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Abstract— Learning a map of an unknown environment and
localising a robot in it is a common problem in robotics,
with solutions usually requiring an estimate of the robot’s
motion. In scenarios such as Urban Search and Rescue, motion
encoders can be highly inaccurate, and weight and battery
requirements often limit computing power. We have developed
a GPU based algorithm using Iterative Closest Point position
tracking and Graph SLAM that can accurately generate a
map of an unknown environment without the need for motion
encoders and requiring minimal computational resources. The
algorithm is able to correct for drift in the position tracking by
rapidly identifying loops and optimising the map. We present
a method for refining the existing map when revisiting areas
to increase the accuracy of the existing map and bound the
run-time to the size of the environment.

I. INTRODUCTION

In this paper we present a highly accurate, motion encoder
free, on-line Graph SLAM algorithm with loop closing
capable of running in real time on low cost and low power
mobile hardware. As odometry can be highly unreliable
in many situations, such as in a disaster site with loose
rubble [1], and is subject to drift over time, our algorithm
is designed to require no motion encoder information. We
instead provide position tracking updates through using laser
distance readings as input into an occupancy grid based
Iterative Closest Point (ICP) algorithm [2]. The algorithm
takes full advantage of the highly parallel nature and unique
memory model structure of GPUs.

As any position tracking solution will accrue errors over
time, a method of loop closing is required to maintain an
accurate map. We use the output of our position tracking to
generate a series of local maps, which are added as vertices
into a graph. Edges, or constraints, are labelled with the
displacement between local maps, based on the position
tracking between adjacent maps or from loop closing, and
the certainty of that displacement, based on the gradient of
the fit between the local maps. We present a novel three
stage algorithm that efficiently detects loop closures with
the current local map. Firstly local maps in the correct area
are identified using covariance estimates from the constraints.
The structural similarity of these maps are compared with the
current map using histogram correlations to quickly identify
similar maps independent of offset errors. The histogram
match is then used as an initial estimate into an ICP align-
ment. After a loop closure has been identified, we optimise
the graph to increase the likelihood of the observations.
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A drawback with many Graph SLAM methods is that the
number of local maps increases over time. Not only does
this consume large amounts of memory, but it also slows
down graph optimisation and loop closure. We present a
method to combine local maps and refine constraints between
them when a robot is traversing through already visited areas,
instead of creating new local maps.

Recently, GPUs have started to be used for robotics appli-
cations, with their high data-throughput and data-parallelism
being used to speed up algorithms. However, their highly
limited synchronisation and restricted memory model means
that performance rapidly decreases with branching threads,
random memory access and data-access synchronisation [3].
This is particularly relevant for occupancy grid based ICP
algorithms, as there is a need for hundreds of threads to
add scan points and modify the grid in parallel without
causing data corruption. We propose a method of storing the
occupancy grid as a lookup table into an active cells list to
enable efficient parallel shifting and modification of the map,
while retaining the fast corresponding point search advantage
of occupancy grids. This structure is used for both the
position tracking and the local map matching. Additionally,
we propose a method to optimise the graph in parallel instead
of the standard iterative constraint optimisation [4].

II. RELATED WORK

One of the best solutions to mapping on-board resource
limited robots was introduced by Kohlbrecher et al. [5].
Their method uses an occupancy grid ICP based position
tracker and inertial sensors to generate input for an EKF.
While accurate over small scale scenarios and highly com-
putationally efficient, it is not able to close loops in the
case of any drift in the position tracking, and it uses motion
encoders. An alternate solution presented by Milstein et al.
[6] is to use an occupancy grid ICP algorithm as input for a
FastSLAM particle filter. However, running the particle filter
with enough points to have a high chance of generating an
accurate map is computationally expensive, and is therefore
performed on an off-board computer.

An alternate SLAM approach, introduced by Gutmann et
al. [7] involves combining a series of local maps into a
global map. The Hierarchical SLAM algorithm [8] generates
a series of local feature based maps, and combines them
into an adjacency graph. After loops are closed by detecting
similar features, the algorithm applies a global optimisation
procedure to correct the global map. A similar solution,
that does not have the drawback of using features, instead
performs the loop closure detection by histogram correlation
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of local maps [9]. This allows local maps to be rapidly
compared for similarity regardless of alignment errors. We
use this idea as part of our three stage loop closure detection.
An alternate loop closure strategy presented by Granstrom
et al. [10] involves automatic learning of features from laser
range scans, but comes at an additional processing expense.

The other major part of Graph SLAM approaches is the
method of optimising the graph of local maps to produce a
consistent global map. The ATLAS framework [11] applies
an expensive global optimisation procedure. Olson et al. [4]
applies stochastic gradient descent to reduce errors in the
graph, and produce a representation of the global position
of the local maps to enable efficient updates. Grisetti et al.
[12] extended this method to lessen the number of nodes
that need to be updated during optimisation by changing the
representation of the global position of local maps into a tree
structure. This approach allows the possibility of local maps
to be combined when the robot traverses through already
visited areas, thereby limiting the complexity to the size of
the environment instead of the length of the trajectory. We
use a very similar method to optimise the graph, but we
relax the optimisation procedure to allow constraints to be
optimised in parallel. Mechanisms to lessen the influence of
false positive loop closure during the optimisation process,
such as introduced by Agarwal et al. [13], could be easily
added to our method if required. More complex optimisation
techniques, such as by Sunderhauf and Protzel [14], have
recently been described and could easily be used as part of
our SLAM system, however our results show that the added
computational expense is not necessary in many real world
environments.

Common drawbacks of many ICP algorithms, such as
those in the Point Cloud Library [15], are the computation-
ally intensive search for point correspondences, and that only
aligning to the previous scan allows errors in a single scan to
cause the algorithm to fail. These issues can be avoided by
storing previous scans in an occupancy grid [16] [5]. Storing
a history of past scans in an occupancy grid enables a single
2D scan from a tilting laser to be aligned to a 3D grid.
The OG-MBICP algorithm [16] uses a metric for finding
correspondences that considers rotational and translational
movements in a single pass as rotations in the sensor can
cause points distant from the sensor to be far away from
their corresponding point [17]. We use this algorithm as the
basis for our parallel ICP, but our approach could easily be
followed using another occupancy grid ICP algorithm.

Recently, GPUs have started to be used for robotics
applications, with Olson [18] and Izadi et al. [19] presenting
the first mappings of ICP algorithms onto a GPU. The
Kinect Fusion algorithm [19] uses ICP to align successive
3D scans to generate a surface map of an area. While the
ICP alignment in this algorithm does mean position tracking
information can be extracted, it is not able to perform loop
closure, and the surface reconstruction aim of the alignment
introduces significant computational complexities that are not
needed for position tracking. Alternatively, Clipp et al. [20]
demonstrated a form of visual based SLAM on a GPU.

III. BACKGROUND
A. GPU Programming

GPUs are based on Single Instruction, Multiple Data
(SIMD) architecture. Each GPU has at least one streaming
multiprocessor (SM), and each streaming multiprocessor has
several, typically between 8 and 32, streaming processor
cores (SP) and on-chip local memory. All the SPs residing on
a single SM execute the same instruction at the same time.
In the event of branching code, threads residing on a SP but
not participating in the branch are paused. As threads on a
GPU are extremely lightweight and can be swapped almost
instantaneously, GPUs are most efficient when running with
hundreds or thousands of threads.

GPUs have two levels of shared memory: local and global.
Local memory of a SM resides on-chip and operates at full
clock speed, while global memory is significantly slower to
access, and is optimised for coalesced memory accesses—
global memory transactions occur in serialised blocks of 16
or 32 words. If all threads currently executing on a SM
request memory from the same block (a coalesced memory
access), only one global memory transaction is needed.

As each SP in a SM executes the same instructions at the
same time, a high level of synchronisation is available to
threads on a SM that are active at the same time. These sub-
groups of threads, known as a warp, are guaranteed by the
hardware structure to always be at identical positions in the
execution of the kernel. GPUs also provide atomic operations
to local and global memory to prevent data corruption, while
standard barrier synchronisation is only available to threads
residing on the same SM.

B. Occupancy Grid Metric Based ICP

ICP is an iterative algorithm that searches for correspon-
dences between scans to find the alignment of the new set
of points Snew = {p′i} in the existing environment [2]. An
alignment in three dimensions is defined as q = (x, y, z, θ),
assuming the pitch and roll of the robot is known a priori,
such as from an attitude sensor. The algorithm works by
finding the nearest existing point pi (normally the closest
point on the line between successive points is used (pi, pi+1))
to each new point p′i and then finding the alignment, qmin,
that minimises the mean squared error between pi and the
transformation of p′i by the alignment, as shown in (Eq. 1).
All points in Snew are transformed by q and the process is
repeated until q converges.

Edist(q) =

n∑
i=1

d(pi, q(p
′
i))

2 (1)

MBICP uses a metric to allow the translation and orientation
of successive scans to be determined in one pass [17]. The
metric defines a constant, L, that controls the relative impor-
tance of angular displacement against linear displacement.

‖q‖ =
√
x2 + y2 + z2 + L2θ2 (2)

The distance between two points, p1 and p2 is defined as:

d(p1, p2) = min{‖q‖ such that q(p1) = p2} (3)
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Therefore, the ICP algorithm consists of searching for
corresponding points for each new point p′i by solving (Eq. 3)
for each point. Once all the corresponding points have been
found, the alignment qmin that minimises (Eq. 1) can be
found. All full derivation of the Metric Based ICP algorithm
can be found in [16].

The Occupancy Grid Metric Based ICP (OG-MBICP)
algorithm [16] stores previously observed points inside an
occupancy grid, so that the process of finding corresponding
points is simplified to searching for observed points in nearby
cells in the grid to the new point. No accuracy is lost in using
the occupancy grid as the alignment is still made to the stored
points and not the grid itself.

C. Graph SLAM

A typical formulation of the graph SLAM problem con-
sists of a series of nodes, representing local maps, that are
connected by edges, representing an observed displacement
from one node to another node. The edges in the graph,
normally referred to as constraints, are generated from move-
ment between nodes (the change in displacement from our
position tracking algorithm between adjacent local maps),
or from loop closing. The aim of graph SLAM algorithms
is to find a configuration of the nodes that maximises
the likelihood of the observations. We use the definitions
provided by Grisetti et al. [12] to describe the problem:
• δba is a constraint from node a to node b. It is an

observation of node b from node a.
• Ωba is an information matrix describing the uncertainty

of the constraint δba.
• Pa is the current global position of local map a.
• xa is a parameterisation of the position of node a for

the current configuration. We define it to be xa = Pa−
Pparent(a), where the parent of node a is the local map
previously visited by the robot. x describes the vector
of these parameters for the current configuration.

• fba(x) is a function that calculates the expected obser-
vation of node b from node a given the current graph
configuration.

• eba(x) is the current error in the constraint δba and is
given by eba(x) = fba(x)− δba.

• rba(x) is the residual in the constraint, and is defined
as rba(x) = −eba(x).

• H is the Hessian matrix of the graph, and repre-
sents the curvature of the error function. This can
be approximated as H '

∑
〈b,a〉 JbaΩbaJ

T
ba, where

the Jacobian, Jba, is Jba =
∑b
i=a+1 ιi. Here, ιi =

(00 01 . . . 0i−1 Ii 0i+1 . . . 0N ), where 0 is a 3 by
3 matrix of zeros and I is the 3 by 3 identity matrix.

If the observations are assumed to be independent, the
negative log likelihood of a configuration x is given by:

F (x) =
∑
〈b,a〉εC

rba(x)TΩbarba(x) (4)

where C is the set of pairs of indices that are connected by a
constraint. The aim of the graph optimisation step is to find
the configuration x* that minimises (Eq. 4).
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Fig. 1: Overview of our SLAM system.

D. Histogram Matching

As laser points are added to the current local map, we
use them to generate orientation, projection and entropy
histograms, using the method described by Bosse and Zlot
[9]. These histograms are used as part of our loop closure
algorithm to quickly compare the similarity of two local
maps, regardless of their initial offsets. The orientation
histograms for each map can be used to compute the dif-
ference in rotation between two local maps by performing
a correlation, irrespective of any translational differences.
They are calculated by adding the normal of each point ni
(calculated from the inverse gradient of the line joining pi
and pi+1) to the histogram.

The projection histograms can give the translational offset
once the rotational offset has been calculated. A projection
histogram is calculated for each bin, θp, of the orienta-
tion histogram, by orthogonally projecting the laser points,
(pi,x, pi,y) onto the line with the angle θp, and adding the
point to the bin, di, it is projected onto. This is given by:
di = pi,x cos(θp) + pi,y sin(θp). When being added to the
histogram, the points are weighted according to their surface
orientation to enhance the peaks (a surface nearly parallel to
a projection line gives little information, so the points in it
have a small weight), given by: ni,x cos(θp) + ni,y sin(θp).

The final histogram created is the entropy histogram,
which measures the uniformity of the projection histograms.
A projection histogram with evenly distributed points will
have a large entropy, while histograms with only a small
number of bins used will have a small entropy. Bosse
and Zlot [9] found that entropy sequences worked more
accurately in unstructured environments than the orientation
histogram, and a full derivation of the entropy histograms
is available in [9]. All histograms are normalised while a
local map is being finalised, to ensure the correlation of any
histograms can never exceed one.
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IV. APPROACH

Our SLAM algorithm consists of two major components: a
3D occupancy grid ICP algorithm provides position updates,
while a 2D Graph SLAM algorithm generates an array of
local maps as the robot moves around its environment. Once
a local map has finished being created, it is added into
a graph, and compared against the other local maps for
similarity. If a similar local map is found, a loop closing
constraint is added, and the graph is optimised to increase
the likelihood of all the observations. After a loop closure,
if the robot starts traversing areas of the environment it has
already visited, the new local maps are combined with the
previous local map of the area. An overview of this algorithm
is shown in Fig. 1. All stages are designed for use on a GPU
to maximise the efficiency of the algorithm.

A. Occupancy Grid ICP

Algorithm 1 Psuedocode of our parallel ICP algorithm

1: function PARALLEL ICP(og, ogPoints, points, qinit)
2: q ← qinit
3: repeat
4: for all p in points do
5: pq ← (transform p by q)
6: search og near pq to minimise Eq. 3
7: end for
8: q ← q + (qmin from Eq. 1)
9: until converged

10: clear og using ogPoints
11: if position tracking then
12: shift ogPoints by q
13: add ogPoints to og
14: add points to og and ogPoints
15: end if
16: end function

ICP is used in our algorithm to align successive laser scans
for position tracking, and as part of the test for similarity
to detect loop closures. As it needs to run frequently, it is
important that it be both as fast and as accurate as possible.
We designed our occupancy grid ICP algorithm to make it
efficient when deployed on a GPU, with a particular focus on
a flexible map structure to enable it to be modified, shifted,
and have points added and removed from it by hundreds of
threads without causing memory corruption.

Our algorithm solves this problem by splitting the map
in two parts—a list of active two dimensional cells, and
a two dimensional grid map of the area around the robot
storing indexes into the active cells list. Each active cell
contains a list of sub-cells for the z dimension, and each sub-
cell stores points that were previously observed in it. Active
cells also store their position in the grid map, a total count
of how many times the cell has been observed and when
the cell was last observed when the algorithm is being used
for position tracking. Information about active cells, such as
the observation count, are stored as arrays containing that
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7

Fig. 2: An example graph structure. Solid lines represent
constraints from position tracking, and dashed lines represent
constraints from loop closing.

information for all active cells to ensure coalesced memory
access for threads performing actions on active cells.

Once an alignment q has been found for the new points
Snew, the active cells list is used to quickly clear the
occupancy grid. If the algorithm is being used for position
tracking, the grid map is then shifted by the alignment so the
robot remains centred in the grid, the new points are added to
the map, and active cells that haven’t been observed recently
are deleted. This process is shown in Algorithm 1.

By far the most computationally expensive part of ICP
is finding the point in the occupancy grid that minimises
(Eq.3) for each laser point. In our algorithm, the work to
find a single corresponding point is split over all threads in
a warp. At the start, each thread is given a different cell in
the grid map to process, such that the 32 closest cells to
the laser point in the grid map are each allocated a thread.
Each thread then calculates d from (Eq. 3) for the centre
of the three sub-cells nearest in height to the laser point if
the sub-cell is occupied, and selects the sub-cell with the
lowest d. The threads in the warp then choose the best four
matching sub-cells. All this can be performed without any
synchronisation as all threads involved are in the same warp.
Finally, the threads calculate d for each of the points stored
in the closest sub-cells, and chose the best match.

B. Building the Graph

As the robot moves around, laser scans and their ICP
alignment from the position tracking are added to the current
local map in the graph SLAM algorithm. The local map
stores the movement of the robot (from the ICP alignment)
since the local map was created, and transforms the laser
points by the total movement so that all laser points are
relative to the position of the robot at the start of the map.
This allows the location of a local map to be described by
the position of the robot when the map was created.

A new local map is created after the robot has moved a
certain distance inside the current local map. This distance
should be small enough such that the unavoidable drift from
slight errors in the position tracking are insignificant, but
large enough to keep the number of local maps needed to
describe the environment as small as possible. In our office
environment, we found that a movement of around 2m gave
the best results, and example local maps are shown in Figs.
3d and 3e. Each local map stores its current global position,
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which is calculated from the global position of the parent
local map plus the displacement between the parent local
map and the new local map. This displacement is stored
in the new local map as the constraint δba. Normally, the
parent of a new local map is the current local map, so the
displacement is the robot’s movement inside the current local
map. If the current local map closed a loop, the parent of
the new local map is set to the local map that matched the
current map. Also, if the current local map was combined
with an older map, the parent is set to the older map. This
creates a tree of local maps, where each node is joined by the
constraints with their parents. An example of this structure
is shown in Fig. 2, where node 1 is the parent of node 5 as
node 1 closed a loop with node 4, and node 3 is the parent
of node 7 as the local map created immediately before node
7 was combined into node 3.

When the current local map is finalised, the information
matrix Ωba between it and its parent is calculated by consid-
ering the gradient of the current local map around matching
points in the parent local map. Firstly, points in the parent
local map, p′i, are transformed by the parent constraint (the
displacement between the two maps), κ = (x, y, θ), so that
the points become:

Ti(κ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
p′i,x + x
p′i,y + y

)
(5)

As the points in the current local map are still stored in an
occupancy grid, we find the closest matching point to each Ti
in the occupancy grid, pi, using the same metric as ICP. This
operation can be written according to the function hi(κ) =
M(Ti(κ)). Differentiating this according to the chain rule
yields an expression for the gradient of the match:

h′i(κ) = ∇M(Ti(κ))
∂Ti(κ)

∂κ
(6)

A Hessian information matrix of the point match can be
constructed by Hi = h′i(κ)Th′i(κ), giving the overall infor-
mation matrix:

H =
1

N

N∑
i=1

(
∇M(Ti(κ))

∂Ti(κ)

∂κ

)T (
∇M(Ti(κ))

∂Ti(κ)

∂κ

)
(7)

When the local map is being built, the next laser point de-
tected, pi+1, to each laser point pi is stored in the occupancy
grid along with the laser point itself. The gradient of the map
around the matching point pi, ∇M(Ti(κ)), can therefore be
approximated as the gradient of the line joining pi and pi+1.

C. Identification of Loops

When a robot returns to an area that it has previously
observed, it is necessary to recognise the similarity in the
current local map to the one originally created for the area
so that a loop closing constraint can be added to the graph.
Methods to do this have to be fast, as there can be many
local maps storing thousands of laser points that need to be
searched, have to be able to cope with significant errors in
initial alignment, and have to rarely give false positives, as
incorrectly closing a loop will give large errors in the global

map. False negatives are preferred as they only delay the
creation of a loop closure constraint until the robot continues
to explore areas it has previously visited.

Our loop closing algorithm is a three step process:
• Based on the information matrices of the constraints

around the graph, we calculate what existing local maps
are in the area the current local map could be in.
Each local map stores the current global covariance of
the constraint between it and its parent, calculated by
rotating the information matrix of the constraint by the
global rotation of the parent and inverting. For each
local map in the tree, j, the covariance between it and
the current node, i is given by summing the covariances
of the constraints on the path between the two nodes and
their common parent in the tree, Ei→j . This gives:

Σ′i→j =
∑

(a,b)εEi→j

(RaΩbaR
T
a )−1 (8)

where Ra is the homogeneous rotation matrix for the
current global position of node a. If the absolute value
of the difference in global position between the centres
of local maps i and j is less than the covariance Σ′i→j
(index (0, 0) and (1, 1) for (x, y) coordinates), node j is
close enough to node i to warrant further examination.

• The similarity of potentially matching local maps can
be determined quickly by the correlation of their his-
tograms (see Section III-D). First, circular convolutions
of the orientation and entropy histograms are performed,
and peaks are identified to give an indication of possible
angle offsets between the two local maps. Example
orientation histograms and their correlation are shown
in Fig. 3. For each peak, at rotational offset θr, a
correlation between the maps at an offset of θr is
performed. This means that if the projection histogram
for one map has a projection line angle of θo, the
projection histogram for the other map in the correlation
will have a projection line angle of (θo+ θr). The peak
value corresponds to a potential translational offset.
A correlation is also performed using the projection
histograms with a projection line perpendicular to this
so that the translational offset can be resolved in both
directions. The histograms used are θo + π

2 for the one
map, and θo + θr + π

2 for the other map. Bosse and
Zlot [9] found that setting θo to the largest peak in the
orientation histogram produced the best results.
The closeness of a match at peak θr can be computed
by summing the values of the entropy and orientation
histograms at θr with the maximum values in the
correlation of the two projection histograms. A value
of 3.35 was empirically found to deliver good results
with few false positives. Finally, if dθr and dθr+π

2
are

the offsets that correspond to the maximum values of
the two projection histograms, the translational offsets,
tx and ty can be calculated by solving:(

cos(θr) − sin(θr)
sin(θr) cos(θr)

)(
tx
ty

)
=

(
dθr
dθr+π

2

)
(9)
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Fig. 3: The orientation histograms of matching local maps (d) and (e) are shown in (a) and (b) respectively. (c) shows the
correlation of the orientation histograms, with four possible peaks. The largest peak is the correct alignment. (f) shows the
rough alignment of the local maps after the histogram correlation.

• Using the rough alignment provided by the histogram
correlation, similar local maps can be accurately aligned
by ICP. The same method as described in Section IV-A
is used. To further reduce the chance of false positive
matches, if the ICP alignment doesn’t converge in a set
number of steps, or if the number of matching points
found in the last iteration of the ICP algorithm is too
low, the match is discarded.

D. Graph Optimisation

Once a loop closing constraint has been detected, the
graph can be optimised to maximise the likelihood of the
observations. Similarly to Grisetti et al. [12], we achieve this
by using a modified version of stochastic gradient descent in
moving the nodes in the graph to reduce the error introduced
by each constraint, δba. Only the nodes on the path in the tree
between nodes a and b, Ea→b, are moved. The nodes on the
path are updated in the direction of the residual, rba(x). The
amount of movement is scaled by the amount of information
in the constraint, and a weighting representing the curvature
of the error function. This is given by:

∆xi = λs|Ea→b|wiΩ′bar′ba (10)

where:
• r′ba is the residual of the constraint δba relative to global

coordinates. It is given by r′ba = Pa + Raδba − Pb =∑
i[−]εE

[−]
a→b

xi[−] −
∑
i[+]εE

[+]
a→b

xi[+] + Raδba, where

E
[−]
a→b is the part of the path ascending up the tree of

local maps from a to the root, and E[+]
a→b is the part of

the path heading down the tree to node b.
• Ω′ba is the information matrix relative to the global

frame, which can be calculated by: Ω′ba = RaΩbaR
T
a .

• wi is the weighting of the update, designed to spread the
residual among all nodes on the path between a and b,
with the spread weighted according to all the constraints
along the path. This is given by:

wi =

[
b∑

k=a+1

D−1k

]−1
D−1i (11)

where Dk are the diagonal elements of the kth block
of the Hessian H.

• |Ea→b| is the path length from a to b in the tree.
• s has a value of either +1 if xiεE

[+]
a→b and −1 if

xiεE
[−]
a→b. This is to account for the different directions

of traversal through the tree.
• λ is the learning rate, given by λ = 1

γt , where t is the
iteration number of the optimisation (to make sure the
optimisation converges), and γ = min〈b,a〉Ωba.

The global map is optimised by firstly having a thread
on the GPU for each local map calculate the constraints
that have a path through it, and from this the local map’s
contribution towards the Hessian H. Due to the structure of
the Jacobians Jba, this involves adding the diagonal elements
of the information matrix of each constraint, Ω′ba.

Unlike the method presented by Grisetti et al. [12], each
constraint is not updated iteratively, rather the calculation of
∆xi for each node in each constraint is split across threads
in the GPU, with each thread calculating ∆xi for one node
of one constraint. As these updates happen simultaneously
in any order, they are stored in a temporary update variable
in each local map. Once this has finished, the global position
of each map is changed by the contents of this variable.
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E. Combining Local Maps

Once a loop closing node has been identified and the graph
optimised, the robot must be in an area of the environment
that is has visited before. If the centre of the next local
map created is within a threshold distance of either the
old local map that was involved in the loop combining, its
parent, or any of its children in the tree, the local map is
considered for being combined. If there is a nearby older
map, an ICP match with the older map and the current map
is performed, using the same algorithm described in Section
IV-A, with a starting transformation given by the current
global displacement between to two local maps. If enough
matching points are found in the last iteration of the ICP
algorithm, the maps are combined. The laser points in the
current map are transformed to be relative to the old match
using the offset from ICP, and added to the old map. The
histograms in the current map are shifted according to the
change in position and averaged with the old map.

A similar process is repeated for the next local map, with
its centre being compared with the centre of the old local map
that was just combined, its parent and all its children. After
a local map is combined with an older map, the parent of
the next local map will be set to the index of the older map,
and the current local map will be deleted. This continues
until the robot starts traversing a new area. Combining the
local maps reduces the amount of memory our SLAM system
uses, and increases the efficiency of the parts of the SLAM
algorithm. Additionally, in performing an ICP match during
the combining process, the accuracy of the SLAM algorithm
is improved as the maps are aligned to each other. The parent
constraints between the old local maps can be refined with
the new information from the current traversal of the area to
further improve accuracy. If old local map a1 is combined
with a new map, and next next new local map is combined
with old map b1, the original constraint between a and b, δ(1)ba ,
can be combined with the new constraint from the movement
between the two local maps, δ(2)ba according to:

δba = (Ω
(1)
ba + Ω

(2)
ba )−1(Ω

(1)
ba .δ

(1)
ba + Ω

(2)
ba .δ

(2)
ba ) (12)

The information matrix of the constraints can be added.

V. EMPIRICAL EVALUATION

To evaluate our approach, we captured several datasets
from robots using Hokuyo range finders. While the algo-
rithm can also be run with other depth sensors, such as
a Microsoft Kinect, we consider range finder lasers to be
more appropriate for position tracking and mapping due to
their wide field of view (270◦). We tested the algorithms
by running the datasets at capture frame rate on a test rig
consisting of a 3.4GHz Intel Core i7 CPU and a NVIDIA
570gtx GPU. This GPU has 15 streaming multiprocessors
with 32 streaming processors per SM.

The ground truth datasets were captured by driving the
robot around an office environment in a loop of around 80m
to 120m, arriving precisely back at the starting location. The
position error at the end of the loop shows the accuracy of

TABLE I: Performance comparison of CPU and GPU

Algorithm Error Angular Error Av. Iteration Time
OG-MBICP 32m 160.0◦ 148ms

OG-MBICP (1/4 res) 1.2m 8.0◦ 36ms
GPU OG-MBICP 0.69m 5.1◦ 3.3ms
CPU Graph Slam 0.18m 4.6◦ 38ms
GPU Graph Slam 0.10m 3.2◦ 3.4ms

GPU Map Combining 0.04m 2.7◦ 3.4ms

TABLE II: Performance comparison of SLAM methods

Algorithm Error Angular Error Av. Iteration Time
Parallel Graph SLAM 0.11m 2.4◦ 3.4ms

Hector SLAM 19m 27◦ 2.5ms
Fast SLAM 0.2m 3.0◦ 165ms

each algorithm. Deviations were taken in the loop around
the office to increase the potential for errors to accumulate.
The environment consists of some walls with few features,
and other walls with many occluded features. An example
dataset and the route taken is shown in Fig. 5, as generated
by our parallel position tracking algorithm.

In our first set of experiments, we compared the perfor-
mance of CPU and GPU versions of our algorithm. The CPU
tests were repeated using 1/4 of the laser resolution as this
was found to give improved results over full resolution as
the faster processing time allowed more laser frames to be
processed. On both the CPU and the GPU, our graph SLAM
algorithm had negligible effect on the average time for an
iteration, as the only processing performed every iteration is
adding points to the local map. Only when a potential loop
closure has been identified does it take a non-trivial time to
run. In this experiment, the CPU graph SLAM algorithm took
an average of 51ms to perform loop closure and optimisation,
while our GPU version took an average of 6ms.

As can be seen in Table I, the accuracy of the base OG-
MBICP algorithm is lower than our parallel version. This
difference can be attributed to the OG-MBICP algorithm
using less laser points in the match and skipping frames due
to the longer processing time. While the CPU version of
graph SLAM largely corrects for this, it is not as accurate
as the GPU version due to larger errors being present inside
each local map affecting the loop closing. Our graph SLAM
algorithm with map combining further improved the accuracy
to give error of just 0.04m. This represents an error of under
0.1%, and is smaller than the accuracy at which the robot
can be positioned. The generated map is shown in Fig. 4.

In our second set of experiments, we compared our algo-
rithm to other SLAM algorithms that have been successfully
used in Urban Search and Rescue scenarios, such as in the
RoboCup Rescue competition. In this dataset, the bottom left
of the map as seen in Fig. 6 has very few points available to
be used for position tracking, potentially causing the robot
to become lost. Our algorithm was still able to recover and
correct the loop. The slightly larger error (see Table II) and
lower quality of some parts of the map, such as the left wall
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Fig. 4: Parallel Graph SLAM
with a 10m laser.

Fig. 5: Parallel OG-MBICP
without SLAM loop closure.

Fig. 6: Parallel Graph SLAM with
a 4m laser.

and the obstacle on the bottom right are from the position
tracking errors in bottom left being partially spread out over
all the local maps during the map optimisation.

The Hector SLAM algorithm [5] is available open source
as part of the ROS environment. During the initial part of
the run, it was as accurate as our algorithm, with a 1cm error
around the small loop on the bottom right. Over the larger
loop, the robot’s heading became incorrect when turning the
corner around the top of the map, causing the large final
error. Also, as the algorithm has no explicit loop closing, it
sometimes was not able to recover after the robot traversed
the bottom left of the map, and became lost. On average, the
Hector SLAM algorithm is slightly faster than our SLAM
algorithm. As Hector SLAM is also an occupancy grid ICP
algorithm, it would be possible to adapt our parallel ICP
method to implement it on a GPU in place of OG-MBICP.

We also compared our algorithm against a standard imple-
mentation of FastSLAM [6]. Our parallel OG-MBICP was
used to provide position updates. We found 1000 particles
gave the best compromise with accuracy and processing time.
While this gave an small error of 0.2m, the processing time
increased to an average of 165ms an iteration, making it not
suitable for use on a low powered mobile robot.

VI. CONCLUSIONS
In this paper we have presented a highly efficient and

accurate SLAM algorithm designed for use on mobile robots
that doesn’t require motion encoders. By using the output of
a parallel occupancy grid ICP algorithm to build a series of
local maps into a graph, our solution enables us to detect
loops, optimise the graph in parallel, and refine the map
when revisiting areas in real time on a mid range GPU. Our
results demonstrate that our algorithm is substantially more
accurate than competing solutions designed for Urban Search
and Rescue situations, and is highly efficient.
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