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Abstract— Extending our previous work in real-time vision-
based Human Robot Interaction (HRI) with multi-robot sys-
tems, we present the first example of creating, modifying and
commanding teams of UAVs by an uninstrumented human.
To create a team the user focuses attention on an individual
robot by simply looking at it, then adds or removes it from
the current team with a motion-based hand gesture. Another
gesture commands the entire team to begin task execution.
Robots communicate among themselves by wireless network to
ensure that no more than one robot is focused, and so that the
whole team agrees that it has been commanded. Since robots
can be added and removed from the team, the system is robust
to incorrect additions. A series of trials with two and three
very low-cost UAVs and off-board processing demonstrates the
practicality of our approach.

I. INTRODUCTION

Selecting and commanding individual robots in a multi-

robot system can be a challenge: interactions typically occur

over a conventional on-screen human-computer interface

(e.g. [1]), or specialized remote control (e.g. [2]). Humans,

however, can easily select and command one another in

groups using only eye contact and gestures. We are working

on non-verbal communication methods for human-robot in-

teractions. In particular we avoid the need for the human to

be instrumented in any way, and all interaction is mediated

by the robot’s on-board sensing and actuation.

In this paper we extend our previous work [3] using face

engagement to select a particular robot from a group of

robots. In our previous system, once selected, a single robot

engaged in one-on-one interaction with the user. In this paper

we compose a multi-robot team from the population of robots

by adding or removing the currently selected robot, then

command the whole team at once. In our previous paper

we used wheeled mobile robots which were stationary for

the human-robot interactions. In this paper we use flying

quadrotor robots which are continuously moving. The con-

stant movement of cameras attached to flying robots make

the problem of vision mediated human robot interaction

much more challenging.

The contributions of this work are: (i) the first demon-

stration of HRI control of a flying robot by an uninstru-

mented human using only passive computer vision; (ii) the

first demonstration of dynamically creating and modifying

robot teams by an uninstrumented human; and (iii) the first

demonstration of focusing attention on a flying robot by face-

engagement.
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Fig. 1. An uninstrumented person creates and commands a team of three
UAVs using face-engagement and hand gestures

II. BACKGROUND

Throughout this work, we will use the term

face engagement, as coined by Goffman, to describe

the process in which people use eye contact, gaze and facial

gestures to interact with or engage each other [4].

A. Uninstrumented Human Robot Interaction

Researchers have argued that exploiting stereotypical com-

munication cues (without instrumentation) can achieve natu-

ral human-robot interactions [5]. Gaze and body movements

(gestures) are two such communication cues.

There is a large literature on gaze tracking techniques;

Morimoto and Mimica provide an in-depth survey [6]. Ap-

plications of gaze trackers can be found in fields ranging

from psychology to marketing to computing science; many

interesting examples are given in the survey provided by

Duchowski [7].

In an experiment by Mutlu et al. [8], gaze is used to

regulate conversations between, a humanoid robot, and two

human participants. The study showed that (among other

things) gaze was an effective tool for yielding speaking turns

and reinforcing conversation roles. Kuno et al. [9] present a

museum tour-guide that only responds when directly looked

at. A telephoto lens is used to capture a high quality image;

the robot then estimates if the user is looking at it by

detecting if the nostrils are centered between the eyes. Our

previous work showed that this basic method can be extended

to select individual robots from a population by using explicit

wireless communication between robots to perform a dis-

tributed election algorithm to unambiguously decide which

robot (if any) was being looked at directly [3]. Since the

election is completed in a few tens of milliseconds and is

essentially imperceptible to the user, the users experience is

simply that as you look from robot to robot, the selected
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robot is always “the one I am looking at right now”. Below

we show that this method is also effective for flying robots.

There is a vast computer vision literature on gesture recog-

nition: Mitra and Acharya [10] provide a survey. Several

gesture-based robot interfaces exist; systems may use static

gestures – where the user holds a certain pose or config-

uration – or dynamic gestures – where the user performs

a combination of actions. Waldheer at al. use both static

and motion-based gestures to control a trash-collecting robot

[11]. Earlier work by Kortenkamp et al. presents a mobile

robot that uses an active vision system to recognize static

gestures by building a skeleton model of the human operator;

a vector of the human’s arm is used to direct the robot to

a particular point [12]. Giusti et al. [13] demonstrated how

a swarm of mobile robots can cooperatively detect a static

human gesture and act upon it.

We use simple motion-based gestures to issue com-

mands to robots once they have been selected using face-

engagement.

B. Robot Selection And Task Delegation

There is little work on human-robot interfaces for multi-

robot systems. Examples can be broken up into two general

cases:

1) World-Embodied Interactions: World-embodied inter-

actions occur directly between the human and robot, through

either mechanical or sensor-mediated interfaces. Key ad-

vantages of this approach compared to a conventional GUI

include the possibility for users to walk freely among the

robots rather than being tied to an operator station. Also

since robots observe humans directly using their on-board

sensing, they may not need to localize themselves in a shared

coordinate frame. Examples include work by Payton that

uses an omni-directional IR LED to broadcast messages to

all robots, and a narrow, directional IR LED to select and

command individual robots [2], work by Naghsh et al. [14]

who present a similar system designed for firefighters, but do

not discuss selecting individual robots , and work by Zhao et

al. [15] which proposes the user leaves fiducial-based “notes”

(e.g. “vacuum the floor” or “mop the floor”) for the robots

at work site locations. Xue et al. [16] introduced a fiducial

design for imperfect visibility conditions and combined them

with user-centric gestures.

2) Traditional Human-Computer Interfaces: Rather than

interacting directly with robots, a traditional human-

computer interface is used to represent the spatial configura-

tion of the robots and allow the user to remotely interact with

the robots. Examples of human-robot interactions which oc-

cur through a traditional interface include work by McLurkin

et al. [1] that presents an overhead-view of the swarm in a

traditional point and click GUI named “SwarmCraft”, and

work by Kato that displays an overhead live video feed

of the system on an interactive multi-touch computer table,

which users can control the robots’ paths by drawing a vector

field over top of the world [17]. Similar to Zhao et. al’s

fiducial-based notes [15], Kolling et al. [18] designed a user

interface that allows the operator to place virtual beacons in

a simulated robot environment.

C. Human Robot Interaction with UAVs

Traditional human computer interfaces have been used

extensively to design control interfaces for single [19]–[21]

and multiple [22] UAVs. Uninstrumented interfaces have

also been used to interact with UAVs. Song et al. [23]

describes a method for recognizing aircraft handling signals

from depth data, and tested their method on a database of

videos collected from a stationary (non-airborne) camera.

Lichtenstern et al. [24] describe a prototype system in which

gestures directed at one UAV carrying a Kinect (active RGB-

D) sensor can be used to control other UAVs. Jones et

al. [25] performed a user study to investigate how different

modalities can be used to control a swarm of simulated UAVs

in a virtual reality environment. Naseer et al. [26] developed

an autonomous system that enables a single quadrocopter to

follow a human and respond to hand gestures using active

RGB-D sensor with vision-based ego-motion cancellation.

Our work is different from the aforementioned works due

to our use of vision-based gestures (obtained from a passive

monocular camera) to select and command a team of airborne

UAVs. Now that affordable UAVs are available we expect

this area to grow rapidly.

III. METHOD

To demonstrate our approach, we use a group of un-

modified AR-Drone 2.0 quadrocopters1. These inexpensive

aircraft have a built-in attitude controller and a forward-

facing 720p HD camera. Video from the camera and flight

control data are streamed via 802.11 wireless network to a

control computer. A practical challenge when using this setup

is that all user software is run externally and is therefore

subject to large network delays: we observe around 200

milliseconds end-to-end latency. Engel et al. [27] have shown

that it is possible to explicitly model the communication

delay and use monocular Simultaneous Localization and

Mapping (SLAM) to accurately navigate a single quadro-

copter. Another successful position controller is presented

by Krajnı́k et al. [28]. They determined the drone’s transfer

function and implemented a PID controller that would hover

the drone over a mobile target, tracked by the downward

facing camera. We use only the forward facing camera for

HRI and localization, since the platform does not permit

simultaneous streaming from both cameras.

Next we describe our approach, with an overview shown

in Fig. 2.

A. Position Estimate and Control

While the AR-Drone 2.0 is capable of generating 720p

video streams, we use a lower resolution to save wireless

channel bandwidth and allow us to use multiple robots. We

experimented with two different 3D pose estimation methods

for the robots: fiducial based and ambient feature based. The

fiducial based method uses the ALVAR library [29] to track

1http://ardrone2.parrot.com/
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Fig. 2. System overview, the dashed box (right) wraps the components that
run on a laptop, the remainder (left) runs on-board the aircraft. Components
in gray (lower right) are custom developed for this work, while third party
modules with small adaptations are marked in white.

the drone’s position (x, y, z, φ, θ, ψ)T relative to fiducials

mounted at known locations in the environment. Here x, y, z
is the 3D location in the world frame and φ, θ, ψ are roll,

pitch and yaw (heading), respectively. The feature-based

method employs the Parallel Tracking and Mapping (PTAM)

monocular SLAM system [30] to estimate each robot’s pose.

We use an Extended Kalman Filter (EKF) to fuse the vision

based position estimate with inertial measurements from the

drone’s flight control computer to improve the accuracy of

the pose estimate.

When robots use the fiducial based method, they are

localized in the global coordinate frame, which makes the

multi-robot formation control straightforward. However, this

method is sensitive to fiducial occlusions. The feature-based

method on the other hand is more robust to occlusions.

However, the coordinate frame and scaling of pose estimates

are not defined with respect to the world and depend on

the PTAM initialization phase. Our system uses the method

introduced in [27] to perform scale estimation using EKF.

In our system, all robots use the same recorded video of the

environment for PTAM initialization, and thus they all agree

on the initial coordinate frame.

To control each drone, the position estimate and 4-DOF

target position (xT , yT , zT , ψT )
T are fed into four inde-

pendent PID controllers, one for each directly controllable

degree of freedom. The control output is then sent via the

wireless network to the drone. In practice we find that this

approach works well as long as there is sufficient distance

(> 3m) between any two aircraft. When drones are too close

together, turbulence from the down draft causes the drones to

pitch and roll rapidly in an attempt to maintain their position,

and the camera can not be kept on-target for HRI. This

fast movement cannot sufficiently be tracked by our position

controller because of the network delay. We avoid this issue

by enforcing a minimum distance of 3m between aircraft.

B. Face Detection and Tracking

To locate and track faces in the video stream, we use

the OpenCV [31] implementation of the Viola-Jones [32]

Fig. 3. Face detection is used to locate the user, and to select the currently
focused robot. Hand gestures change the state of the focused robot. This
image is from the flying robot’s point of view. The gesture detection regions
are marked by a rectangle. (The stabilized optical flow magnitude’s heat map
is blended into the image.)

face detector. Because of the often rapid ego-motion of the

airborne camera we might lose a detected face or detect

several false positives. We address this problem by using

a Kalman Filter to smooth face position estimates. We use

a nearest neighbor data association strategy to determine

which detected face to use as the measurement input, using a

Mahalanobis distance derived from the estimated covariance

of candidate faces.

Information about the tracked face is used in two subse-

quent modules: first to partially cancel image flow due to

ego-motion as described in the next section, and second to

determine if the user is engaging in an interaction with the

robot. Our HRI attention-focusing strategy is to engage one

robot at a time out of the group by simply looking at it.

Subsequent commands are addressed to the engaged robot.

The challenge for the robots is to determine which robot is

currently being looked at, as the user’s face might be visible

to several robots at the same time. We use a mechanism

developed and successfully used earlier by our group [3].

The face detector is trained on frontal faces only, and we

observe that the largest number of candidate face detections

occur when the face is looking directly at the camera. Since

the face detector is insensitive to small changes in scale or

position, multiple candidate detections are often clustered

around faces. We use the number of candidate detections in

each cluster as a score to assess the quality of the detected

face. To determine which robot sees the most frontal face the

robots perform a distributed election, each proposing their

currently observed face score. If no robot has a score above

a threshold, no robot is engaged, otherwise the robot with

the highest score is the one being engaged by the human.

Only the currently engaged robot will watch for gestural

commands.

C. Motion Cancellation and Gesture Recognition

The system uses the magnitude of optical flow in fixed

regions around the user’s face to detect hand-wave gestures.

In order to have reliable optical flow information, motion

from sources other than user’s hand movement in the video
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Fig. 4. Optical flow in the left and the right hand zone; the top graph
shows the unfiltered optical flow and the bottom graph shows the output
of our multi-stage filter. Sections marked in green (left) correspond to left
hand gesture, periods of both hands gesture are colored blue (right).

stream should be filtered out. We have to deal with three

sources of motion in our video stream. The first is the motion

of the camera caused by the motion of the aircraft stabilizing

its attitude and controlling its position. The second is caused

by user movements other than gesturing, and the third is a

result of the hand gestures used to command the vehicle.

The objective is to cancel the first two while not damping

the gesture motion.

For motion cancellation and gesture recognition we define

three zones in the image. The face zone is a bounding box

around the face currently being tracked. The left and right

hand zones are rectangles to the left and right of the face

box respectively as shown in Fig. 3. The size of the left and

right zones is proportional to the size of the face zone. The

hand zones are cropped if any of their corners exceed the

image boundaries. This will happen when the human face is

towards the edges of the image.

In a first step we mask all pixels in the hand zones to pre-

serve the optical flow caused by waving the hands. We then

calculate optical flow in the remainder of the image using the

OpenCV [31] implementation of Franebäck’s algorithm [33].

The median of this optical flow is an approximation of the

ego-motion of the camera, which we can now remove from

the original image.

Next, using the camera-motion-reduced image, we esti-

mate the motion of the user by computing the median of

the optical flow in just the face zone. The assumption is that

motion of the face is a reasonable proxy overall non-gesture

body motion. By removing the estimated user motion from

the image we are left with an image that contains mainly the

flow resulting from the gestures. The process is illustrated in

Fig. 4.

In the last step we average the magnitude of optical flow

within the hand zones. For robustness to transient flow, the

resulting signal is passed through a median filter with a

window size of 15 frames. By thresholding the result we can

detect left and right hand waving. This gives us a total of 4

states: no wave, left wave, right wave and two-hand wave.

These gestures are then used by the behavioral module to

command the aircraft.

D. Commanding the Vehicle

The user commands a robot by first engaging it (by looking

at it) and then giving it one of the three gestures. A right

hand wave means join the group. A robot that is part of

the group increases its hover altitude by 0.2m. A left hand

wave is the command to leave the group, consequently the

aircraft returns to the original altitude. Waving both hands

is the signal for the entire group to execute a mission.

Note that only one robot has to be given the command to

execute the mission; it will communicate this instruction to

the others over the network and the group acts as one. In

our demonstration the “mission” is either to land or perform

a complete roll (flip) in place. These simple missions are

a placeholder for a real mission such as search, patrol,

mapping, etc. The robots also change the color and blinking

frequency of their built-in LEDs to report their current state

(being engaged or selected as part of the group) to the user.

Informally, we found this direct feedback helps the user in

the interaction process.

The flowchart of the controller is shown in Fig. 5. We

trigger take-off manually. Each aircraft, once airborne, au-

tonomously flies to its predefined target location and tries

to detect faces. If a face is detected as described above the

position controller tracks the face by steering the nose of the

aircraft in the direction of the face. This is to ensure that

the face is always in the middle of the image. This is not

only a feedback mechanism to the user, but also keeps the

hand zones from being cropped. Next, the face scores are

communicated to all robots by wireless network. If a robot

wins the face score election, it considers itself engaged by the

user and accepts hand gestures. Left or right hand gestures

set or clear a “belong to group” flag. If the execute command

gesture is detected, the command is passed on to all other

aircraft via the wireless network. An aircraft receiving the

execute command and belonging to the group will now

execute the mission, i.e. land. The remaining aircraft stay

airborne and wait for a user engagement.

Fig. 5. Flowchart outlining the decision tree for the robot’s behaviour.
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TABLE I

RESULT SUMMARY FOR THREE ROBOT EXPERIMENT, Si , Di AND Ci

MEAN ISSUE THE SELECT, DESELECT AND COMMAND GESTURE TO THE

iTH ROBOT. UNINTENDED OUTCOMES ARE MARKED BY OVERSTRIKES.

Trial Scenario Gesture Face Success

1 S1 S2 C1 3/3 3/3 Yes
2 S1 S2 C3 C2 4/4 4/4 Yes
3 S1 S2 S3 C3 4/4 4/4 Yes
4 S1 S2 D1 C2 4/4 4/4 Yes
5 S2 S3 D2 C2 C3 2/5 5/5 No
6 S2 S3 S1 D2 C3 5/5 5/5 Yes
7 S3 S2 S1 D2 C3 5/5 5/5 Yes
8 S2 S1 S3 D3 C2 4/5 5/5 No
9 S2 S3 C1 S1 C1 5/5 5/5 Yes
10 S1 S2 S3 D1 D2 C3 6/6 6/6 Yes
11 S1 S2 D1 D3 C2 S1 C1 6/7 7/7 No
12 S1 S3 D1 S2 C3 S1 C1 6/7 7/7 No
13 S3 S2 S1 D1 D2 D3 C2 7/7 7/7 Yes
14 S3 S2 S1 D2 D3 C2 C1 7/7 7/7 Yes
15 S2 S3 D2 S1 D3 D1 S3 C3 7/8 8/8 No

Total 75/82 82/82 10/15

Fig. 6. Plot of smoothed robot altitude over time during trial #7 (Table I).
Dotted vertical lines show the time that a specific gesture was performed.
Select (Si) adds robot i to the team, Deselect (Di) removes robot i from
the team. Team members hover 0.2m higher than non-team members. The
Execute command (Ci) makes the team land.

IV. DEMONSTRATION

To demonstrate our system, we performed two sets of trials

with a group of flying robots and a human. All trials were

performed by one expert user. The arena is a 8 × 10 × 3m

indoor lab environment clear of any static obstacles, shown

in Fig. 1. At startup, each robot is placed at a pre-defined

position on the ground. During each trial, the robots take-off

after receiving an external signal, then fly to their pre-defined

target poses (xT , yT , zT , ψT )
T . The main difference between

two sets of experiments are the position estimation method

used for each experiment and the number of participating

robots.

A. Three-Robot Experiment with Marker-Based Localization

In our first experiment, we used the fiducial based position

estimation method as described in section III-A. Six unique

50×50cm ALVAR 2D tags were mounted on the wall behind

the user as input to the ALVAR localization system. Due

to low accuracy of heading estimates when the robots are

looking at the fiducials with steep angles, initial poses for

robots were set such that they look directly towards the

TABLE II

RESULT SUMMARY FOR TWO ROBOT EXPERIMENT

Trial Scenario Gesture Face Success

1 S1 S2 C1 3/3 3/3 Yes
2 S1 S2 C2 3/3 3/3 Yes
3 S1 S2 D1 C2 4/4 4/4 Yes
4 S1 S2 D2 C2 C1 4/5 5/5 No
5 S1 D1 S2 C2 4/4 4/4 Yes
6 S1 D1 D2 S2 C1 4/5 5/5 No
7 S2 S1 D2 D1 S2 C2 6/6 5/5 Yes
8 S1 S2 D2 S2 C2 5/5 5/5 Yes
9 S1 S2 S1 C2 4/4 4/4 Yes
10 S1 S2 D2 D2 S2 C1 6/6 6/6 Yes

Total 43/45 45/45 8/10

fiducials. This led to a linear initial formation as shown in

Figure 1. As a result, the human usually needs to walk along

the wall into a robot’s field of view first to get its attention.

Once a face is seen by a robot, it yaws to track the face as

described in section III-B.

Fifteen trials with a total of 82 scripted interactions were

executed. Table I summarizes the results. Robots were in-

dexed from 1 to 3. In the table, the Scenario column contains

a list of the interactions attempted by the user. Si, Di and

Ci mean issue the Select (add to team), Deselect (remove

from team) and Command (execute mission) gesture to the

ith robot, respectively. Unintended outcomes are marked by

overstrikes. A trial with any unintended outcome is deemed

to be unsuccessful. The ratio of successful to overall trials

was 10/15. The success rate of individual interactions was

75/82.

To summarize the robot system behavior, we recorded each

robot’s altitude for the length of the trial. Figure 6 shows such

a graph for experiment number 7. The script was to select

robot 3, select robot 2, select robot 1, deselect robot 2, then

command robot 3 to land. The plot shows the altitude of

robot 3 increasing at around 25 seconds, followed by robot

2 at around 30 seconds and 1 at 40 seconds, as each joins

the team. The altitude of robot 2 decreases at around 45

seconds as it leaves the team. Robots 1 and 3 land at 60

seconds, while robot 2 remains hovering, as required by the

trial script.

B. Two-Robot Experiment with Feature-Based Localization

In a second set of experiments we used the monoSLAM

pose estimation method. The main motivation was to let the

robots create a formation in which they initially look at the

same spot in the room. We could not arrange this with the

ALVAR-based system as the robots needed to face directly

towards a fiducial to maintain a stable hover. With the PTAM

monoSLAM method, this restriction is lifted and the user can

stand on one spot and just look from robot to robot without

moving in an out of the robots’ field of view. The other

benefit of this method is that there is no need to instrument

the environment with fiducial markers.

This system has its own limitations though. The PTAM

system is not able to track the position of the robot well

when the camera motion is mainly rotational. This situation
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Fig. 7. Snapshots from a two robot experiment, in which a user is commanding two quadrocopters (Table II).

happens when the robot is tracking the human’s face while

hovering close to its target position. We found empirically

that to avoid this situation, the change in heading of the

robot should be small while performing stable hovering and

face tracking. This means that, as the heading angle of the

robot with respect to human increases, the distance between

human and the robot should increase. This new constraint, in

addition to the minimum distance constraint discussed in III-

A, meant that we only had space for a two-robot experiment

in our lab.

We performed a total number of 10 scripted trials with

two drones. Table II summarizes the results. The ratio of

successful to unsuccessful trials was 8/10. The success

rate of individual interactions was 43/45. Figure 7 shows

snapshots of trial number 8.

C. Discussion

In all trials the face engagement subsystem was successful:

the robots could successfully detect and track the user’s

face while running the distributed leader election algorithm.

We note informally that this capability combined with the

LED and altitude feedback made a comfortable and natural-

feeling method of interaction with the robots. The gesture

recognition subsystem however had a total of 9 failures,

7 cases of false recognition and 2 cases of failed recogni-

tion. Examining the data, we found that false negative and

incorrect recognitions occur when the motion cancellation

happens to cancel a legitimate hand motion. The false

recognition can also occur when the motion cancellation does

not filter out all non-relevant motions.

The position control subsystem also had some failures

when the marker based pose estimate of a robot became

inaccurate either due to full occlusion of localization tags

by the user’s body or very fast human movements during

an interaction. Although the robots could recover from these

errors, their short-term instability forced the human to wait.

After a few practice trials, the user learned to move his body

so as to avoid these problems. While our ultimate goal is to

design systems where such user adaptation is not necessary,

we observe informally that a bit of user training can lead to a

useful improvement in the performance of the current system.

The occlusion was not a problem when using feature based

pose estimates, however PTAM recovery after initialization

from the pre-recorded video sometimes could take up to 15

seconds.

Most of the development time on this project was spent

on localization and position control of these limited, low-cost

UAVs. Our goal is to extend this system to be used in out-

door environments. In such cases, a GPS-based localization

method can also be utilized to improve the quality of pose

estimation and control.

V. CONCLUSION AND FUTURE WORK

We presented a computer vision-mediated human-robot

interface whereby an uninstrumented user can create, mod-

ify and command a team of robots from a population of

autonomous individuals in a multi-robot system. The user se-

lects an individual as the current focus of attention by simply

looking at it. The focused robot can be added/removed from

the team by waving the right/left hand. The whole team is

dispatched to a mission by waving both hands.

We demonstrated the effectiveness of this method using a

system of low-cost quadrotor robots with on-board attitude

control and off-board computer vision-based 4-DOF position

control. In a series of trials the robots achieved better than

90% correct execution of the user’s intentions and 76%

correct execution of trial interaction scripts.

A proper user-study with a naive participants would be re-

quired to justify a formal claim that this system is “intuitive”

or better than any other method. We do not make this claim,

but note informally that selecting a robot by looking at it is

really fun, and even in our proof-of-concept implementation

it is responsive and feels easy and natural.

We used a very small set of discrete gestures. The gestures

set could be extended to allow a user to point to some

arbitrary place in the environment, and have the robots fly to

that location. This has been done for a single robot system

(e.g. [12], [34]); however, an interesting extension would be

to coordinate multiple robots to cooperatively estimate the

vector given the system’s ability to simultaneously capture

images of the user from multiple angles (in the spirit of [13]).
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The most urgent direction is to move outdoors. We aim

to soon have robots flying over large distances doing useful

tasks coordinated by the human user on the ground.
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