
An Interface for Interleaved Symbolic-Geometric Planning and Backtracking

Lavindra de Silva Amit Kumar Pandey Rachid Alami

Abstract— While symbolic planners work with an abstract

representation of the real world, allowing plans to be con-

structed relatively quickly, geometric planning—although more

computationally complex—is essential for building symbolic

plans that actually work in the real world. To combine the

two types of systems, we present in this paper a meaningful

interface, and insights into a methodology for developing

interwoven symbolic-geometric domains. We concretely present

this “link” between the two approaches with algorithms and

data structures that amount to an intermediate layer that

coordinates symbolic-geometric planning. Since both planners

are capable of “backtracking” at their own levels, we also

investigate the issue of how to interleave their backtracking,

which we do in the context of the algorithms that form the

link. Finally, we present a prototype implementation of the

combined system on a PR2 robot.

I. INTRODUCTION

In the past decade we have witnessed much interest in
bridging the gap between symbolic and geometric planning.
Some have focused on defining how geometric entities
and planning capabilities can be meaningfully used within
symbolic planning, and how symbolic information can be
used as heuristics in geometric planning. These efforts have
included defining the link between geometric and symbolic
actions, specifying what information should be shared with
the symbolic (resp. geometric) planner, and how this infor-
mation should be used in symbolic (resp. geometric) states,
actions and planning algorithms. One issue that must be ad-
dressed when combining the two systems is “backtracking,”
i.e. trying alternative options for choices that were already
made during planning. Both systems backtrack at their own
“levels” when a plan being pursued turns out to not work: the
symbolic planner when some precondition is not met, and the
geometric planner when a planned path includes a collision.
It is therefore important to investigate the relation between
symbolic and geometric backtracking in order to interleave
them effectively and know when to switch between them.

In [1], [2] the authors present algorithms for geometric
backtracking. They extend the Justin robot with symbolic-
geometric planning capabilities: for symbolic planning they
use the JSHOP2 [3] totally-ordered HTN planner, and for
geometric planning they use a specialised path planner.
The authors follow the approach of keeping the symbolic
state orthogonal to the geometric state: e.g. changing in the

*We thank Malik Ghallab and the anonymous reviewers for their valuable
feedback, and Mamoun Gharbi for Figure 2 and help with experiments. This
work was conducted within the EU SAPHARI project (www.saphari.eu)
funded by the E.C. division FP7-IST under contract ICT-287513.

**CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France.
***Univ. de Toulouse, LAAS, F-31400 Toulouse, France.

{ldesilva,akpandey,rachid}@laas.fr

geometric state the pose of an object has no consequence
on the symbolic state. In contrast, we require symbolic and
geometric states to be “intertwined,” which we find to be
natural in some domains. To this end, we derive symbolic
facts from the geometric state and use them in symbolic
planning. Nevertheless, the geometric planner in [1], [2] is
much like ours in how it backtracks when an action being
considered by the symbolic planner is not applicable, forcing
the system to reconsider previous geometric choices (e.g. the
pose of a cup on the table) to make the new action applicable
(e.g. changing the cup’s pose to make room for another one).
Since we derive and use geometric states as symbolic facts,
however, we also need to address the ramifications of such
backtracking on already pursued symbolic actions.

Also related to our objectives is work on interfacing
symbolic and geometric planning. In [4], [5] the authors
introduce Semantic Attachments, which associate selected
predicates in the planning domain to external procedures,
called at runtime to evaluate the predicates. In [6], Semantic
Attachments are implemented using a trajectory planner that
computes collision free trajectories, the existence of which
causes the associated Semantic Attachments to evaluate to
true , and false otherwise. Likewise, “effect applicators” in
effects of actions consult the geometric planner to set certain
state variables (e.g. position and orientation) in the symbolic
domain. Due to such variables being deterministic, effect
applicators cannot “choose” between different outcomes. In
contrast, it is important in our work to give the geometric
planner some leeway to make such choices.

Some systems do not make a clear distinction between
symbolic and geometric planning. In [7], a hierarchical
planner plans all the way down to the level of geometric
actions, and symbolic and geometric backtracking happens
in the same “space” of solutions. Their hierarchical planner
is a specialised one where primitive actions are implemented
by invoking external solvers like rapidly-exploring random
trees (RRTs), and states model low-level geometric details
like robot joint configurations. Similarly, [8], [9] describes
a hierarchical planner that is tightly integrated with a ge-
ometric motion planner for planning and then executing
the most basic actions. In their work, however, geometric
actions are executed while the plan is being constructed.
This is different to the other work described above which
formulates a complete plan first, before executing it. Finally,
the Asymov [10] system is a combined task and motion
planner for problems that are difficult to solve when the
symbolic planner is in control of the geometric search,
e.g. in the geometric Towers of Hanoi problem that the
authors present. Unlike the above approaches, in Asymov

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 232

the geometric planner uses the symbolic planner—as well
as the symbolic model of the domain—as a heuristic when
choosing roadmaps during geometric search. Similarly, in
[11] a symbolic planner guides a sampling-based motion
planner, which in turn sends back utility estimates to improve
the guide in the next iteration.

To summarise, the contributions of this paper are the
following. First, we present a precise interface between sym-
bolic and geometric planning. In particular, we investigate
the “right” level of abstraction at which the two approaches
should be combined. To this end, unlike other work, we
use a geometric task planner [12], which lets us define the
interface to symbolic planning in a more meaningful way,
and also give more leeway to the geometric level to make
decisions. Second, we provide algorithms and data structures
for an intermediate layer that coordinates symbolic and geo-
metric backtracking and planning, as well as algorithms that
highlight the characteristics of the underlying geometric task
planner. Finally, we propose a methodology for developing
an intertwined symbolic and geometric planning domain,
including a concrete example with the PR2 robotics platform
[13] in the context of Human-Robot Interaction (HRI).

II. BACKGROUND

In this paper we use a STRIPS-like planning language
[14]. Therefore, we briefly recall some relevant STRIPS
notions. A STRIPS action is a ground instance of a STRIPS
operator, or for convenience, just a ground instance of the
operator’s name. Given an action a and a state S such that
S |= pre(a) (i.e. the precondition of a holds in S), we
define the result of applying a to S (with respect to a set of
operators), denoted Res(a, S), as (S \ eff (a)−) ∪ eff (a)+,
where eff (a) is a set of ground literals denoting the effects
of a. This definition trivially extends to a sequence of actions
a1 · . . . · an: the result of applying a1 · . . . · an to a state S,
denoted Res(a1 · . . . · an, S), is S if |a1 · . . . · an| = 0 and
Res(a2 · . . . · an, Res(a1, S)) otherwise.

While classical planners focus on bringing about states of
affairs or “goals-to-be,” Hierarchical Task Network (HTN)
planners focus on solving abstract tasks or “goals-to-do.”
In this paper we use a popular type of HTN planning
called “totally-ordered” HTN (henceforth simply referred to
as HTN) planning, which, more importantly than efficiency,
allows calls to external functions [15]—an important require-
ment in our work. An HTN planning problem is the 3-tuple
�d, S0,D�, where d is the sequence of (primitive or abstract)
tasks to solve, S0 is an initial state as in classical planning,
and D is an HTN planning domain. Specifically, a HTN
planning domain is the pair D = �A,M� where A is a
finite set of operators as before, and M is a finite set of
methods. A method is a tuple consisting of the name of the
method, the abstract task that the method is used to solve, a
precondition specifying when the method is applicable (like
an operator’s precondition), and a body indicating which
tasks are used to solve the task associated with the method.
The method-body is a sequence of primitive and/or abstract
tasks. The planning process works by selecting applicable

reduction methods from M and applying them to abstract
tasks in d in a depth-first manner. In each iteration this will
typically result in d becoming a “more primitive” sequence of
tasks. The process continues until d has only primitive tasks
left. At any stage during planning if no applicable method
can be found for an abstract task, the planner essentially
“backtracks” and tries an alternative method for an abstract
task refined earlier.

For the geometric counterpart, we adopt the approach of
finding a solution in a discrete space of candidate grasps and
placements [2], [12] for tasks involving picking and placing.
Basically, our Geometric Task Planner (GTP) iterates in a
four dimensional search space, consisting of a set of agent

“effort” levels, discrete grasps, object placement positions,
and object placement orientations. For each object, sets of
possible grasps are pre-computed and stored for the anthro-
pomorphic hands and the robot’s gripper, which are later
filtered based on task requirements and the environment. The
amount of “effort units” required to perform certain tasks,
e.g. moving the head, extending an arm, and standing, are
predefined; to this end, we have made simplifying assump-
tions about which tasks require less effort than others (e.g.
we assume that extending an arm requires less effort than
standing up). At runtime, sets of placement positions and
possible orientations of objects are dynamically extracted,
based on the environment, the task, and restrictions on
how much effort should be put into the task. The sets
are then weighted based on the environment and situation,
with criteria like grasp and placement stability, feasibility of
simultaneous grasps by two agents, and the agent’s visibility
of the object. These factors are used to build the final
configuration which is then used online with an RRT based
planner [16] to find a feasible trajectory. Computed RRTs can
be reused for successive planning requests whenever feasible.
We note that while the GTP is not complete in the sense of
planning in a continuous search space, if there is a solution
in the discrete search space of the task, it will find one.

The advantage of the GTP framework is that a variety of
day-to-day tasks like showing and giving an object can be
represented in terms of different constraints, based on factors
like object reachability and the ability to grasp an object.
A geometric solution is found using a constraint hierarchy
based approach, by carefully introducing constraints succes-
sively at the different stages of planning. This facilitates the
reduction of the search space successively, before introducing
relatively more computationally expensive constraints.

In this paper we use the following conventions: symbol � is
the empty string/sequence, variables begin with upper case,
and predicates and constants with lower case. We assume that
symbolic and geometric states are fully observable, and allow
negative literals and universal quantification in preconditions
of actions and HTN methods. Finally, this paper only deals
with planning: we do not interleave planning with execution.

III. A SUITABLE INTERFACE

The HTN developer interfaces with the GTP using evalu-
able predicates. Truth values to evaluable predicates are not

233

assigned in the conventional way—by referring to the state of
the world—but by calling an associated external procedure,
which returns true or false . So every (relevant) GTP task t is
associated with a non-negated evaluable predicate, denoted
t?, in the HTN domain (e.g. GTP task SHOW(O,H) is
associated with evaluable predicate show(O,H)? for some
object O and human H), which basically evaluates to true
if t has a GTP solution and false otherwise. Whenever such
an evaluable predicate is mentioned in the precondition of
an operator (resp. action), we call it a Geometric-Symbolic
(GS) operator (resp. action).

Conceptually, a GTP task t is also associated with an
add list function, denoted t+, and a delete list function,
denoted t−, which are the (possibly empty) add and delete
lists for t computed by the GTP, based basically on the
world resulting from the solution that was found for t
on calling evaluable predicate t?.1 For example, for GTP
task SHOW(o1, h1), show(o1, h1)+ might return the set
{visible(o1, h1), reachable(o1, h1)} and show(o1, h1)− the
set {visible(o3, h1), reachable(o3, h1)}: that is, object o1 is
both visible to human h1 and reachable to h1, but object o3

is neither visible nor reachable to h1. Such “side effects” can
only accurately be inferred at runtime, from the most recent
state of the geometric 3D world. Hence, the effects of a GS
operator are the combination of its add and delete lists with
its “dynamic” add and delete lists, obtained via the add and
delete list functions.

It is sometimes useful to share certain symbolic predicates
between the HTN planner and the GTP. A “shared predicate”
(or “shared literal”) is an abstract relation between objects
that needs to be modelled in the HTN domain, but is based
on geometrical properties and consequently modelled more
accurately by the GTP. For example, predicate on(b1, b2)
in the HTN domain is an abstract representation specifying
that book b1 is on top of b2, which in the GTP amounts
to two rectangular objects in 3D space conforming to cer-
tain constraints like one object’s side touching the other’s.
Likewise, in the HTN domain visible(o, h) specifies that
object o is visible to human h, which is computed by
the GTP based on whether the human’s field of view in
a 3D world overlaps with the object [17]. There are, of
course, also symbolic predicates that are specific to the HTN
planner (such as full(c), breakable(c), and emailed(p) for
some cup c and person p) which are not modelled by the
GTP. Furthermore, low-level predicates specific to the GTP,
e.g. the exact position of an object in terms of (x, y, z)
coordinates, is often too much detail for the HTN domain.

It is worth mentioning that checking if a symbolic pred-
icate holds in a geometric world state requires anchoring
[18] the predicate (e.g. visible(o, h) for some object o and
human h) to the right geometrical attributes (e.g. position,
orientation and field of view). We refer the reader to [19],
[17] for a detailed account of how we address this problem.
In this paper we ignore the issue of anchoring a ground literal

1Add and delete list functions are only conceptual entities. Later, in the
algorithms, we present a slightly different representation.

to its corresponding geometrical attributes, and assume that
we can simply check if a ground literal holds in a geometric
world state.

With sharing symbolic predicates between the geometric
and symbolic planners comes the need to manage consistency
in the two world representations. Specifically, we may reach
a point during symbolic-geometric planning where there is
an inconsistency between shared (ground) literals implied by
the GTP world state and those actually in the HTN state. This
could happen, for instance, if the HTN developer incorrectly
predicts, while writing the domain, the side effects of the
SHOW(o1, h1) action mentioned before. We address this
issue by disallowing the HTN developer from mentioning
shared predicates in add and delete lists. Specifically, such
predicates can only be added to and removed from the HTN
state via add list and delete list functions. Likewise, when
constructing the HTN initial state, the GTP must be consulted
to get the shared (ground) predicates that hold in the initial
GTP state.

We will now be precise about how we interface the
geometric planner to the symbolic. A GS operator maps to
exactly one GTP task: only one evaluable predicate that cor-
responds to a GTP task can appear in an operator’s precondi-
tion. Intuitively, this means that the lowest “level of abstrac-
tion” in an HTN domain—i.e. primitive tasks—is the highest
“level of abstraction” in the GTP domain—i.e. compound
GTP tasks. This can always be accounted for, as a GTP
task can be as “compound” as necessary, where a compound
GTP task encompasses multiple, more specific ones that are
too “low level” to be included in the HTN domain. For
example, consider the rightmost (fourth) column of Figure 2
which shows the grasp and placement actions that the four
“compound” GTP tasks in the third column refine into. We
could imagine a domain where these actions are encapsulated
into one compound PICKMAKEACCESSIBLE(O,H) task (for
object O and human H), instead of the two tasks PICK(O)
and MAKEACC(O,H). This will let the GTP backtrack from
PLACE(O) to GRASP(O), facilitating early failure detection
in HTN planning—i.e. PICKMAKEACCESSIBLE(O,H) will
have no solution when the “future” GTP task PLACE(O), due
to be tried later by the HTN planner, is predicted by the GTP
to be impossible even with different solutions for PICK(O).
Such encapsulation can also minimise GTP backtracking by,
from the outset, planning with respect to definite future GTP
tasks (e.g. planning the grasp with respect to the placement).

IV. A SYMBOLIC-GEOMETRIC PLANNING EXAMPLE

In this section we detail a concrete domain that illustrates
how symbolic and geometric planning is interfaced and
combined. Particularly, we show how HTN and GTP back-
tracking is interleaved, and shed light on a methodology for
building symbolic-geometric planning domains. Our example
is a PR2 robot working as a library receptionist. We focus
here on the important aspects of this domain and refer the
reader to [20] for more details.

Members of the library can use their membership ID to
do things like reserve books online and top up their library

234

MANAGEORDER(M)

m1

AND

LEND(M)

OR

m2

�

m3

AND

PICK(B) SAY(T) MAKEBKACC(B,M) ADD(B, M) m4

AND

DISPLAY(B, T,M)

m5

AND

PICK(B) SHOW(B,M) SAY(T)

GIVEBK(B,M)
WAITTAKE(B, M) ADD(B, M)

TAKEPAYMENT(M)

OR

m6

DEBITACC(M, N ∗ c)

m7

AND

PLACEPOSM(M)

OR

m8

AND

PICK(posm) SAY(swipe) PUTON(posm, stnd)

m9

ANDNAV(posm)
PICK(posm) NAV(desk) SAY(swipe)

PUTON(posm, stnd)

PUTAWAYPOSM(M)

m10

AND

SAY(thank) PICK(posm) PUTAWAY(posm, M)

EMAIL(M)

Fig. 1: The part of the HTN domain that handles online book reservations. Solid rectangles are HTN abstract tasks; rounded
rectangles methods (where the incoming vertex is the task that the method solves, and outgoing vertices are the tasks in the
method’s body); and dashed rectangles actions. Standard HTN actions are in bold and GS actions are underlined.

ACTION/HTN TASK M PRECONDITION METHOD-BODY/ACTION-EFFECTS
MANAGEORDER(M) m1 held(B, M) LEND(M) · TAKEPAYMENT(M)
LEND(M) m2 ∀B,¬held(B, M) �

m3 held(B, M) ∧ title(B, T) PICK(B) · SAY(T) · MAKEBKACC(B, M) · ADD(B, M) · LEND(M)
m4 held(B, M) ∧ title(B, T) ∧ ¬hvy(B) DISPLAY(B, T, M) · GIVEBK(B, M) · WAITTAKE(B, M) ·

ADD(B, M) · LEND(M)
DISPLAY(B, T, M) m5 true PICK(B) · SHOW(B, M) · SAY(T)
TAKEPAYMENT(M) m6 nLnt(M, N) DEBITACC(M, N ∗ c)

m7 nLnt(M, N) ∧ cr(M, C) ∧ (C < N ∗ c) PLACEPOSM() · PUTAWAYPOSM(M) · EMAIL(M)
PLACEPOSM() m8 reachable(posm, pr2) PICK(posm) · SAY(swipe) · PUTON(posm, stnd)

m9 true NAV(posm) · PICK(posm) · NAV(desk) · SAY(swipe) · PUTON(posm, stnd)
PUTAWAYPOSM(M) m10 true SAY(thank) · PICK(posm) · PUTAWAY(posm, M)

SAY(T) true {spoke(T)}
MAKEBKACC(B, M) held(B, M) ∧makeAcc(B, M)? {¬held(B, M), lent(B, M)}, makeAcc(B, M)−, makeAcc(B, M)+

WAITTAKE(B, M) held(B, M) ∧ gave(B, M) {¬held(B, M),¬gave(B, M), lent(B, M)}
ADD(B, M) lent(B, M) ∧ nLnt(M, N) {¬nLnt(M, N), nLnt(M, N + 1)}
GIVEBK(B, M) held(B, M) ∧ give(B, M)? ∧ ¬hvy(B) {gave(B, M)}, give(B, M)−, give(B, M)+

PICK(O) pick(O)? pick(O)−, pick(O)+

DEBITACC(M, Cost) cr(M, C) ∧ (C ≥ Cost) {¬cr(M, C), cr(M, C − Cost)}
EMAIL(M) lent(B, M) {emailed(M)}

TABLE I: The table for Figure 1. The top half (above the thick line) are methods (M) and the bottom half are operators.
For legibility, empty sets have been omitted from the table. Omitted operators are defined similarly to PICK(O).

credit. The ID corresponds to information including the
member’s name, books reserved, borrowed, and remaining
credit. Reserved books need to be collected in person from
the library. After an online reservation, (human) librarians
find the books and make them accessible to the PR2 on a
shelf adjacent to it; basically, an object is accessible to an
agent if it is both visible, and reachable without needing to
navigate from the current position.

The HTN hierarchy is shown in Figure 1 and detailed
in Table I. The top-level HTN task MANAGEORDER(M)
for member M has one method (m1) with two subtasks:
LEND(M) and TAKEPAYMENT(M). The first task has meth-
ods m2, m3, and m4 and these are “ordered,” i.e. tried in that
order. Method m2 trivially succeeds if there are no (more)
books held by the member. If it is not applicable, m3 is
tried, which has the following actions: pick from the adjacent
shelf a book reserved (held) by the member, speak out the
title, make it accessible to him/her on the desk, do some
bookkeeping—e.g. send the current total to the Point-of-Sale
(POS) machine—and then recursively call LEND(M).

Method m4 starts with an HTN abstract task to display a
book, which refines into the three steps related to showing a
book to the person. The abstract task is followed by: giving
the book to the person;2 waiting for it to be taken, which is a
non-GS action that uses the gripper angle and force sensors
to check if an object is in the gripper; the bookkeeping action;
and finally a recursive call to LEND(M). Note that a book is
given only if it is deemed light enough to be directly taken
from the gripper, and that by forcing an ordering between m3

and m4 we are encoding a preference for placing a book on
the table over handing it (directly) to the member, allowing
the member to pick up the book and put it in a bag at his/her
own pace. Note also that if a book is heavy (hvy(B)) it could
be made accessible rather than given directly.

The TAKEPAYMENT(M) task of m1 is associated with
methods m6 and m7. Method m6 involves debiting the
member according to the number of books lent nLnt (all

2We could also imagine more generic GIVEBK(B, M) and
MAKEBKACC(B, M) actions that can handle any object type or
give and make books accessible for reasons other than lending.

235

books have the same cost c), provided there is enough
credit C in the member’s account. If not, the member must
pay by debit/credit card (m7). The PLACEPOSM() task is
associated with two ordered methods for giving the POS
machine (posm): if it is reachable, it is picked up and put
onto the stand (stnd) after asking the user to swipe the card
and enter the PIN, but if not—presumably because it is with
another receptionist—the PR2 must navigate to pick it up
and bring it back. The PUTAWAYPOSM(M) task includes
actions to thank the person and to move the machine away
from the person’s reach, and EMAIL(M) emails the member
with details including the books that were lent.

The example serves to highlight some key characteristics.
First, there is some interesting interleaving of HTN planning
and geometric task planning that is possible with the domain
described. Suppose that the library reception desk is small
and somewhat cluttered with boxes, and that a member has
reserved two big books b1 and b2. While there is enough
space on the table to make one of them accessible (to the
member), there is not enough space to make them both
accessible, nor to make one accessible but give the other
(directly), as the books are so big that they block the path to
the member. Figure 2 illustrates how the combined planning
process might work with such a setup. In the figure b1 is
successfully picked and made accessible (i.e. the GTP tasks
corresponding to the PICK(b1) and MAKEBKACC(b1, m) GS
actions are successfully planned), and LEND(M) is recur-
sively called. However, because of our setup, the attempt to
make book b2 accessible will fail. In our current approach, at
this point the GTP must backtrack to reconsider its choices—
first for PICK(b2), and if that fails, for MAKEBKACC(b1, m),
and if that also fails, for PICK(b1). Since the GTP will still
not find a way to change the pose of the first book so as to
make the second accessible, the system will then resort to
HTN backtracking, which will choose the alternative method
m4 to give b2 directly to the person.3 According to our
initial setup, this will also fail even after the GTP tries to
change the pose of b1. The HTN planner will then backtrack
once again (not shown), this time right to the beginning, and
perhaps choose method m4,4 to give b1 directly to the person;
if this happens the planner will then successfully make b2

accessible and continue planning.
The second characteristic that the domain depicted in

Figure 1 highlights is “GTP influenced” HTN preconditions.
In Table I, subsets of preconditions of the GIVEBK(B,M)
and MAKEBKACC(B,M) operators are duplicated in the
HTN methods where they occur. This is solely for efficiency:
to ensure that the preceding GS actions (e.g. PICK(B)) in
those methods, which are costly to plan, are not planned
unnecessarily, i.e. if the preconditions of GIVEBK(B,M)
and MAKEBKACC(B,M) are guaranteed to eventually not
hold. So intuitively, for any GS action occurring in the
method body, it makes sense to duplicate in the method-

3we assume here that the book is light enough to be handed to the person
4Method m3 could also be chosen here to make book b2 accessible.

m3

m4 m3

pick(b1)

say(tb1)

makeBkAcc(b1,m)

add(b1,m)

pick(b2)

show(b2,m)

say(tb2)

give(b2,m)

pick(b2)

say(tb2)

makeBkAcc(b2,m)

pick(b1)

makeAcc(b1,m)

pick(b2)

makeAcc(b2,m)

grasp(b1)

place(b1)

place(b2)

grasp(b2)

Projection

Sequence
Backtracking

m3

pick(b1)

say(tb1)

makeBkAcc(b1,m)

add(b1,m)

Fig. 2: Interleaved GTP and HTN backtracking and planning.

precondition the subset of the action’s precondition5 that does
not “depend” on—that has no causal links [21] with—any
preceding action in the body (e.g. the held(B,M) literal in
the precondition of MAKEBKACC(B,M) has no causal link
with any of its preceding actions in the body). We could
also order methods based on their estimated “computational
cost.” For example, by forcing method m8 to be tried before
m9 we avoid unnecessarily planning to navigate—when the
POS machine is likely reachable—as generally planning to
navigate and pick up an object is more computationally
expensive than planning to simply pick it up.6 Interestingly,
the notion of a “computationally costly” action here is
different to the standard notion of “action cost,” which is
the estimated cost of executing the action.

Finally, note that the reachable(O,A) predicate in
the precondition of m8 is a weaker notion than “real”
reachability: when agent a can really reach object o, i.e. a
collision-free trajectory exists from the arm of a to o, then
reachable(o, a) holds, but the converse is not necessarily
true; the predicate is derived from the 3D world with a
heuristic based on the area covered on extending the robot’s
arm with respect to all its degrees of freedom. Hence, the
weak notion will clearly not hold if there is an obstacle
blocking the path from the robot’s arm to where the object
is located. With such a “lazy predicate” we can quickly
determine if an object is definitely unreachable and also
if an object is likely to be reachable, e.g. before testing
putOn(posm, stnd)? to see if it is really the case. In
contrast, the visible(O,A) shared predicate and others
like on(O,O2) and in(O,O2) (for an agent A and objects
O,O2) only depend on the current geometric state—not
on the existence of a trajectory—and thereby accurately

5excluding the evaluable predicate linked to a GTP task
6If there are abstract tasks in the method body, then the GS actions

they might refine into will also need to be taken into account, and this
process repeated until leaf-level methods (those that do not mention any
abstract tasks in their bodies) are reached, as done for instance in [22] to
“summarise” HTN hierarchies.

236

correspond to their “real” notions.

V. ALGORITHMS FOR SYMBOLIC-GEOMETRIC PLANNING

We now present the Algorithms and data structures for
an “intermediate layer” that coordinates HTN and GTP
backtracking and planning, and a skeleton of the underlying
GTP algorithm with certain features highlighted. We begin
by illustrating some of the main ideas with an example.
Consider a similar HTN domain to Figure 1 where the PR2
first makes reserved books accessible to the member (to show
what he/she has borrowed), and then the POS machine if it is
not already accessible, and finally gives the books (directly)
to the member after asking him/her to insert the card and
enter the PIN. To avoid any confusion when the user is asked
to enter the PIN, the PR2, just before asking, hides from the
member’s view any other POS machines lying around on
the table that are not involved in the transaction. Asking
the member to enter the PIN is similar to the (non-GS)
SAY(swipe) action from Figure 1 except for an additional
requirement to have only one POS machine visible to the
member—all others must be hidden.

Now suppose that initially two POS machines
posm1, posm2 were accessible to a member who
had reserved two books b1, b2. Suppose also that: (i)

MAKEBKACC(b1, m) was successful, but with the side effect
where posm2, the one not used for the transaction, became
hidden from the member; (ii) MAKEBKACC(b2, m) was
successful without leading to anything being hidden from
the member; and finally, (iii) SAY(swipe) was successful
because literals visible(posm1, m) and ¬visible(posm2, m)
were both true. Now, if for some reason GTP backtracking
is triggered at some later point and the GTP picks different
solutions for MAKEACC(b2, m) and/or MAKEACC(b1, m),
the GTP must ensure that those two literals will still hold: it
must “protect” them when backtracking. Not doing this may
render the current HTN plan invalid. So if we use sequence
�L to keep track of the shared literals to protect per action
in the HTN partial plan, at this point in our example we
have �L = ∅ · ∅ · {visible(posm1, m),¬visible(posm2, m)}.
Consequently, the final state resulting from consecutively
applying any new solutions for the first two actions’ GTP
tasks must be consistent with the literals in the last set in �L.

In the algorithms we use Res(σ, s) and Res(�σ, s) to
denote, like in classical planning, the GTP world state
resulting from applying respectively the GTP solution σ
and the sequence of GTP solutions �σ to the GTP world
state s.7 We also keep the notion of a GTP (world) state
and GTP solution abstract. Basically, a GTP state is a 3D
world model with positions and configurations of all objects,
and a solution σ is sometimes simply a trajectory, but
in general includes additional domain-specific information
like the effort required to perform the task and symbolic
information like the relative location of a manipulated object.
We refer the reader to [12] for more details.

7In practice, we do not explicitly compute Res(σ, s) as the GTP stores
the end state of a solution found.

Algorithm 1 Evaluate Symbolic Predicate (GTP Task)
1: function TESTEVALPRED(t, len)
2: Let �t = t1 · . . . · tn and �L = L1 · . . . · Ln+1

3: tcur ← t
4: if len < |�t| then // backtracked symbolically
5: �t ← (len > 0 ? t1 · . . . · tlen : �)
6: �L ← (len > 0 ? L1 · . . . · Llen · ∅ : ∅)
7: ans ← PLANTASK(�t · t, �L)
8: return (ans = fail ? false : true)

Before planning starts, the HTN initial state must be
made consistent with that of the GTP initial state. This is
done using function GETSYMFACTS(), which will compute
ground literals from the current geometric state, e.g. which
objects are visible and reachable to which agents [19],
[17], and which objects are on top of which other objects
[23]. Moreover, before planning starts the following global
variables are initialised: the sequence �t (initially �) of GTP
tasks successfully planned so far; the sequence �L (initially
∅) of sets of literals to protect; the current GTP task tcur

(initially �) for which a GTP solution is being sought;
its corresponding GTP solution �σcur (initially �); solution
sequence �σ (initially �); and initial GTP world state s0,
where the last three variables are only visible to the GTP.

Given a sequence of GTP tasks �t and a GTP solution
sequence �σ for it from world state s,8 we say that �σ protects
a set of ground literals L from s, denoted Pr(�σ, L, s), if
all l ∈ L hold in Res(�σ, s). As illustrated in the previous
example, we maintain the sequence of sets of ground literals
�L = L1 · . . . · Ln that need to be protected by new GTP
solutions for the currently pursued sequence �t of GTP tasks,
and then try to ensure, given a prefix t1 · . . . · ti of �t, that
some solution sequence σ1 · . . . · σi for t1 · . . . · ti protects
Li+1 ∈ �L from the initial GTP state.

Algorithm 1 is the function called to evaluate predicates
associated with GTP tasks. Indeed, for efficiency, this func-
tion should be called last while evaluating preconditions
to ensure it is not called unnecessarily, i.e. when the rest
of the precondition does not hold. In this algorithm, to
detect if backtracking has occurred at the HTN level that
warrants reconsidering certain GTP tasks in the postfix of �t,
the length of the currently pursued HTN plan—actually, its
subsequence containing GS actions—is checked: if less than
the length of the current sequence �t of GTP tasks then the
algorithm explicitly “backtracks” by trimming the sequence
accordingly. To understand how this works, consider Figure
2. Suppose again that we have a member m who has reserved
two books b1, b2, and that the HTN planner chose method m3

(for b1) followed by m3 again, to solve task LEND(m). Now,
if the precondition of MAKEBKACC(b2, m) is not applicable,
the HTN planner must “discard” the second method m3,
and then continue perhaps by checking the precondition of
PICK(b2) of task DISPLAY(B, T,M). So the length we are
interested in is two, as the two GS actions from the initially

8that is, σ1 ∈ �σ is the solution for t1 ∈ �t from s; σ2 ∈ �σ for t2 ∈ �t
from s1 = Res(σ1, s); σ3 ∈ �σ for t3 ∈ �t from Res(σ2, s1); and so on

237

Algorithm 2 Protect Ground Literals and Apply GTP Task
1: function PROTECTANDAPPLY(L)
2: Let L� ⊆ L be the set of shared literals in L
3: �L ← L1 · . . . · L|�t| · (L|�t|+1 ∪L�), where �L = L1 · . . . · Ln

4: if t?cur ∈ L then // applying effects of a GS action
5: �t ← �t · tcur

6: �L ← �L · ∅
7: APPLYLASTTASK()
8: return GETSYMFACTS()

9: return ∅
Algorithm 3 Geometric Task Planning (Top-Level)

1: function PLANTASK(�t, �L)
2: Let �σ = σ1 · . . . · σn

3: �σ ← (|�t| > 1 ? σ1 · . . . · σ|�t|−1 : �)

4: �σcur ← PTR(s0,�t, �σ, �L)
5: return (�σcur = fail ? false : true)

selected method m3 are still in the partial plan.9
After line 7 we assume a cache is kept of previous

solutions for PLANTASK(�t·t, �L), to avoid recomputing a plan
for the same input on repeated calls to Algorithm 1. This is
possible, for example, if the HTN planner needs to check
multiple ground instances of a precondition before finding
one that holds in the current state.

The HTN planner calls Algorithm 2 when an action’s
effects need to be applied to the state of the world. The
input is the set of ground literals that was checked in the
precondition, and it returns the set of shared (ground) literals
(both positive and negative) resulting from executing GTP
task tcur.

Algorithms 3 and 4 (PTR is short for PLANTASKRE-
CURSE) depict the basic geometric task planning algorithm.
They illustrate how the GTP backtracks on choices and how
literals are protected during geometric planning. Indeed, such
a basic depth-first search algorithm will need to be supported
by efficient heuristics to be practical: some promising steps
in this direction are proposed in [2].

Algorithm 3 simply truncates solution sequence �σ if its
corresponding sequence of GTP tasks �t was already truncated
in Algorithm 1, and then calls Algorithm 4. Algorithm 4 is
basically backward state space search from the new GTP task
that needs to be planned to the last GTP task that was already
planned, and eventually to the first GTP task that was already
planned. Lines 5 and 6 try to keep the largest possible prefix
of the previously planned GTP solution sequence �σ. Line 8
ensures that the relevant literals are protected when looking
for a new solution for t1.

VI. IMPLEMENTATION AND EFFICIENCY ISSUES

For the integration we use the HATP [24] HTN planner
and our GTP [12], which have both been used extensively
(albeit separately) in the LAAS architecture [25] for HRI
experiments. We will start with a brief overview of the LAAS
architecture. The PR2 uses the Move3D [26] integrated
planning and visualisation platform for representing the real

9This length could be maintained straightforwardly in the HTN domain
without any modifications to the planner, and included as an extra parameter
in the evaluable predicate.

Algorithm 4 Geometric Task Planning
1: function PTR(s, �t,�σ, �L)
2: Let �t = t1 · . . . · tn // tn is the new GTP task
3: Let �L = L1 · . . . · Ln and �σ = σ1 · . . . · σn−1

4: if |�t| = 0 then return �
5: if |�σ| > 0 then // try stored solution
6: �σsol ← PTR(Res(σ1, s), t2 · . . . · tn, σ2 · . . . · σn−1,

L2 · . . . · Ln)
7: if �σsol �= fail then return σ1 · �σsol

8: if �σ for t1 from s such that Pr(σ, L2, s) then return fail
9: Nondeterministically choose such a σ

10: �σsol ← PTR(Res(σ, s), t2 · . . . · tn, �, L2 · . . . · Ln)
11: if �σsol �= fail then return σ · �σsol

12: return fail

world in 3D and for doing geometric task planning with
it. Through various sensors the PR2 can also update the 3D
world state in real-time. To this end, a tag-based stereovision
system is used for object identification and localisation, and
a Kinect (Microsoft) sensor for localising and tracking the
human. With our geometric tools we not only anchor a
symbolic fact, but also compute the cost (in terms of effort)
associated with the fact [19], [17].

Although we keep the symbolic-geometric planning sepa-
rate from execution, we have implemented the mechanisms
to execute on the real PR2 platform the plans produced. We
have also implemented the HTN domain and all GTP tasks in
Figure 1, except for NAV(Obj) which requires further work,
and sufficiently implemented the algorithms presented in this
paper to gain some preliminary insights.

(a) (b) (c) (d)

Grey is Vis with E=1 &
Reach with E=4
White is Vis with E=4 &
Reach with E=4

(e)

Grey is Vis with E=1 &
Reach with E=1
White is Vis with E=4 &
Reach with E=4

(f)

Grey is Vis with E=1 &
Reach with E=1
White is Vis with E=1 &
Reach with E=2

(g)

Fig. 3: Screenshots showing backtracking and facts produced.

In our GTP domain the GETSYMFACTS() function
is able to compute predicates such as visible(O,A),
reachable(O,A), on(O,O2), and inside(O,O2) for an
agent A and objects O,O2. The first two are computed
using techniques in [17], and the others using domain-
specific heuristics. We found that in practice, computing
visibility and reachability in a standard domain with 3 agents
and 6 objects takes approximately 0.2 seconds on average,
which is negligible compared to the time it takes to do
geometric backtracking [2]. We refer the reader to [20] for
some preliminary results on the runtime performance of our
symbolic-geometric planning system.

238

In Figure 3, (a) to (d) show in Move3D a part of the
backtracking depicted in Figure 2, and (e) to (g) summarises
the visible(O,A) and reachable(O,A) shared literals in-
volving the human, for each of the Move3D states, with (f)
corresponding to both (b) and (c). Sub-figure (a) shows a
grey and white book on the shelf adjacent to the PR2, and
a person (“HUMAN”) at the reception counter; (b) shows
the PR2 making the grey book (“Grey”) accessible on a
box on the desk; (c) shows how it is later moved, after
backtracking, to make room for the white book (“White”);
and (d) shows the PR2 placing the white book on the box.
Sub-figure (e) shows that the grey book is (easily) visible
(“Vis”) to the human, i.e. with an effort (“E”) of either 0 or
1, but that it cannot be (easily) reached (“Reach”) by him—
that requires an effort greater than 1. Columns (f) and (g)
are self explanatory. Although not shown in the figure, both
books were always visible and reachable to the PR2 with
E=1.

VII. DISCUSSION AND CONCLUSION

In this paper, we have investigated issues related to linking
geometric reasoning with symbolic planning. To this end,
we focussed on defining a clear interface between the two
planners, in particular, defining how geometric entities, like
compound tasks and 3D world states, can be meaningfully
included in HTN planning. This led to a first attempt at
a methodology for developing symbolic-geometric planning
domains. We showed with a non-trivial example how care-
fully written HTN domains coupled with “lazy” conditions
could improve performance. We discussed an approach to
interleaved backtracking and provided algorithms for it,
together with algorithms that link the two planners. These
included a way to “protect” shared literals, which may
otherwise be negated while backtracking in the GTP, possibly
making the pursued HTN plan invalid. Finally, we discussed
a prototype that implements some of the useful bits of
the combined system, and presented a basic backtracking
scenario along with the shared literals computed at each step.

We note that while our aim is to preserve completeness as
much as possible, and evaluable predicates corresponding to
GTP tasks trigger GTP backtracking to this end, a shared lit-
eral (e.g. visible(b1, h1)) mentioned in an HTN precondition
will not trigger GTP backtracking, resulting in the possible
loss of solutions: the literal might just not hold because of
a particular GTP solution choice made earlier (e.g. the pose
of book b1 with respect to human h1). To address this, we
are working on an alternative combined planning strategy for
domains where completeness is important. Intuitively, in our
new approach the HTN planner backtracks to ask the GTP to
find alternative solutions for relevant GTP tasks. To this end,
certain GS operator instances essentially map to different
GTP solutions for the operators’ corresponding GTP tasks.

REFERENCES

[1] L. Karlsson, J. Bidot, F. Lagriffoul, A. Saffiotti, U. Hillenbrand, and
F. Schmidt, “Combining task and path planning for a humanoid two-
arm robotic system,” in ICAPS Workshop on Combining Task and

Motion Planning for Real-World Applications, 2012, pp. 13–20.

[2] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint
propagation on interval bounds for dealing with geometric backtrack-
ing,” in IROS, 2012, pp. 957–964.

[3] D. Nau, H. Muñoz Avila, Y. Cao, A. Lotem, and S. Mitchell, “Total-
order planning with partially ordered subtasks,” in IJCAI, 2001, pp.
425–430.

[4] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel, “Integrating
symbolic and geometric planning for mobile manipulation,” in IEEE

International Workshop on Safety, Security and Rescue Robotics, 2009.
[5] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,

“Semantic attachments for domain-independent planning systems,” in
ICAPS, 2009, pp. 114–121.

[6] C. Dornhege, P. Eyerich, T. Keller, M. Brenner, and B. Nebel,
“Integrating task and motion planning using semantic attachments,”
in Bridging the Gap Between Task and Motion Planning, 2010.

[7] J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation,” in ICAPS, 2010, pp. 254–258.

[8] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011, pp. 1470–1477.

[9] ——, “Unifying perception, estimation and action for mobile manip-
ulation via belief space planning,” in ICRA, 2012, pp. 2952–2959.

[10] S. Cambon, F. Gravot, and R. Alami, “A robot task planner that merges
symbolic and geometric reasoning,” in ECAI, 2004, pp. 895–899.

[11] E. Plaku and G. Hager, “Sampling-based motion and symbolic action
planning with geometric and differential constraints,” in ICRA, 2010,
pp. 5002–5008.

[12] A. K. Pandey, J.-P. Saut, D. Sidobre, and R. Alami, “Towards planning
human-robot interactive manipulation tasks: Task dependent and hu-
man oriented autonomous selection of grasp and placement,” in IEEE

RAS/EMBS BioRob, 2012, pp. 1371–1376.
[13] K. Wyrobek, E. Berger, H. Van der Loos, and J. Salisbury, “Towards

a personal robotics development platform: Rationale and design of an
intrinsically safe personal robot,” in ICRA, 2008, pp. 2165–2170.

[14] R. Fikes and N. Nilsson, “STRIPS: A new approach to the application
of theorem proving to problem solving,” Artificial Intelligence, vol. 2,
no. 3-4, pp. 189–208, 1971.

[15] D. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila, “SHOP: Simple
hierarchical ordered planner,” in IJCAI, 1999, pp. 968–973.

[16] M. Gharbi, J. Cortes, and T. Simeon, “A sampling-based path planner
for dual-arm manipulation,” in IEEE/ASME International Conference

on Advanced Intelligent Mechatronics, 2008, pp. 383–388.
[17] A. K. Pandey and R. Alami, “Mightability maps: A perceptual level

decisional framework for co-operative and competitive human-robot
interaction,” in IROS, 2010, pp. 5842–5848.

[18] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring
problem,” Robotics and Autonomous Systems, vol. 43, pp. 85 – 96,
2003.

[19] A. K. Pandey and R. Alami, “Visuo-spatial ability, effort and af-
fordance analyses: Towards practical realization of building blocks
for robots complex socio-cognitive behaviors,” in AAAI Workshop on

Cognitive Robotics, 2012.
[20] L. de Silva, A. K. Pandey, M. Gharbi, and R. Alami, “Towards

combining HTN planning and geometric task planning,” in RSS

Workshop on Combined Robot Motion Planning and AI Planning for

Practical Applications, 2013.
[21] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory

and Practice. Elsevier, 2004.
[22] B. J. Clement and E. H. Durfee, “Theory for coordinating concurrent

hierarchical planning agents using summary information,” in AAAI,
1999, pp. 495–502.

[23] S. Lemaignan, R. Alami, A. K. Pandey, M. Warnier, and J. Gui-
tton, Bridges between the Methodological and Practical Work of

the Robotics and Cognitive Systems Communities - From Sensors to

Concepts. Springer Publishing, 2012, ch. Towards Grounding Human-
Robot Interaction.

[24] S. Alili, R. Alami, and V. Montreuil, “A task planner for an au-
tonomous social robot,” in Distributed Autonomous Robotic Systems,
2009, pp. 335–344.

[25] S. Fleury, M. Herrb, and R. Chatila, “Genom: A tool for the specifi-
cation and the implementation of operating modules in a distributed
robot architecture,” in IROS, 1997, pp. 842–848.

[26] T. Simeon, J.-P. Laumond, and F. Lamiraux, “Move3d: a generic
platform for path planning,” in 4th Int. Symp. on Assembly and Task

Planning, 2001, pp. 25–30.

239

