
Detecting Anomalies in Humanoid Joint Trajectories

Fernando Marcolino and Jiuguang Wang

Abstract— We present a semi-supervised anomaly detection
system for humanoid robots that operates on trajectories with
varying lengths, resolutions, and time shifts. The proposed
approach utilities optimization to extract a model from joint
trajectories under normal operation and seek to identify anoma-
lous behaviors that deviates significantly from the known model.
Compared to previously proposed approaches in humanoid
anomaly detection that identified only high-level faults, our
approach can detect subtle defects in the robot and at the
same time, is capable of generalizing to higher-level behaviors.
The system is demonstrated on a simulated model of the Atlas
humanoid robot, with several experimental scenarios demon-
strating detection of both joint-level anomalies and behaviors
such as falling.

Index Terms— Humanoid robots, anomaly detection, opti-
mization

I. INTRODUCTION

O ne significant barrier to the practical applications of
humanoid robots in everyday environments is safety.

Compared to statically stable robots, a dynamically balanc-
ing bipedal humanoid is an inherently unstable structure.
Combined with heavy structural elements and high-powered
actuators, any failure in a humanoid robot can lead to
catastrophic physical damage to its surroundings. Therefore,
for a humanoid robot to be practically useful, it is necessary
to implement a system of error detection so that any failures
in sensors or actuators can be detected.

Anomaly detection for humanoid robots can be simplified
to the problem of detecting deviations in locomotive behav-
iors. By having a humanoid robot execute a known behavior
(such as walking), an operator can compare the resulting
trajectories against a collection of previously obtained data
to discern any anomaly. This is similar to the Field Sobriety
Tests utilized by law enforcement to identify drunk drivers
through behaviors such as “walk-and-turn”. For our task,
an automatic anomaly detection system is highly desirable
because manually identifying anomalous trajectories would
be prohibitively expensive in a high degrees-of-freedom
system such as a humanoid robot.

While there exist an extensive collection of anomaly
detection methods in other fields of engineering [1], few can
be directly applied to humanoid robots. Supervised methods
require labeled datasets, which are difficult to obtain due
to both the large degrees-of-freedom in a humanoid and
the wide range of potential faulty behaviors. Most existing
unsupervised and semi-supervised methods require training
data to be well-organized, but in humanoid robots, multiple

Fernando Marcolino is with the Universidade do Estado da Bahia,
Salvador, Brazil. Email: fmarcolino2005@gmail.com

Jiuguang Wang is with the Robotics Institute at Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, 15213, USA. Email: robot@cmu.edu

(a) Balancing

(b) Walking

(c) Fallen

Fig. 1. A model of the Atlas humanoid robot in the Gazebo simulation
environment. Our detector is designed to be a calibration tool where the
robot executes a known behavior in order to identify anomalies in the
system, both for low-level anomalies (degradation in the actuators) and high-
level behaviors (falling).

executions of the same experiment can have different start
and end times, causing the trajectories to be time-shifted
and have different lengths. Measurement outputs can also be
irregular due to network delays and other factors, causing
the resolution of the trajectories to be varied. These issues

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2594

must be addressed in a successful anomaly detection system
for humanoid robots.

The main contribution of this work is a semi-supervised
anomaly detection system for humanoid robots that operates
on trajectories in the joint space. It is designed to be a
calibration tool where the robot executes a known behavior
in order to identify anomalies in the system. The detector is
semi-supervised in the sense that we train the model using
good trajectories generated under normal operation of the
robot and classify a new trajectory as anomalous if it deviates
considerably from this model. While identification of faulty
behaviors such as tripping, slipping, and falling has been
addressed in previous work in this domain, we focus on
detecting subtle defects in the robot due to degradation and
miscalibration, which manifest themselves as small joint-
level deviations. In addition, our detector is capable of
identifying anomalies in trajectories that are incomplete,
shifted, and varying in resolution, encountered frequently
in real-world experimental data for humanoids. Finally, we
demonstrate that the proposed detector can also be general-
ized to detecting high-level behaviors such as falling.

The remainder of this paper is organized as follows.
Section II gives an overview of existing methods of anomaly
detection. Section III describes the basic formulation of
the proposed detector in two parts, model extraction and
anomaly detection. Section IV gives the experimental results
of the proposed approach as validated on a simulated Atlas
humanoid robot. Section V contains concluding remarks and
directions for future work.

II. RELATED WORK

Several previous studies in humanoid robots have proposed
approaches that detect faulty behaviors such as falling. Most
notably, Renner [2], Karssen [3], and Kalyanakrishnan [4]
have proposed strategies for instability and fall detection
using probabilistic and machine learning-based methods.
While these approaches are useful for specific behavior-
based control design (for example, designing falling control
in Wang [5]), they are limited to detecting a single faulty
behavior and producing a binary decision. More recently,
Lynch [6] have proposed a computational geometry based
method for humanoid fault detection, but the approach was
unable to address potential spatial and temporal shifts in the
trajectory data, limiting its utility to extremely well-defined
training data.

Previous approaches to the problem of fault detection in
engineering can be broadly classified as signature-based or
anomaly-based. In signature-based system such as Brodie
[7], runtime data was actively checked against a library
of known faulty states. While this approach is effective in
applications where the range of possible faulty states is
limited, it cannot be used with humanoid robots as the space
of potentially faulty behaviors is very large. In anomaly-
based systems, it is assumed that a collection of normal
behaviors for a given system is available, and large deviations
in the runtime data indicates a fault has occurred. Instead of
simply matching the symptoms of faulty behaviors, anomaly

detection requires building a model of correct behaviors and
a way of classifying runtime behaviors against this model.

Many approaches have been proposed for anomaly de-
tection using clustering-based techniques, for example, in
Fu [8] and Hu [9] where trajectories were classified based
on similarity metrics, possibly using kernel transformations
[10]. While simple to implement, these approaches require
well-organized trajectories of equal length and uniformly
sampled in time. Goel [11] and Hu [12] have trained neural
networks as a base model, but this and other black-box
models such as Jakubek [13] suffer from a lack of trans-
parency. Morris [14] and Bashir [15] used Hidden Markov
Models which worked well for small trajectory segments,
but the time complexity of the forward-backward algorithm
for training the HMM is cubic in terms of the length of the
trajectory, which made the approach difficult to apply for
large trajectories. Similarly, Rosen [16] used an nonlinear
optimization to obtain a parametric model, which relied on
expensive numerical solutions. Other works such as Piciarelli
[17] identified only complete trajectories and was unable to
label specific samples as anomalous.

III. APPROACH

A. Model extraction

We model a humanoid robot as a planar rigid-body system
in the sagittal plane whose equations of motion can be
written as a series of first-order nonlinear equations

q̇ = f (q, u) , (1)

where q ∈ Rnq defined in generalized coordinates is the state
of the system comprised of joint angles and velocities for the
robot; u ∈ Rnu contains the actuator commands (torques)
that are the controlled inputs to the system; together, q and
u are referred to as the trajectory of the system.

We define the trajectory of the system to be a new vector

x =

[
q
u

]
∈ Rnq+nu , (2)

where we use the subscript xj to represent a row in this
concatenated vector that is a component of the trajectory.

Each component of the trajectory xj contains a series of
measured data points

xj = {α1, α2, α3, . . . , αi} ∈ Rnxj , nxj
≤ T, (3)

where the samples αi are obtained for the duration of the
trajectory T . Here, we do not assume xj to be sampled
uniformly and hence the lengths nxj

are different for each
xj .

Let X denote a collection of k trajectories

X =
{
x(1), x(2), x(3), . . . , x(k)

}
∈ RnX , (4)

where we use the superscript x(k) to represent a single
trajectory in the collection. Combining notations, we use αijk
to denote the i-th sample from the j-th component of the k-th
trajectory.

2595

Given X , we seek to determine a model r(t) ∈ Rnq+nu

with components rj(t) that represents the k trajectories as a
single parametric function where 0 ≤ t ≤ 1. Let us assume
that rj(t) takes the form

rj(t) ≈
nxj∑
i=1

ψiφi(t) = ΨΦ(t), (5)

where Φ(t) is a set of basis functions and Ψ is a set of
corresponding coefficients. To determine Ψ, we formulate
an optimization problem to minimize the sum of the squared
distances between the points in the trajectories αijk and
rj(t), in the form

min
Ψ

nX∑
k=1

nxj∑
i=1

λi‖rj(t)− αijk‖2

+

p∑
m=1

∫
C

κm

∥∥∥∥dmr(t)dtm

∥∥∥∥2

dt, (6)

with an additional integral that is a regularization term of
the order p. Here, κm are nonnegative weights for the
regularization terms and λi are positive weights. In this
form, computing the coefficients Ψ is then a sequential
quadratic programming (SQP) problem [18]. We take a
similar approach but formulate the optimization problem
differently to yield a more efficient solution.

For clarity, we simplify the notations below by dropping
the subscripts to demonstrate how the parametric model can
be obtained for a single trajectory component. Let αi denote
a sample obtained at time ti and r∗ represent the model
constructed from a collection of N samples in time T .

First, we assume that the parametric representation of the
model r∗ to be in the form

ẋ∗ = Ax∗ +Bu∗

r∗ = Cx∗ (7)

that is both controllable and observable [19]. Here, the
matrices A, B, and C are non-unique and a canonical
example is

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1
a1 a2 a3 . . . an



B =


0
0
...
0
1

 C =
(

1 0 0 0 0
)
. (8)

This form of the system matrices along with the relative
degree assumption

CB = CAB = CA2B = CAn−2B = 0 (9)

ensures maximal smoothness for the output. The control
theoretic interpretation of (7) is to design a control law u∗

that “drives” an output trajectory close to a sequence of
data points αi at fixed times. This is in fact a smoothing
spline cast as an optimal control problem where we seek to
minimize the distance between the trajectory and the data,
which takes the form

min
u∗

J(u∗) =
N∑
i=1

wi(r
∗(ti)− αi)2

+ ρ

∫ T

0

u∗2(t) dt, (10)

subject to an affine constraint

r∗(t) = CeAtx∗0 +

∫ t

0

CeA(t−s)Bu∗(s) ds, (11)

where with x∗0 = 0, wi and ρ are positive weights. The
first term in (10) measures the distance between the solution
r∗(t) and the given data αi. The integral term in (10) and the
affine constraint in (11) ensures smoothness of the solution.
This interpretation is very similar to (6) but yields a more
efficient solution described below.

To simplify the subsequent notations, let

gti(t) =

{
CeA(ti−t)B t ≤ ti

0 otherwise
(12)

and Lti(u
∗) be a linear operator

Lti(u
∗) =

∫ T

0

gti(t)u
∗(t) dt. (13)

Rewriting (11), we have

r∗(ti) =

∫ T

0

gti(t)u
∗(t) dt = Lt(u

∗). (14)

Similarly for the objective function, we have

J(u∗) =

N∑
i=1

wi(Lti(u
∗)− αi)2 + ρ

∫ T

0

u∗2(t) dt. (15)

This optimization problem was shown to yield a unique,
global minimum in [20], in the form of the necessary
condition

N∑
i=1

wigti(t)(Lti(u
∗)− αi) + ρu∗(t) = 0. (16)

The solution of u∗(t) takes of the form

u∗(t) =
N∑
i=1

τigti(t), (17)

where τ = (τ1, τ2, . . . , τN) is a set of coefficients, which
can be determined by solving a set of linear equations

(DG+ ρI)τ = 0. (18)

Here, D is a diagonal matrix of weights and G is the Gramian

G =

 Lt1(gt1) . . . Lt1(gtN)
...

...
LtN (gt1) . . . LtN (gtN)

 (19)

2596

Effectively, (17) and (18) gives the final r∗(t), which can
be modified to take into account multiple trajectories in the
form of (5).

B. Anomaly detection

Given the parametric model r(t), we can compute the
tangent direction w(t) by

w(t) =
dr(t)

dt

/∥∥∥∥dr(t)dt

∥∥∥∥ . (20)

Let n(t) be the normal vector orthogonal to w(t). A data
point in the trajectory αi is similar to r(ti) if

(r(ti)− αi) ⊥ w(ti) (21)

and
‖r(ti)− αi‖ ≤ δ. (22)

The first condition implies that the point lies on the normal
vector and the second condition implies that the distance
from the point to r(t) is within a predetermined width δ.

Given the parametric model and a metric, there are many
methods available to classify whether a new observation is
an anomaly. We use the simple hypothesis testing framework
described in [16]. Let ζ be a set of points that are in a similar
position to r(t). Let µ and σ be the mean and covariance of
ζ. We label a point αi as anomalous if

(αi − µ)Tσ−1(αi − µ) > χ2
β , (23)

where χ2
β is the p-value at a significance level of β for a χ2

distribution. We assume that the data follow a multivariate
normal distribution.

IV. EXPERIMENTAL RESULTS

A. Setup

To validate the proposed anomaly detection system, we
designed several experiments in the Gazebo simulation envi-
ronment with a model of the Atlas humanoid robot (Fig. 1)
used in the DARPA Robotics Challenge. The simulation
environment and the associated models can be found in the
DRCsim package, which is freely available on the web [21].
The simulation data and animations can be found at [22].

As a baseline, we designed a simple forward walking
behavior and used 10 recorded joint trajectories to train
the detector. In the results below, we illustrate detecting
anomalies in inertial properties, actuator parameters, and
high-level behaviors such as falling.

We used a simplified model of the robot that contained 32
degrees of freedom with a 96-dimensional state trajectory
(torque inputs & measured joint positions and velocities),
with other computed values such as the positions and ve-
locities of the center-of-mass (CoM). Because the upper
body of the robot was mostly unused during basic walking,
we focused on detecting anomalies in the lower body. In
the experiments below, we show a subset of interesting
trajectories in the full state detector.

All experiments were conducted on a 64-bit system using
a Core i7 2.8GHz machine with 16GB of RAM. While the

model extraction step was meant to be executed offline, it can
be done in real time for sufficiently small number of training
trajectories (10 trajectories in the experiments below).

B. Detecting changes in inertial properties

We designed a simple periodic walking behavior where the
robot began by standing at rest, took a prescribed number of
steps forward, then came to a complete stop. Fig. 2 shows
the trajectory of the link l lleg in the left leg of the Atlas
robot under normal walking and the torque output for the
corresponding joint l leg kny under a 1 kHz control loop. The
trajectories have different resolutions since there are missing
measurements throughout the data. Because the start and end
time of multiple trials are slightly different, the trajectories
also become time-shifted and truncated differently.

0 5 10 15 20 25

0.8

1

1.2

1.4

1.6

1.8

Time

Jo
in

t P
os

iti
on

 [r
ad

]

0 5 10 15 20 25
−200

−150

−100

−50

0

Time

To
rq

ue
 [N

m
]

Fig. 2. Trajectory of the link l lleg in the left leg of the Atlas robot under
normal walking and the torque output for the corresponding joint l leg kny.

After obtaining a set of 10 normal walking trajectories,
we introduced an anomaly by artificially tripling the mass of
the l lleg link from 4.367kg to 13.101kg. This represented
a physical change to the robot unknown to the controller
that is not severe enough to to be easily detected visually by
examining the walk. As shown in the outputs Fig. 3 and
Fig. 4, the walking controller compensated by increasing
the torque output on the joint l leg kny, which resulted in
a slightly different walk. By looking at the trajectories at the
joint level, the detected anomalous trajectory (red) is easily
distinguished from the normal profiles (blue).

C. Detecting changes in actuator parameters

In this scenario, we altered the parameters for the actuator
at the joint l leg kny by increasing the damping coefficient
(from 1 to 20) and adding friction (from 0 to 20). This
represented a typical degradation in the actuators and is also

2597

0 5 10 15 20 25
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Time

Jo
in

t P
os

iti
on

 [r
ad

]

Fig. 3. Blue: 10 trajectories of the position (rad) of the joint l lleg. Red:
detected anomaly after tripling the mass of the l lleg link from 4.367kg to
13.101kg.

0 5 10 15 20 25
−200

−150

−100

−50

0

Time

To
rq

ue
 [N

m
]

Fig. 4. Blue: 10 trajectories of the torque output of l leg kny (Nm). Red:
detected anomaly after tripling the mass of the l lleg link from 4.367kg to
13.101kg.

a small variation that cannot simply detected through the
high-level behaviors of the robot. Fig. 5 shows the result of
the detection where in the joint positions of the l lleg link,
the anomaly (red) is easily distinguished from the normal
profile (blue).

D. High-level detection - falling due to tripping

The previous example of anomaly detection in the joint
space of the robot was geared primarily towards low-level
detection of miscalibrated sensors and degraded actuators.
The proposed approach is also capable of identifying high-
level behaviors by examining the relevant parameters. Here,
we give an example of identifying falling while walking by
implementing the proposed detector on the CoM position,
which is a trajectory calculated using the joint angles and
the forward kinematics of the robot, assuming one foot on

0 5 10 15 20 25
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Time

Jo
in

t P
os

iti
on

 [r
ad

]

Fig. 5. Simulated anomaly in the joint l leg kny after increasing the
damping coefficient (from 1 to 20) and adding friction (from 0 to 20).
Detected anomaly (red) in the profile of the joint positions (rad) in the
l lleg link.

the ground.
Fig. 6 shows the vertical CoM (COM-y) position for the

walking gait, which followed a sinusoidal pattern as the CoM
sways. 10 trajectories were generated to train the detector
(shown in blue), which was then used to identify a fall (red),
where there is a significant downward movement in the CoM-
y position until the robot was on the ground. Fig. 7 shows
the corresponding plot for the CoM velocity in the vertical
direction.

V. CONCLUSIONS

In this paper, we presented a method of anomaly detection
for humanoid robots that operated on trajectories in the joint
space. Unlike previously proposed systems in this domain
that emphasized detection for high-level faults such as trip-
ping, slipping, and falling, we focused on detecting subtle
defects in the robot due to degradation and miscalibration,
which appeared in the form of joint-level deviations. Using
a semi-supervised system which extracted a model using
optimization, our system was able to train on trajectories
that were incomplete, shifted, and varying in resolution,
encountered frequently in real-world experimental data for
humanoids. Through the experimental results, we demon-
strated detection of both joint-level anomalies and behaviors
such as falling.

Our approach was semi-supervised in that we only trained
the detector on good data, which required the operator to
ensure that the robot was perfectly calibrated at the time
of acquiring the training set. This is not always a realistic
assumption and one future direction is to improve the robust-
ness of the detector with respect to bad data in the training
set. In addition, we have not addressed the use of unlabeled
data in the model extraction, which could further be used to
enhance the availability of data and make the training setup
easier.

2598

0 5 10 15 20 25

−0.1

−0.05

0

0.05

0.1

Time

C
oM

−y
 P

os
iti

on

Fig. 6. The vertical Center-of-Mass (CoM-y) position during walking.
Detected anomaly (red) as the robot falls to the ground, resulting in a large
downward movement in the CoM-y position.

0 5 10 15 20 25

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time

C
oM

−y
 V

el
oc

ity

Fig. 7. Velocity of the vertical Center-of-Mass (CoM-y) during walking.
Detected anomaly (red) as the robot falls to the ground, resulting in a large
downward movement in the CoM-y velocity.

Our immediate future goal is to implement the proposed
method on a real humanoid robot. While the simulation
results we have presented here contained very realistic data,
real-world experiments contain a wider range of noise,
disturbances, discontinuities, etc. Further testing is needed to
validate the performance of the proposed anomaly detector
in the context of these external factors.

ACKNOWLEDGMENTS

We thank Weiwei Huang and Siyuan Feng for their
assistance in setting up the simulation of the Atlas humanoid
and other colleagues at CMU for their valuable comments
on an earlier version of the paper.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58,
2009.

[2] R. Renner and S. Behnke, “Instability Detection and Fall Avoidance
for a Humanoid Using Attitude Sensors and Reflexes,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct.
2006, pp. 2967–2973.

[3] J. G. D. Karssen and M. Wisse, “Fall Detection in Walking Robots by
Multi-Way Principal Component Analysis,” Robotica, vol. 27, no. 02,
pp. 249–257, 2009.

[4] S. Kalyanakrishnan and A. Goswami, “Learning to Predict Humanoid
Fall,” International Journal of Humanoid Robotics, vol. 8, no. 2, pp.
245–273, June 2011.

[5] J. Wang, E. C. Whitman, and M. Stilman, “Whole-Body Trajectory
Optimization for Humanoid Falling,” in American Control Conference,
2012, pp. 4837–4842.

[6] K. Lynch, D. M. Lofaro, and P. Oh, “A N-Dimensional Convex Hull
Approach for Fault Detection and Mitigation for High Degree of
Freedom Robots Humanoid Robots,” in International Conference on
Control, Automation and Systems, 2012, pp. 790–797.

[7] M. Brodie, S. Ma, G. Lohman, L. Mignet, M. Wilding, J. Champlin,
and P. Sohn, “Quickly Finding Known Software Problems via Auto-
mated Symptom Matching,” in International Conference on Autonomic
Computing, 2005, pp. 101–110.

[8] Z. Fu, W. Hu, and T. Tan, “Similarity Based Vehicle Trajectory
Clustering and Anomaly Detection,” in IEEE International Conference
on Image Processing, 2005, pp. II–602–5.

[9] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A System for
Learning Statistical Motion Patterns,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1450–1464,
2006.

[10] R. Fujimaki, T. Yairi, and K. Machida, “An Approach to Spacecraft
Anomaly Detection Problem Using Kernel Feature Space,” in ACM
SIGKDD Conference on Knowledge Discovery and Data Mining.
New York, NY, USA: ACM, 2005, pp. 401–410.

[11] P. Goel, G. Dedeoglu, S. I. Roumeliotis, and G. Sukhatme, “Fault
Detection and Identification in a Mobile Robot Using Multiple Model
Estimation and Neural Network,” in IEEE International Conference
on Robotics and Automation, 2000, pp. 2302–2309 vol.3.

[12] W. Hu, D. Xie, T. Tan, and S. Maybank, “Learning Activity Patterns
Using Fuzzy Self-Organizing Neural Network,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 34, no. 3, pp. 1618–1626, 2004.

[13] S. Jakubek and T. Strasser, “Fault-Diagnosis Using Neural Networks
with Ellipsoidal Basis Functions,” in American Control Conference,
2002, pp. 3846–3851 vol.5.

[14] B. T. Morris and M. M. Trivedi, “Learning, Modeling, and Classifica-
tion of Vehicle Track Patterns From Live Video,” IEEE Transactions
on Intelligent Transportation Systems, vol. 9, no. 3, pp. 425–437, 2008.

[15] F. I. Bashir, A. A. Khokhar, and D. Schonfeld, “Object Trajectory-
Based Activity Classification and Recognition Using Hidden Markov
Models,” IEEE Transactions on Image Processing, vol. 16, no. 7, pp.
1912–1919, 2007.

[16] O. Rosen and A. Medvedev, “An On-Line Algorithm for Anomaly
Detection in Trajectory Data,” in American Control Conference, 2012,
pp. 1117–1122.

[17] C. Piciarelli, C. Micheloni, and G. L. Foresti, “Anomalous Trajectory
Patterns Detection,” in International Conference on Pattern Recogni-
tion, 2008, pp. 1–4.

[18] L. Fang and D. C. Gossard, “Multidimensional Curve Fitting to
Unorganized Data Points by Nonlinear Minimization,” Computer-
Aided Design, vol. 27, no. 1, pp. 48–58, 1995.

[19] W. L. Brogan, Modern Control Theory, 3rd ed. Prentice Hall, 1990.
[20] S. Sun, M. B. Egerstedt, and C. F. Martin, “Control Theoretic

Smoothing Splines,” IEEE Transactions on Automatic Control, vol. 45,
no. 12, pp. 2271–2279, 2000.

[21] [Online]. Available: http://gazebosim.org/wiki/DRC/
[22] [Online]. Available: http://jw.nebulis.org

2599

