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Abstract— Motion recognition is an essential technology for
social robots in various environments such as homes, offices and
shopping center, where the robots are expected to understand
human behavior and interact with them. In this paper, we
present a system composed of three models: motion language
model, natural language model and integration inference model,
and achieved to generate sentences from motions using large
high-order N-grams. We confirmed not only that using higher-
order N-grams improves precision in generating long sentences
but also that the computational complexity of the proposed
system is almost the same as our previous one. In addition,
we improved the precision by aligning the graph structure
representing generated sentences into confusion network form.
This means that simplifying and compacting word sequences
affect the precision of sentence generation.

I. INTRODUCTION

Humans understand the real world through their multi-

modal perception. Perception consists of a large amount

of continuous data such as images, audio, and actions, but

it is encoded into symbols. The symbols make it possible

to understand the real world, predict, and associate by

lingualization because they use word meanings by Natural

Language Processing (NLP). Also, sentences recover data

lost by compression during symbolization by grammar as

shown by Fig.1. Thus, humans are different from other

animals, and the symbolic system such as language underlies

human intelligence. Especially, perception of body motion

and the action upon environments through symbolization,

lingualization, and sentence are required for humans and

humanoid robots to understand human behaviors, estimate

partner’s intensions, and communicate with gesture or lan-

guage.

In this paper, we aim to generate sentences from ob-

servation of human motions. Our previous framework is

composed of three modules[1]. The first module organizes

the associations between motion symbols and words. The

second with NLP represents linguistic structure as word 2-

grams. The third searches a sequence of words that is most

likely to represent a human motion by using the score of

the above two modules. This framework allows humanoid

robots to recognize a human motion as multiple sentences,

but some problems still remain. One of them is that the size

of training sentences is small in the second module. There is

another problem that even if the large-sized training data

is applied, natural sentence cannot be generated, because

language constraints in a long sentence are not taken into
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Fig. 1. Humans understand the real world through their multimodal
perception. Perception consists of a large amount of continuous data such
as images, audio, and actions, but it is encoded into symbols. The symbols
make it possible to understand the real world, predict, and associate by
lingualization because they use word meanings by NLP. Also, sentences
recover data lost by compression during symbolization by grammar.

account. To solve this, we extend the 2-gram model to N-

gram(N=2-6) models by using a large word N-gram dataset.

Relations among long distant words in sentences can be

extracted, and complicated sentences can be handled. We

also reduce computational cost of searching for sentences

corresponding to a motion using a 2-step algorithm. In

addition, we propose a method to reduce the word error rate

by aligning words not to a conventional graph structure but

to a Confusion Network (CN) which is applied in the field

of speech recognition for NLP structure. These approaches

can improve the performance of motion recognition from

the aspects of grammatical correction and variability of the

sentences.

II. RELATED WORK

A. Symbolization

On the basis of mimesis theory[2] and mirror neurons[3],

Ezaki[4] and Inamura[5] proposed a mimesis model. The

mimesis model symbolizes motion patterns using imitation

learning and conducts motion recognition and generation

using motion symbols. In the mimesis model, fullbody mo-

tion patterns are represented as time-series signal of multiple

joint angles and symbolized into parameters called primitive

symbol by Hidden Markov Model (HMM). This framework
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has been extended to a sticky HDP HMM and applied

to automatic segmentation and symbolization of behavioral

patterns[6].

B. Lingualization

Instead of using a statistical model, Sugita[7] and Ogata[8]

proposed a bi-directional conversion method by introduc-

ing parameters between motion perception and language

structure, each of which is represented using Recurrent

Neural Network (RNN). As an example of research that

uses a statistical model, Takano[9] proposed a translation

method between motion symbols and words using the IBM

translation model. The model represents the correspondence

relationship between time series of motion symbol and

strings of words by associative and positional relationship.

Hamano[10] also proposed an association method which

constructs vector fields of motion symbols and words, and

modifies the fields such that a correlation between the two

fields can be maximized by a canonical correlation analysis,

and derives mappings between the two fields.

C. Sentence

In [11][12], an NLP model represents word sequence

from large text corpus by using HMM or CRF. Takano[1]

also proposed a motion language model which represents

association structure of motion symbols and words, and

a natural language model which restricts word sequences

stochastically. Given a motion symbol to the motion language

model, words are associated from the motion symbol. The

words are aligned to make sentences using a word 2-gram

model. Additionally, a sentence can be also converted to

the corresponding motion symbol. However, this framework

cannot generate natural sentences when we use the large-

sized training data as pointed out in the above section.

III. MOTION RECOGNITION SYSTEM AND ALIGNMENT

OF GRAPH STRUCTURE

In this paper, a motion recognition system consists of

three models: “motion language model”, “natural language

model”, and “integration inference model” as shown by

Fig.2.

A. Motion Language Model

A motion pattern is symbolized by an HMM, which we

will refer to as a motion symbol. The motion symbols are

associated with words by a model proposed by Takano[1].

The model consists of three layers of nodes: motion symbols

λ, latent states s, and words w. These layers are associated

with two kinds of parameters. One is probability P (s|λ) that

a latent state s is associated with a motion symbol λ. Another

is probability P (w|s) that a latent state s generates a word

w. The sets of motion symbols, latent states, and words

are described by {λi|i = 1, ..., Nλ}, {si|i = 1, ..., Ns},

{wi|i = 1, ..., Nw} respectively. The k-th training pair,

{λk;wk
1 , w

k
2 , ..., w

k
nk
|k = 1, 2, ..., N}, means that the k-th

observed motion is recognized as the motion symbol λk and

that the same motion is manually expressed by the sentence
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Fig. 2. Overview of interpreting a motion as sentences. The motion
language model represents a relationship between motion symbols and
words via latent states as a graph structure. The natural language model
represents the dynamics of language which means the order of words in
sentences. The integration inference model searches for the largest likelihood
that sentences are generated from a motion symbol using these model scores.

w
k = {wk

1 , ..., w
k
nk
}. The model parameters are optimized

by EM (Expectation Maximization) algorithm. EM algorithm

alternately processes two steps: Expectation step (E-step) and

Maximization step (M-step).

E-step calculates distributions of the latent variables based

on model parameters estimated in previous M-step. The

distributions of the latent variables are provided as follows.

² E-step³

P (s|λk, wk
i ) =

P (wk
i |s, λ, θ)P (s|λk, θ)

∑Ns

j=1
P (wk

i |sj , λ
k, θ)P (sj |λk, θ)

(1)

where θ is a set of the previously estimated parameters.

M-step estimates the model parameters so as to maximize

the summation of expectation of log-likelihood that the

symbol of motion pattern λk generates the sentence w
k =

{wk
1 , ..., w

k
nk
}. ²M-step³

P (s|λ) =

∑N

k=1

∑nk

i=1
δ(λ, λk)P (s|λk, wk

i )∑Ns

j=1

∑N

k=1

∑nk

i=1
δ(λ, λk)P (sj |λk, wk

i )
(2)

P (w|s) =

∑N

k=1

∑nk

i=1
δ(w,wk

i )P (s|λk, wk
i )∑Nw

j=1

∑N

k=1

∑nk

i=1
δ(wj , w

k
i )P (sj |λk, wk

i )
(3)

where δ is Kronecker delta. The numerators in Eqn.2 and

Eqn.3 are the frequency that latent state s is generated from

motion symbol λ and the frequency that latent state s is

generated from word w respectively. The denominators in

Eqn.2 and Eqn.3 are the frequency of motion symbol λ

in the training pairs and the frequency of latent state s in

the training pairs. We conduct the optimization of model

parameters by alternately performing E-step and M-step.
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Algorithm 1 finding the maximal word N-gram probability

and accumulating backoff weights

1: initialization
2: repeat
3: logP ← find log probability of context from trie node
4: if logP is valid then
5: record logP as the most specific one found so far
6: reset backoffweight
7: end if
8: if i ≥ maximal context length or context[i] is none vocab

then
9: break

10: end if
11: next ← find context[i]
12: if next is valid then
13: accumulate backoffweight
14: set next as next trie node
15: increment i
16: else
17: break

18: end if
19: until break command is occurred
20: return logP + backoffweight

B. Natural Language Model

Many kinds of language models which restrict sentence

structures have been proposed in the community of natural

language processing. Especially, stochastic models are ad-

vantageous because the language model is required to deal

with large data. In this paper, we use a word N-gram model

because the model can improve the recognition performance

easily in addition to simple concept. Word N-gram model is

generally represented as an (N-1)-order markov process. In

this process, an occurrence probability of i-th word wi in a

word sequence (w = {w1, w2, ..., wn}) depends on previous

(N-1) words. Thus, word N-gram probability is defined as

follows.

P (wi|w1w2...wi−1) ≃ P (wi|wi−N+1, ..., wi−1) (4)

In the case of text data, the right side of Eqn.4 can be

estimated from relative frequency of words.

P (wi|wi−N+1, ..., wi−1) =
C(wi−N+1...wi)

C(wi−N+1...wi−1)
(5)

where C(wi−N+1...wi) of Eqn.5 is the frequency of

{wi−N+1...wi}. A probability of a word sequence being

generated by the natural language model is continuously

calculated by summation of the transition probabilities de-

rived in Eqn.5 along the sequence from a start word to an

end word. In the case that word N-gram probability cannot

be calculated, the back-off weight is added to the word

(N-1)-gram probability. The algorithm of calculating the

maximal probability including back-off smoothing is shown

in Algorithm.1.

C. Integration Inference Model

The process of motion recognition in integration inference

model is described as searching for the largest likelihood

that sentences are generated from a motion symbol using

Motion

2-gramMotion HMM N-gramMotion HMM

Motion

1-best N-best

Stack

trellis

Decoding

Search

Frame

Synchronizing

Beam Search

lattice
First Step Second Step

SentencesSymbol

Fig. 3. Outline of the integration inference model. The whole system is
divided into 2 steps. The first step is a frame synchronizing beam search
using 1-best approximation. The second step is a best-first stack decoding
search along the path on the fist step.
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Fig. 4. Word trellis and its use in word expansion on the second step.
The word trellis can be available for not only limitation of search path in
the second step but also using as heuristic function in A* search algorithm.
The word lattice differs from the word trellis in that a word is set on arc
with connecting nodes.

the motion language model and the natural language model.

The likelihood that a sentence w is generated from a motion

symbol λ is derived as

P (w|λ) =
k∏

i=1

P (wi|λ) ·
k∏

i=1

P (wi|wi−N+1, ..., wi−1) (6)

Figure 3 shows how this process conducts step-by-step

searching to calculate efficiently in the case of using a

large high-order N-gram as natural language model. In the

first step, right-to-left search is conducted roughly by using

motion language model and simple 2-gram model. In this

step, 1-best approximation is conducted by calculating only

viterbi paths. The path, a score from each node to goal along
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Fig. 5. Process of the alignment from N-best list to word CN. In the word
lattice, word sequences are registered in the order of N-best list directly.
The word lattice has a defect that input sentences can be matched only the
order. The word CN can retrieve word sequences, which are not searched
for by the word lattice.

the path, and a word attached to the node are stored in

the form of word trellis. The word trellis can be available

for not only limitation of search path in second step but

also using as heuristic function in A* search algorithm. In

the second step, left-to-right search is conducted precisely

by using motion language model and up to 6-gram model.

In this step, best-first stack decoding search is conducted

and searching only necessary path on the first step enables

us to recalculate precisely as shown by Fig.4. Because the

first generated sentence does not have the largest likelihood

necessarily, we also conduct the N-best search that sorts N

candidate sentences by its score.

D. Confusion Network

The outputs from integration inference model are not

structured in a word lattice but in an N-best list. To simplify

and compact the output structure, we align the outputs to

word CN. The process of the alignment from N-best list to

word CN is as follows.

1) Graph Compression We construct a word lattice in

order of the N-best list. Transitions between two word

can be represented by an arc in the word lattice.

2) Calculation of Posterior Probability We calculate

posterior probability of each arc in the word lattice

by using Forward-backward algorithm.

3) Clustering We cluster words on the arc which overlap

positionally. Note that a set of positionally-competing

words is called Confusion Set (CS).

4) Addition of “@”(Null Candidate) In the case that a

positionally overlapping word is merged in other class,

the sum of posterior probabilities of CS is less than 1.

TABLE I

CUT-OFF AND TOTAL NUMBER OF EACH N-GRAM

Order Cut-off
Total Number

Before Cut-off After Cut-off

1-gram 50,000 2,565,424 67,260
2-gram 5,000 80,513,289 3,769,894
3-gram 1,000 394,482,216 17,593,003
4-gram 1,000 707,787,333 20,132,262
5-gram 800 776,378,943 19,485,755
6-gram 500 688,782,933 18,521,684

Thus, we add a null candidate which has a posterior

probability so that the sum of posterior probabilities

becomes one.

In the word lattice, word sequences are registered in the order

of N-best list directly. The word lattice has a defect that input

sentences can be matched only the order. The word CN can

retrieve word sequences, which are not searched for by the

word lattice. Note that orders between words in the word

lattice can be maintained in the word CN.

IV. EXPERIMENTS

A. Dataset

1) Motion Corpus: As training data of motion language

model, we use motion corpus which has 467 kinds of

motion symbol, each of which several sentences are manually

attached to. The total number of sentences is 764. Motion

symbol is derived by symbolizing observed motion pattern

data which is obtained by measuring 35 marker positions

pasted to human body. We used <s> and </s> as sentence

beginning and sentence end respectively.

2) Google N-gram Corpus: We use Google N-gram(Web

Japanese N-gram) to construct a natural language model.

Google N-gram is extracted from Japanese web pages which

are crawled by Google. About 20 billion sentences with

255 billion words are targeted at extracted data. The corpus

includes 1 to 7-grams which appear more than 20 times.

Table I shows the detailed N-gram information.

B. Conditions

1) Motion Language Model: In this experiment, we used

1-gram to construct a word file. In the case that a word is

registered in motion corpus but is not in word file, the word

is replaced with “<unk>”.

2) Natural Language Model: When an N-gram (N >

1) has words that are not registered in the word file, the

N-gram is not counted. Thus, if words associated from

motion symbol are not registered in the word file, false

sentences are probably generated. In this paper, we restricted

the order of N-grams up to length 6. If we use Google N-

gram as training data without cut-off by frequency, memory

required in training process exceeds all available memory.

Table I shows the cut-off value which reduces the size of

N-grams effectively. In addition, meaningless words such

as punctuation characters were observed in many sentences,

which resulted in a lower frequency of meaningful words.

Therefore, we calculated N-gram probabilities without taking

these words into account.
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TABLE II

PROCESSING TIME OF TWO MOTION RECOGNITION SYSTEMS

Motion Index 60 260 290 329 386

Words 3 3 3 4 3

Proc Time[s]
Previous 5.90 7.22 7.82 16.80 9.27
Proposed 7.99 6.97 6.80 49.53 8.03

3) Integration Inference Model: In the process of 2-step

searching, we used 2-gram model to construct word trellis.

The maximum of log likelihood was calculated as the total

score of motion language model and natural language model.

We determined that a generated sentence was longer than a

sentence attached to the input motion symbol.

C. Evaluation

We used word error rate (WER) to evaluate integration in-

ference model. This is obtained by normalizing edit distance.

Note that edit distance is a ratio of substitution, insertion and

deletion error which is calculated by using DP matching of

words between a generated sentence and a given sentence.

Small WER implies that the integration inference model has

good performance of sentence generation. The calculations

of WER is as follows.

WER =
αS · Sub+ αD ·Del + αI · Ins

Words
= Subscore +Delscore + Inssocre (7)

where Words is the number of words in a sentence and Sub,

Del and Ins are the number of substitution of two words,

deletion of a word and insertion of a new word respectively.

We gave weights in the ratio of αS : αD : αI = 2 : 3 : 3
to Sub, Del and Ins respectively according to the importance

of its operation.

V. RESULTS

A. Sentence Generation and Processing Time

The sentence generation by using the proposed system was

tested. We arbitrarily selected 5 motion patterns to which

sentences composed of 3 or 4 words are given. Figure 6

and Table II show the experimental results of interpreting a

motion pattern as sentences. In proposed system, each motion

pattern was interpreted as appropriate sentences which are

underlined in red as shown by Fig.6. Generated sentences

shown in Fig.6 are the top 5 sentences selected from among

more than 3-word sentences. Table II shows time required

to generate sentences from an input of a motion symbol. In

this experiment, we set the order of N-gram and the beam

width to 3 and 25 in generation of 3-word sentence, and to

4 and 45 in generation of 4-word sentence respectively.

B. Effect of The Order of N-gram

The effect of the order of N-gram to the processing

time and WER was tested. We arbitrarily selected 5 motion

patterns to which sentences composed of 5 words are given.

Table III shows the average of processing times and WERs

in them. Note that WER of each motion pattern is calculated

as average of the top 10 sentences in the N-best list. In this

TABLE III

PROCESSING TIME AND WER WITH CHANGING THE ORDER OF N-GRAM

Order Proc Time[s] Sub Ins Del WER Words

2-gram 7.7 0.29 0.54 0.54 3.84 5
3-gram 56.4 0.22 0.48 0.48 3.33 5
4-gram 227.2 0.14 0.54 0.54 3.50 5
5-gram 417.4 0.43 0.43 0.43 3.44 5
6-gram 618.7 0.36 0.39 0.39 3.06 5

TABLE IV

WER OF 10-BEST AVERAGE, 1-BEST AND CN-BEST

Sub Ins Del WER Words

10-best Avg 0.36 0.39 0.39 3.06 5
1-best 0.40 0.32 0.32 2.72 5

CN-best 0.44 0.16 0.16 1.84 5

experiment, we set the beam width to 70. Increasing the order

of N-gram requires more time but WER is decreased.

C. Simplifying or Compacting using The Word CN

The effect of the word CN to the processing time and

WER was tested. Table IV shows the average of WERs of

the same motion patterns as used in the previous subsection.

Note that CN-best means the smallest WER of top words

in CSs composed of more than 5 words. In this experiment,

we set the order of N-gram and the beam width to 6 and 70

respectively. WER is decreased in the order of 10-best Avg,

1-best, and CN-best.

VI. CONCLUSION

The contributions of this paper are summarized as follows.

1) We proposed a natural language model and a inte-

gration inference model in addition to previous mo-

tion language model. The natural language model

is constructed from large high-order N-grams. The

integration inference model searches for sentences with

the largest likelihood by using a 2-step searching. By

using these models, we achieved to generate natural

sentences from motions. Although generation of sen-

tences composed of 3 words by the proposed system

consumes 0.12s more than the previous system, it

improved the correctness of generated sentences. This

means that 2-step searching in the integration inference

model is effective for high-speed processing.

2) There was a tendency to improve precision of gener-

ating sentences by increasing the order of N-gram. 6-

gram model decreased 20.3% of WER compared with

2-gram model as shown by Table III. This is because

high-precision language model was constructed by

using high-order N-gram.

3) We also proposed an alignment method of graph

structure from N-best list to word CN to improve the

precision of generating sentences. CN-best decreased

32.4% of WER compared with 1-best as shown by

Table IV. This means that simplifying and compacting

word sequences on graph structure have effect on the

precision of generating sentences.
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Fig. 6. An observed motion is recognized as a motion symbol. Given sentences are manually assigned to the observed motion. In this figure, two sets of
sentences are shown generated by a previous system[1] and a proposed system respectively. For example, A generated sentence of ”a person cries” is the
most likely associated with crying motion in ♯60. A generated sentence of ”a person runs” is the most likely associated with running motion in ♯260. A
generated sentence of ”a person stands” is the most likely associated with standing motion in ♯290. Japanese particles such as ”ga”, ”wo”, ”ni”, ”de” and
”suru” are unnecessary words. Each likelihood of sentence is represented as a motion language model score and a natural language model score.
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