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Abstract— We study multi-robot caravanning, which is loosely
defined as the problem of a heterogeneous team of robots
visiting specific areas of an environment (waypoints) as a
group. After formally defining this problem, we propose a novel
solution that requires minimal communication and scales with
the number of waypoints and robots. Our approach restricts
explicit communication and coordination to occur only when
robots reach waypoints, and relies on implicit coordination
when moving between a given pair of waypoints. At the heart
of our algorithm is the use of leader election to efficiently
exploit the unique environmental knowledge available to each
robot in order to plan paths for the group, which makes it
general enough to work with robots that have heterogeneous
representations of the environment.

We implement our approach both in simulation and on a
physical platform, and characterize the performance of the
approach under various scenarios. We demonstrate that our
approach can successfully be used to combine the planning
capabilities of different agents.

I. INTRODUCTION

Multi-robot coordination, especially among heterogeneous

robots, is becoming commonplace in robotics applications

including swarming, flocking, task cooperation, and more.

In scenarios such as collaborative surveillance [16], robot

soccer [25], and search and rescue [21], heterogeneity

presents an advantage because it allows robots with different

capabilities to cooperate in manners that homogeneous robot

groups cannot. However, communication, coordination [26],

and robust task execution [7] among such groups present

challenges such as determining what information needs to

be combined and how to do so. In this paper, we explore

these benefits and challenges in the context of multi-robot

caravanning, the problem of directing a team of robots to

cooperatively visit a sequence of areas of interest (waypoints)

in an environment and in a manner that ensures that the

robots stay together at all times.

The problem of multi-robot caravanning is inspired by

the historical role of caravans – collections of travellers

journeying together across potentially hostile territory – in

human commerce and societal development. For humans,
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travelling in groups offers benefits such as the distribution

of payload among individuals, the sharing of resources such

as food and water, and more efficient management of work

such as cooking or herding. In addition, it offers safety in

numbers against adversarial threats, and allows individuals to

better cope with harsh climates or rough terrain. We explore

the benefits of caravanning in a robotics context, considering

what a team of robots can gain by travelling together as a

caravan to complete shared tasks.

Caravanning arises in scenarios where robots must move

from task to task together, cooperating as a unit in order to

complete each task. For instance, in a collaborative object

transport task [13], a group of robots must cooperate to

move a large object, such as a disaster victim [13], from one

location to another. The combined effort of multiple identical

robots is required to complete the task, i.e., a single robot

is insufficient. In other scenarios, groups of heterogeneous

robots cooperate by combining capabilities to complete tasks

that could not be completed by multiple instances of just

one type of robot. An example of this is demonstrated in

a highway maintenance task [12], where a group of simple

robots serves as safety markers, while a more sophisticated

leader with global knowledge is responsible for guiding the

other robots to their positions.

After we formally define the problem, we propose a

novel approach to the multi-robot caravanning problem that

efficiently exploits the individual knowledge of the robots to

benefit the group. The cornerstone of our approach is the

use of leader election in conjunction with leader following.

The former exploits the differing environmental information

of the robots to decide which robot should become the

leader, and the latter specifies how robots should follow a

leader in order to move from one waypoint to the next.

Our solution requires limited communication and sensing

ability, and works in scenarios where robots have different

representations of the environment.

We make the following contributions:

• A formal definition of and a scalable solution to the

multi-robot caravanning problem that requires minimal

explicit communication and sensing ability.

• A novel application of leader election to exploit hetero-

geneity in representation, which is applicable to robots

whose representations are incomplete and/or generated

in a distributed manner.

• An implementation of the proposed approach both in

simulation and on physical robots, and an empirical

characterization of its performance.
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II. RELATED WORK

A. Motion Planning

Motion planning is the problem of finding a valid path

through an environment from a start location to a goal

location. Many methods have been proposed to solve this

problem [15], [17]. More recently, sampling-based motion

planning has shown great success. Probabilistic roadmaps

(PRMs) [15] are one class of sampling-based motion plan-

ners. In these methods, an approximation of the space is

constructed using a graph (the roadmap) whose nodes are

randomly sampled configurations of the planning space,

and whose edges represent valid simple pathways between

the various points. After the map is constructed, it can

be queried for paths. Numerous variations on the basic

technique address improving sample quality with heuristics

(such as generating nodes close to obstacles [2] or in regions

of high clearance [29]), quality [14], handling non-holonomic

constraints [17], accounting for uncertainty [1] and so on.

A robot’s representation of the environment is an ap-

proximation of its configuration space that incorporates the

observations and information available to it and determines

the actions it can take. We say two robots are representation

heterogeneous if their representations constitute different ap-

proximations of the environment. An important consequence

of random sampling in the construction of Probabilistic

roadmap (PRM) representations is that two roadmaps rep-

resenting the same environment are usually topologically

different and return homotopically different paths. The use of

different sampling methods, local planners, and construction

strategies [19], [27] introduces even more variability. The

heterogeneity that naturally arises in constructing PRMs

makes them an excellent focus for considering representa-

tional heterogeneity in this work.

B. Coordination of Multiple Agents

Probabilistic roadmap methods have been extended to de-

fine a collection of robots as a single configuration [24]. This

generalizes the planning space to include all robots. Although

powerful if agents share global information, this technique

is not robust to failure because any change in the available

set of robots causes a change in the dimensionality of the

planning space, necessitating the complete reconstruction of

the roadmap. It also suffers from the curse of dimensionality

— as the number of robots increases, the planning space

becomes infeasibly large.

The problem of sensing-heterogeneous robots inspecting

every point of a cluttered environment’s boundary is con-

sidered in [28]. A graph is used to represent regions in the

environment, where a node represents a visibility region of

an obstacle and an edge represents the overlap between two

visibility regions. The regions themselves are determined by

the robots’ sensing capabilities. In contrast to our scenario,

this graph representation is shared and complete. Moreover,

agents are not required to stay together; rather, the only

requirement is that all points on the boundary must be visited.

One important class of approaches to multi-agent move-

ment is flocking [22]. In most flocking models, there is an

attractive force to the center of the group (cohesion) com-

bined with a separation force (avoiding inter-agent collisions)

and an alignment force to allow the group to show cohesive,

coordinated movement. This method has been successfully

applied to roadmaps in a centralized manner for simulation

[4] and in a centralized robotic setup for heuristic approaches

to pursuit-evasion techniques [23].

C. Leader Following

A leader-follower behavior [7], [8] is a case of coordinated

movement in which an agent leads a group of agents, and

one or more followers attempt to follow the leader agent.

This technique has applications in formation control [9],

multi-robot planning [3], and cooperative task execution [12].

Generally, a follower’s goal is to stay within a given distance

of the leader and adjust its relative angle such that the leader

remains within the follower’s field of view. We utilize this

technique as a coordination mechanism in the caravanning

problem.

The current state of the art in cooperative movement [7],

[12] assumes that all robots have global knowledge or that

robots with global knowledge are designated as leaders

beforehand. For instance, in [12], the leader is assumed to

have global knowledge and precision positioning, e.g., using

GPS, while followers use only simple sensors and perform

simple computation to follow the leader. In this approach, it

is impossible to recover from a failure of the leader.

In contrast, our approach requires none of the robots to

have global knowledge, and any robot could be elected the

leader (provided it has sufficient environmental information

to find a path between a given pair of waypoints). Thus,

our approach advances the state of the art by generalizing to

scenarios in which all robots have incomplete or overlapping

information. Moreover, while prior approaches typically ad-

dress the problem of how to follow the leader effectively, we

focus on who should become the leader based on the robots’

representations.

D. Leader Election

Leader election is the task of selecting a coordinator from

a group of entities. Such a task is often seen in the distributed

computing community, however it has many applications

in distributed robotics as well. In our example, at each

waypoint a leader should be selected to lead the group to

the next waypoint. Although many algorithms have been

proposed to perform election, we use a variation of the Bully

Algorithm [10] for its simplicity, limited communication, and

asynchronous nature.

Leader election is applied to flocking in [6]. The approach

combines a distributed leader election algorithm with a

flocking behavior in which followers move according to the

leader’s actions. The focus of the paper is achieving leader

election with no explicit communication. In contrast, we

assume communication is still allowed, and the purpose of

leader election using path metrics is to serve as a cheap

substitute to fully broadcasting paths or representations.
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Moreover, prior approaches that employ leader election

typically use randomization or relative positioning to elect a

leader. For instance, in [6], the robot with the smallest angle

to its two closest neighbors becomes the leader. In contrast,

we elect a leader based on a path metric. In this case, the

robot with the best path to the next waypoint is elected the

leader. Paths can be ranked by shortest distance, smoothness,

or highest clearance, etc. This is the mechanism by which

robots exploit redundancy in information in a manner that

is efficient and which allows them to use the best available

information.

III. THE CARAVANNING PROBLEM AND ALGORITHM

A. Problem Definition

In this section, we define the multi-robot caravanning

problem, as well as related concepts such as the environ-

mental representation and path.

Definition 1. A path is a sequence of valid configurations

connecting a given start and goal configuration.

Definition 2. A representation is a data structure, or collec-

tion of data structures, that an individual robot can query to

obtain a path from a start position to a goal position such

that if the robot follows the path it will be guaranteed to

arrive at the goal within a finite expected time.

The representation is assumed to include a source of

observations that the robot can use to verify that it has arrived

at its goal and has not collided with an obstacle.

Definition 3. A representation is incomplete if there exists

a start and goal in the environment for which it is unable to

return a valid path for the robot to transition from the start

to the goal, even though such a path exists.

Definition 4. Two robots are representation heterogeneous

if there exists a start and goal pair for which their respective

representations return different paths.

Note that by this definition, two robots are also represen-

tation heterogeneous if one representation returns a path but

the other fails.

Definition 5. A waypoint is a coordinate in the robot’s

configuration space.

A group of robots may share a set of waypoints that rep-

resent, for instance, task locations or locations that must be

inspected. We assume each waypoint is reachable, i.e., there

exists a path to it from every portion of the environment.

However, the robot’s environmental representation may be

incomplete for some or all of the waypoints.

Definition 6. A caravan is a group of robots that operate

while meeting a visibility or cohesion constraint that applies

to the group.

The constraints may require, for example, that all robots

in the group stay within a predefined distance of one another

or to the group’s centroid. In our implementation, each robot

must be able to see at least one other robot, and the graph

of visibility between robots must not be disjoint. Robots that

have failed are not considered part of the group.

We are now ready to define the multi-robot caravanning

problem:

Definition 7. Given a group of n representation heteroge-

neous robots r = 〈r1, r2, . . . , rn〉, and a set of waypoints

W = 〈w1, w2, . . . , wm〉, the multi-robot caravanning (MRC)

problem is to generate a valid path for each ri to visit all

the waypoints in W such that the robots visit each waypoint

as a caravan.

Informally, the MRC problem is the problem of planning

for a group of agents to visit a sequence of locations

(waypoints) in the environment as a group.

B. Approach

We propose a novel solution to the MRC problem. Our

solution divides the MRC problem into stages. At each stage,

a leader is elected and a leader following approach is used

to move robots from one waypoint to the next. The novelty

of our approach lies in the application of leader election to

decide which robot should become the leader. For every pair

of waypoints in the sequence, the robot with the “best” path

according to some metric (for instance, lowest path length or

highest path clearance) becomes the leader. The other robots

follow the leader until the next waypoint, where the process

is repeated.

Prior approaches that perform leader following tend to

differentiate between leaders and followers offline, based on

heterogeneity in capabilities [7]. For instance, followers have

just enough sensing and communication ability to localize

themselves with respect to the leader so that they can

follow it, while the leaders have more sophisticated global

knowledge [12]. Moreover, prior approaches that perform

leader election either elect a random robot as the leader, or

rely on robot IDs (e.g., selecting the robot with the lowest

or highest ID) or relative positions [6].

In contrast, we perform leader election both dynamically

and in a problem-specific manner. Doing so has several

benefits:

• The use of a path metric in performing leader election

allows us to handle scenarios in which robots have

different, even incomplete, representations of the en-

vironment. This scenario arises frequently in problems

that involve generating or storing the representation in

a distributed manner.

• Limited communication is required since robots com-

municate solely at waypoints and never communicate

their representations or paths to one another; only the

path metric is communicated.

• Our solution can exploit overlap between representa-

tions. If a robot with the best path has already failed

or been lost, the one with the next best path will be

elected.
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C. Algorithm

Algorithm 1 Agent Algorithm Overview

Input: Waypoints W = 〈w1, w2, . . . , wm〉, Roadmap R

1: for all wk ∈ W do

2: p = R.F indPath(wk, wk+1)
3: result = ElectLeader(p)
4: if result == “leader” then

5: SwitchLeader()
6: Traverse p while localizing

7: Call for leader election

8: else

9: repeat

10: FollowLeader()
11: until Leader election call

12: end if

13: end for

The overall algorithm is shown in Algorithm 1 (failure

conditions omitted). Each stage can be explained in terms

of three steps: leader election, leader switching, and leader

following.

In the Leader Election step, one robot that knows a path

between the current and next waypoint is chosen as the

leader and will be responsible for traversing its path. In the

Leader Switching step, the newly elected leader travels to a

designated position near the current waypoint, from which it

will begin to traverse its path. In the Leader Following step,

all other robots follow the leader by maintaining a constant

position and orientation relative to it. We now explain these

steps in detail.

D. Leader Election

Algorithm 2 ElectLeader

1: Broadcast ID and path metric

2: Receive M as a map of IDs to path metrics

3: bestID = arg maxid∈M M [id]
4: if bestID ≡ myID then

5: Broadcast end of leader election

6: return leader

7: else

8: return follower

9: end if

In the first step, one robot is selected (the leader) that

will be assigned the responsibility for executing a plan

from waypoint wk to waypoint wk+1. This is achieved

using a slightly modified version (Algorithm 2) of the Bully

algorithm [10] for leader election. First, each robot queries its

environmental representation for a path between waypoints

wk and wk+1. It then broadcasts a path metric based on the

result of its query to the other robots, together with its ID.

If no robot finds a valid path (i.e., all robots broadcast an

invalid metric), the algorithm terminates and returns failure.

If exactly one robot finds a path, it is elected the leader by

default. If two or more robots find a path, the one with the

better path metric is elected leader. In case of a tie, the robot

with the lower ID is chosen. The path metric is any scalar

value that summarizes the quality of the candidate path. In

this work, we choose to use path length as the metric; the

shortest path is the most desirable. Other possible metrics

include path clearance, path smoothness, etc.

E. Leader Switching

If an agent decides that it has been selected to be the

leader, it will need to move to a designated leader position. In

our implementation, it creates a Rapidly-exploring Random

Tree (RRT) [18] from its current position to a position along

the path between the current waypoint wk and the next. Next,

the robot traverses the path provided by the RRT and turns

to face the waypoint. As explained in Section III-F, this step

is necessary to update the formation that the robots assume

in the leader following step.

The leader switching process is outlined in Algorithm 3.

All other robots remain stationary until the leader has suc-

cessfully reached its designated position or notified them of

failure. The leader initially creates the RRT plan without tak-

ing into account any of the other robots’ positions. However,

as each robot is seen for the first time, the leader updates

its list of obstacles to include the new agent. The leader re-

evaluates its RRT before it continues to move along it; if

any point is in collision because of a change to the list of

obstacles, a new RRT is created from the leader’s current

position. At the end of the leader switch, the robots that

were added to the obstacle list are removed. If the leader is

unable to find a path, it notifies the other robots that it has

failed and the algorithm terminates with failure.

Algorithm 3 SwitchLeader

Input: Waypoint w
1: repeat

2: g = CreateGoal(w)
3: s = GetCurrentPosition()
4: P = GetRRTPath(s, g)
5: for all p ∈ P do

6: V = GetNewlyV isibleRobots()
7: for all v ∈ V do

8: O = O ∪ AddTempObstacle(v)
9: end for

10: if IsInCollision(p, O) then

11: break

12: else

13: MoveToPoint(p)
14: end if

15: end for

16: until AtGoal(g)
17: RemoveTempObstacles(O)

F. Leader Following

In the leader following step, the leader executes the plan by

following its queried path. All other robots move relative to
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the leader while attempting to maintain visibility to it or one

another. At the start of this step, we maintain the invariant

that the visibility graph of active robots (i.e., all robots that

have not failed) is connected and at least one robot is at or

near the current waypoint. The nodes of the visibility graph

are robots, and there is an edge between every pair of robots

that can observe one another.

A number of different flocking or formation techniques

could be employed at this stage. We employ a simple leader-

following approach in which robots form a chain that is

headed by the leader. Each robot tracks the one in front of it

(its target) and attempts to visit each position its target does.

This approach has several advantages over other flocking

techniques. Firstly, each robot attempts to follow a path along

the leader’s roadmap, which is known to be valid at least for

the leader. This also means robots need not employ any kind

of obstacle sensor. Moreover, this technique is scalable to a

large number of robots since each robot’s movements depend

only on its observations of the robot in front of it (and are

therefore independent of the number of robots in the chain).

This step ends when the next waypoint is reached.

IV. IMPLEMENTATION

A. Robot Platform

The robot platform we use is an Asus Eee PC netbook

equipped with an on-board webcam and wireless networking

capability, mounted on an iRobot Create (Figure 1) that we

control through the Player robot interface [11].

The camera has a maximum resolution of 640x480 pixels.

The Creates are two-wheel differential drive unicycle robots

with a maximum speed of about 0.5m/s and a minimum

speed of about 0.1m/s, below which their motion is highly

unreliable. Internal robot odometry information is highly

inaccurate, especially when rotating, and at particular speeds.

To compensate for this, we require accurate observations of

environmental features.

Fig. 1. iRobot Create with mounted Eee PC netbook for webcam
use. Markers placed around the robot are used by neighboring robots to
determine relative position and orientation

B. Localization and Robot Detection

We rely on frequent localization using visual markers. For

robust marker creation and detection, we utilize the ArUco

marker detection library from the University of Córdoba [20].

Markers are placed along the walls in the environment at

roughly regular intervals. Each marker has a known unique

ID, and known absolute position and orientation in the

environment. Robots localize themselves by calculating their

relative pose to the markers and transforming it into global

coordinates based on the markers’ known positions and

orientations. Markers are also used by robots to detect other

robots’ poses. For this purpose, each Create’s perimeter is

covered with markers whose relative positions to its centroid

are known.

The movement of each robot’s camera relative to both

wall markers and markers on other robots introduces camera

blur, leading to intermittent failures in observations. To

mitigate this, every movement of the robot is accompanied

by a brief period in which the robot is stopped, but still

making observations. Typically, each robot will stop for 0.1s
after every 0.15m of movement. This temporarily minimizes

camera blur, allowing the robot to make observations of both

wall markers and other stopped robots.

C. State Estimation

An Extended Kalman Filter (EKF) is used to estimate the

robot’s state, accounting for uncertainty in both movement

and sensor observations. Motion uncertainty is caused by

uneven tiles on the floor of the environment, slippage of

the wheels, and variations in the length of time controls

are applied. Observation uncertainty results from variations

in the intrinsic parameters of the netbook cameras, latency

between the movement of the robot and the detection of the

next image, and intermittent failures in observation due to

motion blur of the camera.

The intermittent failures in observation described in IV-B

lead to an increase in the covariance of the state estimate

maintained by the EKF. To correct for this, when the co-

variance is sufficiently high, an information gathering phase

is executed. The leader stops, rotates until it can detect a

marker a wall marker, and updates its state estimate using

the EKF until the error covariance is acceptably low before

continuing towards its previous goal.

D. Communication

A number of steps in our proposed algorithm involve

communication, such as the broadcast of path metrics during

leader election. Our algorithm involves a distributed commu-

nication model, i.e., each robot can communicate with any

other robot independently. However, at present the messages

are routed through a central server to which any robot can

connect or disconnect. For simplicity, we do not consider

communication failures in this work.

E. Simulation

In addition to physical robots, we have implemented our

proposed approach in simulation. The particular challenges

we faced with the physical robots informed the design

constraints of our simulation. Significant elements of our

approach such as the leader election method and the flocking

technique were chosen partly because they were compatible

with the idiosyncrasies and limitations of the hardware and

environment available to us. This made our simulation much

better at predicting how changes to our algorithm would

affect the behavior of the physical robots.
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V. EXPERIMENTS

In this section, we describe the experiments we use to

assess the feasibility of our approach. We run a variety ex-

periments, some in simulation and some on physical robots,

to study different aspects of our solution.

A. Experimental Setup

The environment used for testing is the fourth floor of

the Bright (HRBB) Building of Texas A&M’s campus in

College Station, TX. A floorplan can be seen in Figure 2.

The floor spans 40m of hallways 2m wide on average. In the

simulation experiments, a 2D model of this environment is

used. In all experiments, robots are required to visit a set of

waypoints in a prescribed order (all robots start at or near

a waypoint). In order to visit a waypoint, a robot must be

able to query its roadmap for a path to the waypoint from

the previous waypoint. The experiments test the ability of

the robots to cooperate using the caravanning approach in

order to visit every waypoint. A robot is successful if it can

visit all the waypoints and does not collide with obstacles.

The waypoints are known beforehand and common to all the

robots, but do not influence the construction of each robot’s

roadmap.

Fig. 2. HRBB Fourth Floor Floorplan with hallways highlighted blue

B. Success rate metric

The success rate is a measure of the percentage of way-

points a chain of robots manages to successfully visit. There

are numerous possibilities for failure during the course of

the experiment:

• A given Leader Following robot may lose track of its

target.

• A robot may collide with other robots or obstacles in

the environment during the Leader Following stage due

to deviations caused by uncertainty. Both the leader and

the followers are vulnerable to this.

• A newly elected leader may collide with other robots

during the Leader Switching step.

• A newly elected leader may fail to find a path to the

head of the chain.

• All robots may fail to find a valid path during the Leader

Election.

• A robot may stall indefinitely because its target (the

robot it is trying to follow) has failed. This may be in

part due to the prior failure of a robot that knows a valid

path.

It is apparent that these failures are not independent of

one another. During the Leader Following step, the occur-

rence of one failure of a particular robot in the chain may

have consequences for robots behind it. During the Leader

Election step, the prior failure of a robot with a valid path

may have consequences for the whole group. To account

for these nuances, we define success rate as the number of

waypoints visited normalized by the maximum total number

of waypoints that can be visited. Under these terms, in a

fully successful experiment (success rate of 1), the number

of waypoints visited is n × m, where n is the number of

robots and m is the number of waypoints.

C. Region Decomposition Scenario

In this experiment, which we perform in simulation, we

demonstrate the motivation for considering representation

heterogeneity in multi-agent coordination, as well as qual-

itatively characterizing the behavior of robots while cara-

vanning. For R robots, we decompose the environment into

M regions and run our caravanning algorithm. Each agent is

assigned to one region, and the roadmap it constructs must

fall entirely within that region.

The decompositions are made such that no robot’s

roadmap can successfully return a path between every pair

of waypoints in the sequence, i.e., there is at least one pair

of waypoints between which a given agent’s roadmap will

fail to return a path. We impose this restriction to force the

robots to cooperate by caravanning. However, we allow some

overlap between regions such that every consecutive pair of

waypoints falls completely within at least one region, i.e.,

for every pair of waypoints, at least one roadmap could be

constructed in a finite time that can be queried for a valid

path between them.

We run a scenario with 12 robots, with the environment

decomposed into 4 overlapping regions. Each region is

assigned to 3 robots. There are 7 waypoints to visit. We

are interested in the rate of success when the robots are

caravanning, i.e., the average proportion of waypoints the

robots successfully visit. We run this scenario for different

roadmap sizes (ranging from 10 to 90 nodes) with different

seeds, taking the average of the success rates.

The results are shown in Figure 3 (with error bars rep-

resenting standard deviation). They show that agents can

caravan effectively as long as each agent has a roadmap

with sufficiently good quality as given by the number of

nodes. The stabilization of the success rate indicates that

other factors limit the success rate once the size of the

roadmap is large enough.

D. Competing Roadmap Scenario

In this experiment, which we perform in simulation, we

consider a scenario in which robots have different roadmaps

of the same environment. We investigate how the properties
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Fig. 3. Effect of roadmap size (number of nodes) on success rate. Error
bars represent standard deviation.

of each agent’s roadmap affect the success rate (the average

percentage of waypoints the agents successfully visit).

We consider 5 scenarios. In the first 4, all agents generate

roadmaps using the same sampling method (MAPRM [29],

Uniform [15], OBPRM [2], and then Gaussian [5]). In the

last scenario, the group of agents uses a mixture of roadmaps:

each sampling method is used by 3 agents. In all cases, each

robot is assigned a unique seed so that no two robots generate

the same roadmap. For each scenario, we take the average

of 10 runs. We compare the success rates of the scenarios in

Figure 4.

Fig. 4. Success rates for roadmaps generated using different sampling
methods. Error bars represent standard deviation.

Our results demonstrate firstly that the success rate de-

pends significantly on the type of roadmap used. Particularly,

using MAPRM sampling leads to by far the highest suc-

cess rate. MAPRM sampling yields roadmaps with higher

clearance, which reduces both the chance of collision and

sharpness of turns that might lead to missed observations

of targets. Secondly, there is a significant benefit to using a

variety of roadmaps. The “Mix” scenario has a higher success

rate than any of the other scenarios except MAPRM. Some

of this benefit probably arises from the ability of a robot

using MAPRM to share its paths with other robots.

E. Physical Robots

We validate our simulation results with experiments on

physical robots. The particular scenario we consider is to

visit 5 waypoints along an L-shaped subsection of the HRBB

environment using 3 robots. We conduct 10 runs with the

physical robots, noting the number of waypoints reached by

each robot, as well as its cause of failure (if any).

Our results are displayed in Table I. Of the 10 runs, 5 were

complete successes, with the whole group reaching the final

waypoint (runs 3, 6-9). In addition, in two of the runs (1, 10),

at least one robot reached the final waypoint. The majority

of failures were due to one of two causes. The first was

a follower losing sight of its target while moving between

waypoints. These were generally due to sharp changes in

the path traversed by the target. The second cause of failure

was collision among the robots during the leader switching

stage, particularly in runs 4 and 5. One reason for this is that

due to observation uncertainty, the robot that is performing

the leader switch obtains wrong estimates of other robots’

positions. Hence the resulting RRT produces a path that is

too close to another robot, leading to collision.

F. Discussion

Our experiments suggest that utilizing data heterogeneity

in cooperative systems such as caravanning yields solutions

to a larger breadth of problems. By decomposing the environ-

ment into nearly-disjoint regions, we can allow for efficient

distributed mapping and exploration of the environment.

By generating different roadmaps of varying topology in

the same region to capture distinct map properties, we can

improve overall path quality and robustness.

Even robot platforms with only an internal representation

of the environment, ability to localize, and simplistic method

of detecting other agents are able to caravan successfully.

VI. CONCLUSION

In this paper, we present the multi-robot caravanning

problem in which a group of agents cooperate to traverse an

ordered sequence of points in an environment as a group. We

propose a solution that requires minimal communication and

works even with robots that have different and/or incomplete

knowledge about their environment. Our approach relies on

a novel use of leader election that allows us to handle

failures in individual robots. We demonstrate our solution

both in simulation and on a physical platform. The results

show that the approach can compensate for incompleteness

in representations and exploit redundancy.

In the future, we plan to study the scalability of our

solution with a larger number of robots, as well as examine

how the ordering of robots affects our ability to exploit

redundancy in environmental representations.
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