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Abstract— This paper investigates how a walker could es-
timate the variability of an arbitrary set of state variables
when migrating on visco-elastic grounds. The state variables
are a function of both the visco-elastic settings of the walking
body and soft terrain parameters. A rimless wheel model was
developed using a Lagrangian approach in order to obtain
analytical solutions for migration across ground conditions. An
algorithm was then developed to determine the steady value of
the variables as a function of the difference in ground and hub
parameters involved in the migration. A generalised migration
metaparameter, ∆g , function of this difference, was then ex-
trapolated using polynomial approximation. ∆g can be used to
estimate the expected variability at a state given information on
actual and previous ground parameters. A second parameter,
∆h, describing local variability of a given state on a given
terrain, is used to generate a predictive algorithm capable of
stabilising the rimless wheel setup when subject to an abrupt
change in ground parameters. We actuate the rimless wheel
with a constant torque leaving it to develop any speed profile
for a given visco-elastic impedance distribution of the ground
and its own vertical visco-elastic impedance. The ground is
altered depending on the two migration meta-parameters (∆g

and ∆r), ensuring both local and migration stability.

I. INTRODUCTION

When a skier walks from a snowy terrain to the floor of
a mountain chalet with his boots on, he/she would change
his/her muscle tension to maintain the variability of state
variables within safe margins to avoid slipping and falling.
Depending on the softness of the snow and the style of
the chalet’s floor, the skier would have to implement less
or more rigid control strategies in order to achieve desired
variability margins. This suggests an adaptive internal control
strategy to change the visco-elastic parameters of the limb
joints to suit those of the terrain. A suggested method to
recreate such adaptation is Impedance Control Theory, which
has been used in many fields, such as robotic excavation
[1], automated massage systems [2], safe interaction with
human companions [3], rehabilitation [4], prosthetics [5],
exoskeletons [6], and biped locomotion [7] etc. Impedance
Control Theory [8]-[10] proposes that a body in dynamic
contact with the environment should be able to adapt its
internal impedance (stiffness, damping, and inertia gains)
in order to maintain a stable dynamic coupling with the
environment, a concept directly applicable in bipedal robotic
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locomotion. Another approach is to estimate the impedance
parameters of the environment to tune the internal parameters
of the manipulator as proposed in disturbance observers [11]
and linear estimation of environment’s impedance parameters
[2],[12]. Both cases have been applied in [13] to passive-
dynamic locomotion, and it has been shown how artificially
varying impedance parameters in a joint can help control
the variability of collision force at the contact point between
ground and walker.

When a giraffe calf is born, it will at first struggle to
stay upright, and it will fall numerous times when attempt-
ing to walk. After a few hours, the calf will however be
able to walk stably, and as time passes it will refine its
ability to interact with the environment for more complex
motion. Despite the required learning curve, this behaviour
suggests that the newborn cub has some kind of memory
imprinting, or primitive, which allows it control over its
limbs to initialise walking motion. The existence of such
memory primitives relating to locomotion has been theorized
in animals and humans alike [14]. Memory primitives are a
set of internal data sets, representing joint parameters, which
can be visualised as state-space representations of contact
forces, which are subconsciously scanned for the optimal
internal settings to match the kind of surface which is being
walked on. The concept of memory primitives has been used
in artificial intelligence systems many times before in [15],
[16], albeit not in the field of robotic locomotion. As the
cub grows, it will also encounter difficulties in the motion
between different kind of surfaces, for example walking for
the first time on sand. Through experience, the cub will be
able to refine the memory primitives to achieve long-term
stable locomotion [17].

Here we study how different sources of variability, mainly
the ground configuration and the migration of the walker
on the ground itself, affect stability in locomotion. Prior
knowledge of the effect of variability can be used to find
an alternative internal impedance control strategy to main-
tain the variability of walking within desired mestastability
bounds. Such study is carried out using simulations and
tested experimentally by means of a rimless wheel. The rim-
less wheel represents the ideal form of underactuated mod-
eling for bipedal locomotion, and has been used numerous
times before for experimentation [18][19][20]. Inspiration for
the proposed algorithm is taken from natural predisposition
for adaptive locomotion, in the form of memory primitives.
We present analytical results, numerical simulations, and
experimental evidence of how it can passively migrate from
one region in some arbitrary state space to another simply
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by changing its internal impedance parameters, selecting the
stable-most combination for the given surface of locomotion,
and the stable-most path to a stable zone.

II. SOURCES OF VARIABILITY IN THE MOTION OF A
COMPLIANT WALKER ON VISCO-ELASTIC TERRAIN

In the authors’ previous work, it has been shown how
it is possible to manipulate contact forces by altering in-
ternal impedance parameters to maintain stable coupling
with an uncertain visco-elastic terrain [13]. However, it is
not sufficient to just know the ideal internal visco-elastic
parameters for achieving stability on a given surface. In
[13], it has been found that the interaction effect between
the coefficient of friction and the coefficient of restitution
significantly affects the steady-state variability of a passive-
dynamic walker. Since restitution and friction are indirectly
related to the impedance parameters of the terrain and body,
migration from one impedance context to another should
account for the resulting change in the steady-state vari-
ability. Returning to the skier example, the variability, and
therefore the control strategies implemented by the skier’s
brain, are related to the difference in ground conditions;
i.e. the differences in stiffness and viscosity of the snow
and of the chalet’s floor. The magnitude and variability of
state variables, for example the collision force, will depend
greatly on the ground conditions of the departing state (the
snow stiffness and viscosity) and will have an effect until the
variables reach steady state condition. The memory primitive
containing return force of collision between a foot and
ground is visualised as a state-space landscape, varying in
planar coordinates with internal impedance settings, and in
height with the collision force as shown in Fig. 3. Migration
from one point to another of this landscape will entail a
variability landscape, as any ground condition can be paired
with an ‘ideal’ internal setting, which minimizes collision
force variability. Despite knowing this, previous work [13]
shows that further sources of uncertainty must be present.
Such variability generation has been identified in that arising
when the walker migrates from one landscape to another, as
the skier does in example cited above. This suggests that
the contact force landscape for a certain ground condition
will vary depending on which ground condition the walker
originates from. The migration will bring the walker through
a set of intermediate force landscapes, which will alter the
stability.

In this paper, the authors have examined, both compu-
tationally and experimentally, the sources of variability per-
taining to the migration of a walking machine from a ground
surface to another, generalising an andaptation algorithm
capable to stabilise the walker. In [21], the author uses Ly-
punov functions to approximate regions of attraction around
stable points for simple underactuated systems, thereby de-
veloping an algorithm capable of reaching any point of a
bounded space with a probabilistic function representing
the stability criterion for that point. [22] uses a complex
modeling tool based on the receding horizon apporach to
stabilise steady-state trajectories. The model is based on the

solution of a jump-Riccati equation. Such equation will yield
the minimum of the cost-to-go matrix, which represents the
best migration pattern for the desired movement. However,
solving the Riccati equations considerably increases the
complexity of on-line calculations required to provide the
necessary data to the feedback controller in order to compute
settings that would allow the robot to achieve stability. Here,
the authors propose to substitute the equations proposed
in [22] with experimentally and computationally derived
models, which are discretized and used to develop an internal
algorithm ultimately capable of stabilizing a bipedal walker
on uncertain and uneven terrain.

III. DYNAMICS OF A COMPLIANT WALKER WALKING ON
A VISCO-ELASTIC TERRAIN

Fig. 1. Coupled system model of adaptive rimless wheel and visco-elastic
ground.

Fig. 1 shows the main features of the experimental model.
Mass-damper systems are used to model visco-elastic pa-
rameters of both ground and hub of the rimless wheel. For
simplicity, the hub and the ground are restricted to move
in the vertical direction only, which simplifies computation
by restraining the simulation to the z-x plane. The vertical
movement of both the hub and the ground are impeded by
visco-elastic forces generated by two back-drivable motors.
As shown in [13], the following equations are derived:

ṡ =

[
o3×3 o3×3

I3×3 o3×3

]
s +

[
A−1u(s)
o3×1

]
(1)

IV. LOCAL VARIABILITY ANALYSIS

We first studied the limit cycle behavior of the nonlinear
dynamics given in Equation 1 from [13] in order to under-
stand how the internal impedance of the compliant walker
affects the steady state variability of walking on an uncertain
visco-elastic terrain. For a fixed ground condition, the hub
parameters are altered in a sequential pattern in order to
investigate the effect on stability criteria. Fig. 3 and 4 show
the variable return map across collisions between the visco-
elastic ground for 100 combinations of vertical stiffness and
viscosity of the rimless wheel for a given distribution of the
ground impedance Kg = N(10, 1), Cg = N(3, 0.3). The
mesh shown indicates the average force (F ) and coefficient
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of variation (Cv = σ
F

) of the return variable (in this case,
normal force) at each point, computed from the numerous
collisions for each point. The dots represent the single value
of the variable at each collision. For each combination of hub
impedance values, the system is re-initialized, so to exclude
carried on variability and isolate local effects only. From the
shape of such plots, it is possible to infer how, for the given
ground distribution, there exist areas in the state-space where
the variability is lower (i.e. the coefficient of variation of
the collision forces is lowest). These points represent areas
of stability, as low variability reduces the probability of an
unpredictable perturbation in the return parameter, leading to
instability. From the standard deviation mesh, a coefficient

Fig. 2. Simulation setup, with variable radii of migration. N on the axis
represents how internal parameters can be of any value.

Fig. 3. Mean normal force for hub impedance combinations.

Fig. 4. Coefficient of variation for hub impedance combinations for a given
ground.

of variation matrix is constructed:

Cv =

 Cv[Ch0,KhN ]
. . . Cv[ChN,KhN ]

...
. . .

...
Cv[Ch0,Kh0]

. . . Cv[ChN,Kh0]

 (2)

where every entry of the matrix represents variability of
collision forces at that combination of internal impedance
parameters.

V. MIGRATION VARIABILITY ANALYSIS

The second source of variability examined relates to the
variability that arises from the migration from one position
in state-space to another. When a walker travels from a hard
to a soft or more elastic terrain, he will carry over residual
variability depending on the properties of the surface he is
departing from. Furthermore, without any a priori knowledge
of the future surface, the walker’s internal settings will not
adapt instantaneously. In [22], the authors use an on-line
control system for stabilisation of non periodic trajectories of
underactuated robots. Such an approach necessitates of thor-
ough knowledge of the ground, derived from the receding-
horizon model. In real-life, this is represented by a person
walking blindfolded on uncertain ground. He will have no
information about the ground until he has stepped on it. In
this paper, in order to effectively compare and quantify the
magnitude of migration along the state-space, common target
conditions are defined. This method consists of constructing
circles around an arbitrary centre point (Co,Ko), as shown in
Fig. 2. The distance of migration will then be determined by
the radii of the circles. Firstly, the case where no migration
occurs is considered, i.e. radius is equal to zero. This will
be used as a benchmark, for comparison to the cases where
migration occurs. Migrations will occur for a set number of
points along each radius terminating at the centre point. Fig.
2 shows this migration, in the system parameter space. The
circles are modeled using a standard circle function, where
the radius is set from zero to the C (or K) coordinate of the
system. Subsequently, the coefficient of variation (Cv = σ

F
)

of the return force for the N points along the parameter is
computed, together with the coefficient of variation at 0 (i.e.
with no migration), and a variability index, δ, is defined as:

δCv,n = Cv,n − Cv,o , n = 1, 2, · · · , N (3)

Where n is the position on the radius, as shown in Fig.
2. The variability index thus defined gives the difference
between the coefficients of variance of the forces at each
one of the eight points on the radius and the variability at the
centre point. This will render explicit the effect of migrating
from a condition inscribed on the radius to the centre point
condition. By varying the position on the radius, a set of N
variability indices are found for each radius, and the mean
of the indices are computed for all the test radii:

∆Cv,r = δCv,r =
1

N

N∑
n=1

δCv,n , n = 1, 2, · · · , N (4)
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where r is the radius number. In this case, N = 8, hence
eight points per radius are computed, as shown in Fig. 2.
Therefore, for each migration radius, r, a parameter, ∆Cv,r is
defined. This analysis is carried out for both ground and hub
migration. In the former, the hub is set to a fixed parameter,
and the migration is carried out by the ground. Then, the hub
parameters are changed, and the migration is repeated. This
results in a set of ∆g functions, as shown in 5. In the latter,
the ground remain constant while the hub migrates across
different conditions. Two parameters are hence derived, ∆rg

and ∆rh .

Fig. 5. Matrix of ∆g functions (fitted polynomials in blue) for varying
internal impedance combinations.

VI. ALGORITHM DEVELOPMENT

Having analyzed the results of the migration experiments,
the following algorithm is proposed to control the adaptation
of the rimless wheel. Firstly, the test shown in section V. is
repeated for N×N combinations of hub K and C parameters,
yielding ∆s as functions of rg , as shown in equation 4. For
each node in the matrix in Fig. 5, a function of ∆g vs.
rg (where rg is the magnitude of migration of the ground
parameters) is produced, by generating coefficients of a fitted
fourth order polynomial, as shown in Fig. 5. This will return
a matrix containing four coefficients of the fitted polynomial
for each subplot, which is the local memory primitive. These
functions express the amount of variability induced on the
walker due to the migration from previous ground conditions.
This assumes that a walker, when departing a ground, has
reached a steady-state stable combination of internal hub
parameters, which will be conserved until collision with the
following ground. To relate this to the skier example, this will
give, for each internal parameter combination (representing
the skier coming from any kind of possible ground) a
variability due to the difference in conditions between the
ground which is departed from, and the ground to which
the walker moves. Therefore, the function of ∆g can be
computed for each point in the matrix shown in Fig. 5:

Af(rg) =

∆f(rg),[Ch0,KhN ] . . . ∆F (rg),[ChN ,KhN ]

...
. . .

...
∆f(rg),[Ch0,Kh0] . . . ∆f(rg),[ChN ,Kh0]

 (5)

It is assumed that the walker is provided with all current
and future ground parameters. By substituting rg into the

∆g function, a single value of ∆rg is found for each point:

A =

 ∆rg,[Ch0,KhN ] . . . ∆rg,[ChN ,KhN ]

...
. . .

...
∆rg,[Ch0,Kh0] . . . ∆rg,[ChN ,Kh0]

 (6)

This matrix is then multiplied elementwise with the return
matrix derived in section IV , such that:

Cv
∗ = Cv ⊗A (7)

This will return a new mesh-matrix, containing modified
values of coefficient of variation, which is an adjusted
memory primitive. Then, the minimum of this matrix is
found. This minimum will correspond to a single Kh and
Ch combination:

[K∗
h, C

∗
h] = min(Cv

∗) (8)

For this combination, a ∆rh function similar to that previ-
ously used is defined (from the process described in section
V.) as a function of rh which is the magnitude of the hub’s
migration (i.e. the magnitude of the parameter jump for the
hub) to reach the stable point (i.e. K∗

h and C∗
h in equation

Fig. 6. Proposed algorithm, showing both local variability and migration
variability.
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8). Hence, the algorithm will check whether a point having
a lower variability index ∆ exists in the neighbourhood of
the current point, by computing the minimum of the ∆rh

function. If the value of rh associated with the current
hub configuration is not equal to that associated with the
minimum found, then a path must be generated through a
via point. This point will be any combination of Kh and
Ch along the circle of the radius rhmin

associated with the
minimum of the ∆h:√

(Kh −Kho)2 + (Ch − Cho)2 = rhmin (9)

This ensures that the ultimate migration to the locally stable
point is executed from the most migrationally stable hub
configuration. This algorithm process is shown in Fig. 6.

VII. EXPERIMENTAL TESTING

The simulations were verified by means of experimental
testing. The hardware arrangement is shown in Fig. 7. The
rimless wheel was made of ABS plastic and driven by a
motor (MAXON EC-max 30, 40W, geared at 1:81 gearing
ratio) running in constant current mode at 396mA to render
a torque τ = 0.05Nm. The hub of radius 4.95cm weighed
0.65kg while each leg of length 6cm weighed 40g. The
visco-elastic ground was constructed from an aluminum base
connected through a rack and pinion setup to a MAXON
EC-max 60, 400Watt, degeared motor. The pinion, of radius
4cm is used to minimize moment arm. The height of the
central axis of the hub was also controlled using a position-
derivative controlled back drivable servo motor (MAXON
EC-max 40, 120 Watt, degeared) mounted in a rack and pin-
ion arrangement to realize visco-elastic vertical impedance
at the hub. In order to minimize the load on the motor,
the rimless wheel was, furthermore, suspended by passive
tension springs. Collision force was measured using an ATI
technologies, Mini40 6-axis force/torque sensor at 100Hz
sampling rate. The magnitude profile of the force vector
was smoothed using a 3rd order Savitzky-Golay filter with a
window size of 7. A peak detection algorithm was then used
to extract peak collision forces.

Preliminary testing was carried out to test the validity
of the setup, by experimentally reproducing the plot shown

Fig. 7. Experimental setup and model.

in Fig. 8, and by carrying out the radius tests outlined
in section V . After achieving satisfactory performance, the
algorithm was tested. Fig. 8 shows the statistical analysis of
the force data for the three cases: i. no internal adaptation,
ii. adaptation without an algorithm, iii. adaptation with an
algorithm. Each test was carried out for the same two ground
conditions. It shows that for a sudden change in ground con-
ditions and no internal adaptation the coefficient of variation
noticeably increases. For hub adaptation with no algorithm,
the hub reacts to ground changes by adjusting its internal
values in order to migrate to a more stable region. Migrating
through a via point decreases the coefficient of variation more
significantly than migrating directly. Further investigation
confirmed this trend for different ground conditions. The data
therefore suggests that for the set of tested values stability is
rather reached by adapting internal conditions through a via
point. Using a two-sided T test it was verified that the force
datasets collected for no adaptation of the hub statistically
differed from both the case with and without the algorithm at
the final stage. However, migrating through a via point does
not guarantee a lower variability. It only does if the walker
is not already at the minimum.

VIII. DISCUSSION

Exploitation of passive dynamics in underactuated walking
has received increasing attention in the recent past [20],
due to its efficiency and computational simplicity compared
to that of rigid, fully actuated walkers. Study of a simple
passive dynamic walker known as the rimless wheel [13],
[15], [18] together with that of compass gait mechanisms in
[23], [24], have been the most widely used methods of mod-
eling passive dynamic legged locomotion. However, most
previous work have been done on either deterministic ramps
or stochastically rough terrain [18], [19]. In our previous
work in [13], we showed how a passive dynamic walker can
respond to changing ground impedance through adaptation of
internal impedance to maintain limit-cycle stability. In [22],
a solution is proposed for limit-cycle stability computation.
However, the real-time computation of Riccati equations can
be a daunting task in the case of changing ground impedance
parameters. When a walker is in limit cycle stability on a
given ground impedance, a sudden change in the ground
impedance would cause the states to deviate to new regions
of variability, causing unpredictable behavior. In such cases,
an internal map relating the steady state variability of a
given motion state such as the collision force, angular speed,
etc., to the corresponding ground impedance and internal
impedance of the walker, would provide a basis to develop
an optimal predictive internal impedance control algorithm.
However, memorizing all combinations of ground and in-
ternal impedance contexts would lead to a combinatorial
explosion in search space. Here, we solve this problem by
introducing two metaparameters, relating the change in force
variability due to the magnitude of the change in impedance
parameters for both terrain and system, which are used in a
generic adaptive algorithm used to stabilize an experimental
rimless wheel setup. The parameters are used to modify
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Fig. 8. Statistical analysis of the normal force data for three cases: i. no internal adaptation, ii. adaptation without an algorithm, iii. adaptation with an
algorithm. The ground conditions are replicated for all three cases.

previously compiled local memory primitives. The proposed
solution aims at investigating and predicting not only the
local variability arising during walking, but an extended
concept of variability, which is not solely dependent on the
condition of the terrain, but considers previous conditions
to compute an overall stability. This concept can be used to
design efficient algorithms for dynamic walkers to passively
migrate in a state space to maintain stability in the presence
of ground impedance variability, reducing the computational
burden to guarantee stability.

The algorithm proposed assumes perfect information of
previous and future ground conditions. Future work must
therefore focus on developing a framework to effectively
sense ground parameters in real-time. A more automomous
adaptation to the envoirnment can hence be achieved.
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