fig. 7: Result of different optimization strategies for flying through the four
points marked with “+”. Red denotes the resulting trajectory from optimizing
over the snap, blue for jerk and green for acceleration. The right side shows
the trajectories for the x-axis for velocity (top), acceleration (center) and
jerk (bottom), again with the same color coding for the different methods.

B. Trajectory Following

In the following experiment, we show how our helicopter
can follow smooth trajectories through multiple waypoints.
Moreover, the aim here is to also evaluate the effect of opti-
mizing the cost function of the trajectory planner (Eq. (23))
over different derivatives (acceleration, jerk, snap) of the
position on the trajectory and the performance of the he-
licopter. For this, we set 4 waypoints (denoted by “+” in
Fig. 7) at the corners of a 1.5m × 1.5m area, which were
connected by our trajectory generator. The trajectory starts
at 0,0 with zero velocity, goes through the remaining three
waypoints without stopping, ending back at point 0,0. We
did not specify segment times and left this optimization to
the method described in Section IV.

By first inspection of Fig. 7, left, it seems that optimizing
Eq. (23) over the acceleration would be a good choice,
since it chooses the shortest path of the three methods.
However, by looking at the derivatives of the position on
the right side, it turns out that the acceleration method tries
to save acceleration as much as possible while creating an
oscillatory behavior for the jerk. This translates into angular
rate (Eq. (4)) and causes ugly motion of the helicopter. In

2938

0 2 4 6 8 10

−2

−1

0

1

2

t [s]

v
e

lo
c
it
y
 [

m
/s

],

s
 o

p
ti
m

iz
e

d

v

x

v
y

v
z

0 2 4 6 8

−2

−1

0

1

2

t [s]

v
e

lo
c
it
y
 [

m
/s

],

j
o

p
ti
m

iz
e

d

0 2 4 6 8 10

−2

−1

0

1

2

t [s]

v
e

lo
c
it
y
 [

m
/s

],

a
 o

p
ti
m

iz
e

d

Fig. 8: Velocities of the helicopter flying along the trajectory shown in Fig. 7
From left to right: optimization over snap, jerk and acceleration, where the
increasing oscillatory behavior of the jerk becomes more and more visible.
In contrast, the speed necessary to travel along the trajectory decreases from
left to right.

Fig. 9: Fast trajectory flight. The track speed reached up to 3.5 m/s and we
obtained a RMS error of 11.8 cm and 7.7 cm, respectively for left and right

contrast, snap shows the smoothest trajectory, but results in
a longer path, when no further constraints are specified.

Fig. 8 shows the speed required for flying along the path
shown in Fig. 7. The increasingly oscillatory behavior of
the jerk, becomes more and more evident when changing
the derivative to be optimized from snap to acceleration.
However, it should also be noted that the velocity required
for the snap to travel along the trajectory in optimal time is
twice as high as for the acceleration optimization. Similar
observations were made with differently shaped trajectories,
where the velocity or its direction changes. For straight line
connections, as shown in the first experiment, the methods
do not differ much. To summarize, there seems to be no good
general answer on which method is to be favored and this
might depend on the application. However, optimizing over
the jerk seems be a good trade-off. Further investigation of
this is necessary and is part of ongoing work.

Lastly, another experiment is shown in Fig. 9. The figure
on the left is similar to Fig. 7. On the right, we added the
third dimension. The track speed reached up to 3.5 m/s
and we obtained a RMS error of 11.8 cm and 7.7 cm,
respectively. For fair comparisons to [2] or [5], keep in
mind that our helicopter is heavier and thus less agile. Also,
we reduced the temporal and spatial accuracy of the Vicon
system to simulate realistic visual navigation based flights.
Besides the aforementioned experiments, we show a larger
scale outdoor experiment in the accompanied video. In this
experiment, the helicopter flies a 15 × 15m trajectory in a
height of 4 m similar to Fig. 7 while reaching a track speed
up to 4 m/s.

VI. CONCLUSIONS

In this work we address the issue of position control of a
MAV, being able to follow dynamic trajectories. Following
a two-loop design based on dynamic inversion, we eliminate
the need of the typically used attitude loop, minimizing
the computational complexity and improving bandwidth.
We show that by using the attitude given by a reliable
state estimator, we employ an outer control loop to directly
command angular rates and thrust. In turn, as inner control
loop, is a simple proportional controller of angular rates.
We showed a method for control allocation for a hexacopter,
and we presented an approach to estimate vehicle parameters
which are tedious to determine. Finally, we successfully
demonstrated the whole system in real experiments. Future
research involves handling actuator saturation, and improving
the generated trajectories for smooth and efficient paths.

VII. ACKNOWLEDGMENTS

We like to thank the team from Ascending Technologies
for their help and fruitful discussions. We would also like
to thank Prof. Raffaello D’ Andrea and his team for giving
us access to the Flying Machine Arena where we performed
our indoor experiments.

REFERENCES

[1] J. Wang, T. Bierling, L. Höcht, F. Holzapfel, S. Klose, and A. Knoll,
“Novel Dynamic Inversion Architecture Design for Quadrocopter
Control,” in Conference on Guidance Navigation and Control, 2011.

[2] D. Mellinger and V. Kumar, “ Minimum Snap Trajectory Generation
and Control for Quadrotors ,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2011.

[3] S. Weiss, M. Achtelik, M. Chli, and R. Siegwart, “Versatile distributed
pose estimation and sensor self-calibration for an autonomous mav,”
in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2012.

[4] S. Weiss, “Vision based navigation for micro helicopters,” Ph.D.
dissertation, ETH Zurich, 2012.

[5] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), 2010.

[6] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” in Proceedings of the International Federation of Automatic
Control (IFAC) world congress, 2011.

[7] M. Hehn and R. D’Andrea, “A flying inverted pendulum,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), 2011.

[8] A. Schoellig, C. Wiltsche, and R. D’Andrea, “Feed-forward parameter
identification for precise periodic quadrocopter motions,” 2012.

[9] S. Weiss and R. Siegwart, “Real-time metric state estimation for mod-
ular vision-inertial systems,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2011.

[10] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Local-
ization, mapping and sensor-to-sensor self-calibration,” International
Journal of Robotics Research (IJRR), vol. 30, no. 1, pp. 56–79, 2011.

[11] F. Mirzaei and S. Roumeliotis, “A Kalman Filter-Based Algorithm
for IMU-Camera Calibration: Observability Analysis and Performance
Evaluation,” IEEE Transactions on Robotics and Automation, vol. 24,
no. 5, pp. 1143 –1156, 2008.

[12] H. Khalil, Nonlinear Systems. Macmillan, 1992.
[13] J. Engel, J. Sturm, and D. Cremers, “Camera-Based Navigation of a

Low-Cost Quadrocopter,” in Proceedings of the IEEE/RSJ Conference
on Intelligent Robots and Systems (IROS), Oct. 2012.

[14] M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “Path Planning
for Motion Dependent State Estimation on Micro Aerial Vehicles,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2013.

2939

