
2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 6013

[11] Kolling et al. introduced a formalism and algorithms

to coordinate the motion of robots moving on sweep lines,

reusing prior graph-based approaches [15]. The time it takes

to execute these strategies was first evaluated in simulations

in [9], revealing considerable potential for improvements. We

shall discuss the connection to this work in more detail in

Section III.

Other work that considers line-based abstractions is [5].

Therein Efrat et al. consider an approach where multiple

UAVs, each with an unlimited range sensor, are arranged

in a single movable polygonal chain operating in a sim-

ply connected environment. Their algorithm for computing

motion strategies runs in O(n3), an improved version of

the algorithms runs in O(n2) time [17]. Another similar

approach that assumes limited sensing range is presented

in [1] where the authors present a system where multiple

UAVs trap faster intruders, once they detect them, by forming

a surrounding chain. Also closely related to our work,

Durham et al. presented a distributed algorithm guarantee-

ing complete coverage of the frontier between cleared and

contaminated areas during expansion [4].

To the best of our knowledge no work considering the fast

execution of guaranteed search strategies has been pursued

in the robotics community. The closest related work is [8]

which minimizes distance by improving the average-case

performance for non-adversarial motion models.

III. SEARCH STRATEGIES WITH LINES

In this section we briefly describe the basics of our line-

based search approach, first presented in more detail in

[16] and [11]. The goal is to find an unknown number

of targets in an environment represented by a polygon,

grid, or elevation map. For this paper we assume a simply-

connected 2D polygon. In [16] it was shown how to apply

the resulting strategies to multiply-connected and even 2.5D

environments and the same approach can be applied for

the fast strategies we compute here. Regarding the tar-

gets, we make the same assumptions as is customary for

pursuit-evasion problems, namely that targets are evaders

moving at unbounded speed, are omniscient and are able

to evade the searcher optimally. As a consequence targets

can conveniently be represented with contamination which

is cleared by the searcher as they proceed to clear the

environment. Contamination spreads immediately whenever

possible, simulating the fact that omniscient and fast targets

will exploit any possibility to move into areas not covered

by sensor or obstacles. Contamination simplifies the target

model and allows the efficient computation of strategies

at least for simply-connected environments [15], [16]. In

our line-based approach searchers clear the environment by

moving together on sweep lines, necessitated by the limited

sensing range. These sweep lines are simply lines between

the obstacle boundaries of the environments. As a sensor

we assume a circular footprint, such as a downward facing

camera of a UAV, with a radius rs. The environment is given

by a simply-connected polygon P = {v1, . . . , vn}, with n

vertices and edges, written ei = [vi, vi+1], i = 1, . . . , n. The

indices of the obstacles, i.e., the polygon edges, are assumed

to be circular and we identify i+ n with i.

The original formulation of this approach in form of

the Line-Clear problem was given in [11]. Therein any

number of sweep lines can be placed in the environment and

moved around to clear more of it. To minimize the number

of searchers needed to cover these lines with their sensor

footprint, however, it is was shown it suffices to consider

strategies that move at most one line at any time. This

approach was adopted in all subsequent work on line-based

search, namely [13], [14], [16]. In order to enable fast line-

based search we have to consider the concurrent motion of

multiple sweep lines. In the following, we will first describe

sequential strategies, such as the one computed in [16] and

then show how to parallelize these, possibly using additional

searchers.

Suppose we are given a line-based search strategy, e.g.

computed by the algorithm from [16]. It was shown therein

that such search strategies can be represented by an obstacle

index sequence, o1, . . . , on containing all indices from P .

The search strategy proceeds by first setting up a sweep

line between obstacles o1 and o2, and then subsequently

splitting the sweep line on the next obstacle index in the

sequence. This is best illustrated with an example, seen in

Fig. 2. The corresponding obstacle sequence for the strategy

shown therein is {o1 = 2, o2 = 3, o3 = 4, o4 = 17, o5 =
1, o6 = 18, o7 = 22, o8 = 19, o9 = 21, o10 = 20, o11 =
5, o12 = 16, o13 = 6, o14 = 7, o15 = 11, o16 = 10, o17 =
8, o18 = 9, o19 = 12, o20 = 15, o21 = 13, o22 = 14}
computed with the sensing range rs shown in Fig. 2. The

procedure for splitting an existing sweep on a new obstacle

is quite simple. For the computation of the strategy a point

on the new obstacle that minimizes the cost of the split in

terms of the number of searchers was computed. The existing

sweep line is simply moved towards this point and then split

into two sweep lines. One or both of these sweep lines can

be of zero length if the obstacle indices are adjacent. If both

are zero, then then no new sweep lines are formed. This

procedure is described in more detail in [16].

Another representation of this strategy that is more conve-

nient for our purposes is as a surveillance tree. Surveillance

trees were introduced in [15] and are trees T = (V,E) with a

set of vertices V and edges E ⊂ V ×V and a weight function

w : V × E :→ N that associates a cost to each vertex and

edge. This cost represents the number of robots needed to

clear a vertex and block an edge. Hence, the surveillance tree

can represent the cost of the block lines in the environment

and the cost of the split by associating blocks to edges and

splits to vertices. We construct such a surveillance tree by

creating a node in V for every os and using c(os), the cost

of splitting a sweep line on obstacle os at step s in the

obstacle sequence, as its weight. The edges are given by

the progression of the sweep lines and their weights b(os)
for the cost of the blocking sweep line prior to the split. This

simple construction is illustrated in Fig. 3 for the example

environment from Fig. 2.

The representation as a surveillance tree describes the

6014

6015

6016

6017

6018

