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Abstract² Human intention estimation is important for 

assistive lower limb exoskeleton, and the task is realized mostly 

by the dynamics model or the EMG model. Although the 

dynamics model offers better estimation, it fails when unmodeled 

disturbances come into the system, such as the ground reaction 

force. In contrast, the EMG model is non-stationary, and 

therefore the offline calibrated EMG model is not satisfactory 

for long-time operation. In this paper, we propose the 

self-learning scheme with the sliding mode admittance control to 

overcome the deficiency. In the swing phase, the dynamics model 

is used to estimate the intention while teaching the EMG model; 

in the consecutive swing phase, the taught EMG model is used 

alternatively. In consequence, the self-learning control scheme 

provides better estimations during the whole operation. In 

addition, the admittance interface and the sliding mode 

controller ensure robust performance. The control scheme is 

justified by the knee orthosis with the backdrivable spring 

torsion actuator, and the experimental results are prominent. 

I. INTRODUCTION 

In design of the assistive exoskeleton, the estimation of the 
human intention is critical. By human intention, we mean the 
desired movement of the operator. According to different 
implementations, we categorize the literatures into two 
approaches. The first approach measures the interaction force 
between the exoskeleton and the operator with force sensors 
[1, 2]. However, this approach reduces the payloads only 
when the operator interacts with the surrounding. Exercising 
alone, the operator consumes at least the same work as that 
without the exoskeleton. The second approach is the 
model-based approach: the dynamics model [3, 4] and the 
Electromyography (EMG)-model [5, 6]. The dynamics model 
uses inverse dynamics to compute the human intended torque. 
However, the estimation error is large in the presence of the 
unmodeled disturbances. On the contrary, the EMG-model 
measures directly the level of the human intended torque by 
the activated EMG signal, but it suffers from the time-variant 
nature. Summarizing the literatures, most of the model-based 
exoskeleton systems can be regarded as the human torque 
amplifier, so the operator feels assisted even without the 
interaction with the environment. 

The EXO-UL7 [1] used three force sensors to estimate the 
interaction between human and robot, and the position 
trajectories of upper limber exoskeleton were generated by the 
admittance model. In [2], the similar admittance model was 
adopted with the force sensors on the fingers. Moreover, they 
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included the sliding mode control to overcome the mechanical 
parameters uncertainties due to deflection of Bowden cables 
and the disturbance. In both designs, the objective is to 
minimize the interaction force between the user and the robot 
so that the robot follows the motion of the user. This design, 
however, does not directly minimize the loading of the 
operator. In fact, the control scheme only lowers the 
impedance between the exoskeleton and the user. In assistive 
applications, the exoskeleton should provide additional power 
to support the user. 

Considering the unmodeled disturbance in the dynamics 
model, the adaptive control in Knee Orthosis [7] tracked the 
predefined trajectory and adjusted the dynamics parameters 
online. In [8], they identified the parameters of the model for 
the lower limb offline, and controlled the knee orthosis by the 
high-order sliding model controller to overcome the 
uncertainty of the online parameter estimation. Because the 
robots in [7, 8] were used in rehabilitation, the position 
trajectories were predefined by the doctor or the user. No 
online feedback of the operator¶s intention is presented, yet it 
is crucial to estimate the human intention and to control the 
robot accordingly for assistive exoskeletons.  

Combing the benefits of both the dynamics model and the 
EMG model, we propose the self-learning scheme for human 
walking assistance with the sliding mode admittance control. 
During the swing phase, the inverse dynamics model estimates 
the human intended torque and teaches the EMG model with 
the estimation. The taught EMG model is then used in the 
consecutive stance phase to overcome the disturbance 
uncertainty in the dynamics model, such as the ground 
reaction force. The self-learning scheme updates the 
parameters of the EMG model so that it can adapt to the time 
variant nature. In summary, the estimator of the human 
intended torque switches between the dynamics model and the 
EMG model in the swing phase and in the stance phase, 
respectively, so the most accurate estimate of the two models 
can be always used for the assisting. With the estimation, we 
treat the human intention as the forced response of the 
estimated human intended torque exerting on a second-order 
linear system - the admittance interface. Finally, the sliding 
mode controller is used to overcome the uncertainties of 
modeling errors and disturbances. 

To the best of our knowledge, no other papers have 
investigated the adaptive estimation of the EMG model via 
self-learning. Our self-learning exoskeleton uses the dynamics 
model to teach EMG model so that the EMG model can cover 
for the dynamics when needed. The hybrid scheme overcomes 
the insufficiency of using only a single model. Compared to 
[9], the dynamics model, identified offline, serves as the 
supervisor and teaches the EMG model online in this paper, 
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Fig. 6. (a) The self-learning estimator, the dynamics model, and the 
EMG model. (b) The actual angle and the desired angle generated 
from admittance interface. (c) The torque command of the sliding 
mode controller and exoskeleton torque. 

the position tracking error. With such knowledge, the 

boundary layer should be large as long as it pushes the 

exoskeleton from large tracking errors; inside the boundary, 

the sliding mode control is actually a proportional feedback 

controller to provide smooth assisting. 

In the experiments, we observe that the optimal parameters 

of the admittance interface vary with the configurations and 

the tasks. It is interesting that human expect different 

impedance with various poses. We suggest identify the 

task-dependent impedance and use the gain scheduling 

technique to control the impedance system in the future works. 

Also, the learning rate affects the performance of the EMG 

model very much. With small learning rate, the EMG model 

cannot learn fast enough within the short swing phase, while 

the learning becomes more unstable when large learning rate 

is used. Therefore, the learning rate trades off the performance 

and the stability. We hope this can be addressed by 

incorporating the adaptive learning rate and the Hessian 

matrix. Finally, we are considering whether the robust control 

approach is suitable in the application of exoskeleton. Most of 

the robust control uses finite bounds for the disturbances and 

the uncertainty, and forces the tracking error to stay within 

some bounded domain. On the other hand, the interaction with 

human does not emphasize the absolute error. Indeed, only the 

bandwidth and smoothness do matter. In our experiences, 

human seems to be able to adapt to the errors easily as long as 

the bandwidth is limited. 

VI. CONCLUSION 

In this paper, we propose the self-learning scheme with the 

sliding mode admittance controller for the assistive 

exoskeleton system. The self-learning scheme combines both 

the dynamics model and the EMG model to achieve better 

performance. In the swing phase, the dynamics model teaches 

the EMG model, so that the estimated human intended torque 

can tolerate the disturbance uncertainties in the stance phase. 

Together, the estimator uses the dynamics model in the swing 

phase and the updated EMG in the stance phase. With the 

estimated human intended torque, the sliding mode 

admittance controller assists the operator robustly. In the 

future works, we want to address the issue of pose-dependent 

desired impedance and design a more sophisticated 

self-learning scheme. 
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