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Abstract— This paper presents hybrid Minimum Mean
Squared Error-based estimators for wireless sensor networks
with time-varying communication-bandwidth constraints, focus-
ing on the particular application of multi-robot Cooperative
Localization. When sensor nodes (e.g., robots) communicate
only a quantized version of their analog measurements to the
team, our proposed hybrid filters enable robots to process all
available information, i.e., local analog measurements (recorded
by its own sensors) as well as remote quantized measurements
(collected and communicated by other sensors). Moreover, these
filters are resource-aware and can utilize additional band-
width, whenever available, to maximize estimation accuracy.
Specifically, in this paper, we present two filters, the Hybrid
Batch-Quantized Kalman filter (H-BQKF) and the Hybrid
Iteratively-Quantized Kalman filter (H-IQKF), that can process
local analog measurements along with remote measurements
quantized to any number of bits. We test our proposed filters
in simulations and experimentally, and demonstrate that they
achieve performance comparable to the standard Kalman filter.

I. INTRODUCTION AND RELATED WORK

In wireless sensor (robot) network (WSN) applications

(e.g., target tracking and environmental monitoring), sensors

typically estimate a quantity of interest, using noisy measure-

ments from all sensor nodes. Since the sensor nodes are spa-

tially distributed, each node generally has to communicate its

local information to the team, either as estimate-covariance

pairs or as raw measurements [1], incurring substantial

communication overhead. Therefore, for WSNs deployed in

(i) environments with inherent communication limitations or

(ii) applications with power/battery restrictions, it becomes

necessary to develop decentralized estimation algorithms that

can trade communication bandwidth-availability for estima-

tion accuracy. While bandwidth constraints exist in many

WSN applications, this work focuses on the representative

application of Cooperative Localization (CL).

In GPS-denied environments (e.g., space or indoors), CL

is used for accurate multi-robot localization, i.e., precisely

estimating the robots’ poses (position and orientation). In

CL, communicating robots equipped with proprioceptive

(e.g., wheel encoders) and exteroceptive (e.g., cameras)

sensors use their individual motion measurements (e.g., lin-

ear/rotational velocity) and robot-to-robot relative measure-

ments (e.g., distance/bearing) to jointly estimate their poses,

resulting in increased accuracy for the entire team [2].
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Representative works for bandwith-constrained CL in-

clude the extended Kalman filter (EKF)-based approaches

of [3], [4], and [5], where based on a suitable selec-

tion/optimality criterion, the robots select and transmit their

most informative analog measurements1. Similarly, Maxi-

mum A Posterior (MAP) estimator-based approaches for CL,

where the robots only periodically exchange local informa-

tion, are presented in [6], [7]. However, in contrast to these

approaches, which assume that robots can communicate

all or a subset of their analog measurements, the work

presented in this paper focuses on applications with strin-

gent communication bandwidth constraints, where robots

can communicate only a few bits per analog measurement.

Therefore, each robot has to perform lossy quantization of

its analog measurements before communicating them to the

team. Moreover, the existing estimators such as the EKF and

MAP, designed for processing only analog measurements,

have to be modified to handle the quantized measurements.

Estimation with quantized observations has been well-

studied in the signal processing community for WSNs. While

there exists a large body of work on parameter estimation

(either deterministic [8], [9], [10] or random variable [11],

[12], [13]), we will focus on approaches that were developed

to estimate random processes, as is the case in CL. The

Sign-of-Innovation Kalman filter (SOI-KF) [14], has been

proposed for estimating stochastic dynamic processes, where

the measurement innovation2, instead of the actual analog

measurement, is quantized to a single bit. Developed for

linear and Gaussian process and measurement models, the

SOI-KF approximates the posterior probability density func-

tion (pdf) by a Gaussian3 after each measurement update,

resulting in a recursive state/covariance update structure very

similar to that of the standard Kalman filter [15]. When

additional bits are available for quantization, the SOI-KF

approach has been extended in [16] to the batch-quantized

KF (BQKF) and the iteratively-quantized KF (IQKF), where

performance comparable to the standard KF can be achieved

by communicating only 4 bits per analog measurement. An

extension to quantized batch MAP estimation, that improves

estimation accuracy when using nonlinear process and mea-

surement models, is presented in [17].

1Sensors sample a process and provide a measurement which is often
represented in digital form using 32 or 64 bit floating-point number
representation. We refer to such measurements as analog.

2Measurement innovation is the difference between the actual and the
estimated (by the filter) measurement.

3Note that due to the nonlinearity of the quantization operation, the
posterior pdf is not, in general, a Gaussian.
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The main drawback of these quantized estimation

schemes, however, is that they prohibit the robots from uti-

lizing all locally-available measurement information. Specif-

ically, to ensure estimation consistency, each robot is com-

pelled to use only quantized versions of its own local, analog

measurements. Thus, valuable information, that can be used

to improve localization accuracy, is discarded.

In [18], we introduced a hybrid estimation framework that

addresses this problem by maintaining two local estimators

for each robot (see Fig. 1): (i) a quantized Q-estimator pro-

cessing quantized measurements from all robots, including

itself, and (ii) a hybrid H-estimator processing its own analog

measurements along with the quantized measurements from

other robots in the team. The H-estimator in [18] is designed

for the special/restrictive scenario when robots communicate

only a single bit per analog measurement.

In practice, however, the communication bandwidth avail-

able for CL is often time-varying, and depends upon the

resource requirements of higher-level tasks and the robots’

battery life. Therefore, in this work, our objective is to

efficiently utilize additional bandwidth, whenever available,

to maximize localization accuracy. To achieve this, in this

paper, we derive H-estimators that can handle the general

case of time-varying communication-bandwidth availability,

i.e., when robots in the team can communicate f ≥ 1 bits, per

analog measurement. Specifically, we develop H-estimators

(see Section III) for two quantization scenarios: (i) Batch

quantization: where the bandwidth availability is known

beforehand, and (ii) Iterative quantization: where additional

bandwidth becomes available on-the-fly. For both these

scenarios, we derive Minimum Mean Squared Error-based

(MMSE) H-estimators (H-BQKF and H-IQKF, respectively)

that are capable of processing local analog measurements

along with multiple bits per remote analog measurement.

Lastly, in Section IV, we present extensive simulation and

experimental results that study the performance and accuracy

of the proposed H-estimators.

II. PROBLEM FORMULATION

The proposed hybrid MMSE-based estimators are de-

signed for WSNs where (i) the process and measurement

models are shared a priori by all sensor nodes, and (ii) each

sensor node can communicate with the network at every time

step. While we now proceed with the specific application of

CL, we note that the proposed estimators are general and can

be used for any static/mobile sensor network applications that

satisfy the above assumptions.

For CL, the problem setup consists of a team of N robots

performing multi-centralized CL (MC-CL) in 2D. In MC-

CL, each robot broadcasts all its measurements and every

robot locally processes measurements from the entire team

to estimate the robots’ joint state. The robot team uses a

statistical motion model (e.g., constant-velocity model [19]),

driven by system noise, as the process model:

xk = Fk−1xk−1 +Gk−1wk−1, x0 ∼ N (xinit,P0) (1)

where, wk is the zero-mean, white, Gaussian, and un-

correlated system noise at time-step k with covariance

E
[

wkwl
T
]

= δklQk. Here, xk = [x1
k

T
,x2

k

T
, . . . ,xN

k

T
]T ,

is the joint-state of the team and xi
k = [xi

k, y
i
k, φ

i
k]

T , is the

state (position and orientation) of robot i at time-step k.

Robot i obtains M i
k scalar, analog measurements (propri-

oceptive and exteroceptive) at time-step k. The measurement

model for robot i, i = 1, . . . , N , is:

zikm = hiT

kmxk + vikm, m = 1, . . . ,M i
k (2)

where vikm is zero-mean, white, Gaussian, and uncorre-

lated measurement noise with E[vikmviln] = δkl,mnσ
i2

km and

E[vikmvjln] = 0, ∀j 6= i, j = 1, . . . , N . Here, the linear

models (1)-(2) are used only for mathematical derivations. In

real-world scenarios with nonlinear models (see Section IV),

the corresponding linearized system models are used. Also,

to simplify the notation in the paper, we will assume that each

robot i obtains only a single, scalar, analog measurement,

zik, at time-step k. The generalization to M i
k measurements

is straightforward.

In the absence of communication-bandwidth constraints,

the robots broadcast their analog measurements to the team.

Then each robot uses the standard KF [15] to obtain the

Minimum Mean Squared Error (MMSE) estimates of all

robots’ poses at time-step k, given all analog measurements,

z0:k, up to time-step k. Here, z0:k = [(z10:k)
T , . . . , (zN0:k)

T ]
T

and zi0:k = [zi0, . . . , z
i
k]

T
, i = 1, . . . , N . On the contrary, in

the bandwidth-limited scenario, each robot can communicate

only f ≥ 1 bits per analog measurement. Therefore, robot i
quantizes its analog measurement, zik ∈ R, to bik ∈ B,

B := {1, . . . , 2f} using the following quantization rule

before broadcasting it:

bik = q[zik], where q : R → B. (3)

Next, each robot uses a quantized filter, such as the BQKF

or the IQKF [16], to generate MMSE estimates (under

Gaussian assumption4) for the robots’ poses using all quan-

tized measurements, b0:k, up to time-step k. However, the

quantization rules used by these filters depend upon the

robots’ pose estimates, via the measurement innovation,

and thus all robots have to maintain identical filters to

ensure estimation consistency. Therefore, even though each

robot i has access to its own analog measurements, zi0:k, it

is forced to discard this information and process only the

corresponding quantized measurements, bi
0:k.

III. HYBRID ESTIMATION FRAMEWORK

In order to address this problem, we introduced a novel

hybrid estimation framework in [18] that enables each

robot to process all available measurement information,

i.e., local analog and remote quantized measurements. To

achieve this, each robot i maintains two estimators (see

4It is important to note that this loss of Gaussianity in the IQKF and
BQKF is due to the non-linearity of the quantization step as opposed to the
non-linearity of the process and measurement models in the EKF.
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Fig. 1. Hybrid Estimation framework. When ψi
k
:= E[zi

k
|b0:k−1] and we

use the quantization rule in (4), the H- and Q-estimators correspond to the

H-BQKF and BQKF, respectively. When ψi
k
:= E[zi

k
|b0:k−1,b

i(1:p−1)
k

]
and we use the quantization rule in (8), the H- and Q-estimators correspond
to the H-IQKF and IQKF, respectively, i = 1, 2.

Fig. 1): (1) a quantized Q-estimator that processes quan-

tized measurements from all robots including itself, i.e.,

x̂
Q

k|k := E[xk|bq 6=i
0:k ,bi

0:k], and (2) a hybrid H-estimator

that processes its own analog measurements and quantized

measurements from the other robots in the team, i.e., x̂Hi

k|k :=

E[xk|bq 6=i
0:k , zi0:k], q = 1, . . . , N . The estimates generated by

the Q-estimator are identical for all robots since each robot

processes the same measurements, b0:k =
{

b
q 6=i
0:k ,bi

0:k

}

.

Therefore, they are used in the hybrid estimation framework

for generating quantization thresholds for all robots as shown

in the next section. On the contrary, the estimates generated

by the H-estimator are different for each robot, since each

robot processes a different set of quantized and analog

measurements.

In the next section, we derive MMSE (under Gaus-

sian assumption) H-estimators that process: (i) local ana-

log measurements, and (ii) multiple bits (f ≥ 1), per

analog measurement, communicated by other robots in the

team. Specifically, we derive: (1) the H-BQKF for batch

quantization, where the bandwidth availability (f bits per

analog measurement) is known a priori, and (2) H-IQKF for

iterative quantization, when additional bandwidth becomes

available on-the-fly.

A. Batch Quantization

1) Encoding rule (Quantizer design): Since robot j is pre-

informed about the availability of f ≥ 1 bits for communi-

cating its analog measurement zjk ∈ R, robot j partitions the

observation space R into 2f intervals. The interval Rj
k(n) :=

[τ jk(n), τ
j
k(n+1)), where τ jk(n) are the quantization thresh-

olds, n ∈ B := {1, . . . , 2f}, τ jk(1) = −∞, τ jk(2
f +1) = ∞,

and τ jk(n) < τ jk(n+1). The quantization rule, which is based

on the measurement innovation, has the form5 [16]:

bjk = n, iff (zjk − E[zjk|b0:k−1,b
m
k ]) ∈ [τ j

k(n), τ
j

k(n+ 1)) (4)

5We assume a round-robin scheduling algorithm where the quantized
measurements are generated and processed sequentially, based on robot ids.
Therefore, robot i generates and communicates its quantized measurement,
bi
k

, before robot (i + 1). Moreover, all robots in the team process bi
k

to

obtain x̂
Q

k|k,i
, before robot (i+ 1) generates its quantized measurement.

where, b0:k−1 denotes the quantized measurements from

all robots up to time-step k − 1, and bm
k denotes the

quantized measurements from robot m, m = 1, . . . , (j − 1),
at time-step k. From (2), the predicted measurement is

E[zjk|b0:k−1,b
m
k ] =: h

jT

k x̂
Q

k|k,j−1. Note that robot j uses

the Q-estimator’s predicted measurement, that is identical

for all robots, for generating the quantized measurements.

This allows other robots to correctly process/decode the

quantized measurement. Robot j does not use the predicted

measurement of its H-estimator, E[zjk|b
q 6=j
0:k−1,b

m
k , zj0:k], q =

1, . . . , N , since it depends upon its local analog measure-

ments, z
j
0:k, which are unavailable to the other robots.

2) Decoding rule (Estimator design): For the batch quan-

tization rule from (4), we now derive the resulting MMSE-

based Q- and H-estimators. Note that the Q-estimator, by

definition, is identical to the BQKF in [16] and is not

presented here due to space constraints. The H-estimator,

H-BQKF, is obtained as follows.

Proposition 1: H-estimator (H-BQKF)

Consider the linear model of (1)-(2) and the quantiza-

tion rule in (4). If robot i assumes the posterior pdf

p
[

xk−1|bq 6=i
0:k−1, z

i
0:k−1

]

∼ N
(

x̂Hi

k−1|k−1,P
Hi

k−1|k−1

)

, then

the state/covariance propagation equations from time-step

k−1 to k are identical to the KF. If robot i, assumes the prior

pdf p
[

xk|bq 6=i
0:k−1,b

m 6=i
k , zi0:k−1

]

∼ N
(

x̂Hi

k|k,j−1,P
Hi

k|k,j−1

)

,

then the MMSE estimator for robot i processing its own

analog measurement, zik, is identical to the KF.

For the MMSE estimator processing the quantized mea-

surement bjk from robot j, j 6= i, the state/covariance update

equations are given by

x̂
Hi

k|k,j = x̂
Hi

k|k,j−1 + αHi(n)
P

Hi

k|k,j−1h
j

k
√

h
jT

k P
Hi

k|k,j−1h
j

k + σj2

k

(5)

P
Hi

k|k,j = P
Hi

k|k,j−1 − βHi(n)
P

Hi

k|k,j−1h
j

kh
jT

k P
Hi

k|k,j−1

h
jT

k P
Hi

k|k,j−1h
j

k + σj2

k

(6)

where

αHi
(n) =

1√
2π

exp
[

−∆2
Hi

(n)/2
]

− exp
[

−∆2
Hi

(n+ 1)/2
]

Q
[

∆Hi
(n)

]

− Q
[

∆Hi
(n+ 1)

]

βHi
(n) = α2

Hi
(n)− 1√

2π

×
∆Hi

(n)exp
[

−∆2
Hi

(n)/2
]

−∆Hi
(n+ 1)exp

[

−∆2
Hi

(n+ 1)/2
]

Q
[

∆Hi
(n)

]

− Q
[

∆Hi
(n+ 1)

]

∆Hi
(n) =

(τ j
k
(n)− h

jT

k
(x̂

Hi

k|k,j−1
− x̂

Q

k|k,j−1
))

σHi

σ2
Hi

= h
jT

k
P

Hi

k|k,j−1
h
j
k
+ σj2

k
and 0 < βHi

(n) < 1.

Proof: See Appendix.

3) Quantization thresholds: We now discuss the selection

of optimal quantization thresholds, τ jk(n), n = 2, . . . , 2f ,

for the batch quantized hybrid estimation framework. For

the team to optimally and correctly process quantized mea-

surements received from robot j, robot j’s quantization

thresholds should be known to the team. Therefore, we

choose robot j’s thresholds so as to maximize the average
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reduction in the covariance of the Q-estimator, BQKF. Since

the Q-estimator is identical for all robots, every robot in the

team can locally calculate the quantization thresholds used

by robot j. Thus, the threshold selection is an optimization

problem of the form (see [16] for details):

{∆∗
Q(n)}2

f

n=2 := arg max
{∆Q(n)}2f

n=2

E[βQ(n)|b0:k−1,b
m
k ] (7)

where βQ(n) is a term, similar to βHi
(n) in (6), that

appears in the covariance update equation of the BQKF

(see [20] for detailed expression), and the expectation is

with respect to the Pr{bjk|b0:k−1,b
m
k }. Maximizing the

average covariance reduction of the BQKF is equivalent to

maximizing the expected value of βQ(n). Moreover, the

optimization problem in (7) is equivalent to quantizing the

measurement innovation, zjk − h
jT

k x̂
Q

k|k,j−1, with minimum

MSE distortion [16]. The solution to (7) is the well-known

Lloyd-Max quantizer and the corresponding values for the

optimal quantization thresholds can be found in [21], [22].

Before proceeding, we make the following important ob-

servations about the proposed H-BQKF:

1) As seen from Proposition 1, even though robot i
cannot communicate its analog measurement, zik, to

the team, the H-BQKF enables it to optimally process

this measurement locally using the KF.

2) Define ᾱHi
(n) = αHi

(n)
√

h
jT

k PHi

k|k,j−1h
j
k + σj2

k .

Using this in (5), we see that the structure of the

state update equation, for processing quantized mea-

surements in H-BQKF, is very similar to that of the

KF [15]. Moreover, as expected, the measurement

innovation in the state update equation of the KF is

approximated by ᾱHi
(n) in the H-BQKF.

3) The structure of the covariance update equation

[see (6)] for processing quantized measurements in

the H-BQKF is identical to that of KF, except for the

factor βHi
(n). Since 0 < βHi

(n) < 1, the covariance

reduction for these estimators will always be less than

that of the KF as measurement information is discarded

during quantization.

4) While processing quantized measurements, the

state/covariance update equations for the H-BQKF

[see (5) and (6)] are a function of the difference

between the predicted measurements, h
jT

k x̂Hi

k|k,j−1 and

h
jT

k x̂
Q

k|k,j−1, of the H-BQKF and BQKF respectively.

Moreover, the covariance reduction in (6) increases as

the absolute value of this difference decreases. This

is because the quantized measurements are generated

using the BQKF’s predicted measurement [see (4)].

If the difference between the predicted measurements

of the H-BQKF and BQKF is large, the quantized

measurement will convey very little information to

the H-BQKF.

5) By choosing f = 1 and substituting the corresponding

optimal thresholds τ jk(1) = −∞, τ jk(2) = 0, and

τ jk(3) = ∞ in Proposition 1, we obtain the special

case of the single bit H-estimator in [18].

B. Iterative Quantization

1) Encoding rule (Quantizer design): When additional

communication bandwidth becomes available to the robots

on-the-fly, robot j can now communicate extra bits, one bit

at a time, for the same analog measurement zjk. If robot j

has communicated (p − 1) bits, b
j(1:p−1)
k , p ≥ 1, for the

analog measurement zjk, then robot j generates the p-th bit,

b
j(p)
k , using the following quantization rule

b
j(p)
k := sign[zjk − E[zjk|b0:k−1,b

m
k ,b

j(1:p−1)
k ]] (8)

where, b0:k−1 denotes the quantized bits from all robots up

to time-step k − 1, and bm
k denotes the quantized measure-

ments from robot m, m = 1, . . . , (j−1), at time-step k. The

expected measurement is given by

E[zjk|b0:k−1,b
m
k ,b

j(1:p−1)
k ]

= E[hjT

k xk + vjk|b0:k−1,b
m
k ,b

j(1:p−1)
k ]

= h
jT

k E[xk|b0:k−1,b
m
k ,b

j(1:p−1)
k ]

+ E[vjk|b0:k−1,b
m
k ,b

j(1:p−1)
k ]

= h
jT

k x̂
Q(p−1)
k|k,j + E[vjk|b0:k−1,b

m
k ,b

j(1:p−1)
k ]. (9)

Importantly, in the above equation, the term

E[vjk|b0:k−1,b
m
k ,b

j(1:p−1)
k ] 6= 0, unless p = 1. If p > 1,

the measurement noise, vjk, is no longer independent of the

previous bits, b
j(1:p−1)
k , since they were generated using

the noisy analog measurement, zjk, itself. Therefore, the

MMSE estimates of the noise term are needed to correctly

generate/decode the bits. These estimates can be obtained

by augmenting the state, xk, with the noise term, vjk, and

considering the augmented state vector x̆k = [xT
k , v

j
k]

T and

a modified h̆
j
k = [hj

k, 1]
T . With these changes, the process

and measurement models from (1)-(2) can be rewritten

as [16]:

x̆k = F̆k−1x̆k−1 + Ğk−1w̆k−1, zjk = h̆
j
k

T
x̆k

where F̆k−1 :=

[

Fk−1 0

0T 0

]

, Ğk−1 :=

[

Gk−1 0

0T 1

]

,

w̆k−1 := [wT
k−1, v

j
k]

T ,

Q̆k−1 := E[w̆k−1w̆
T
k−1] =

[

Qk−1 0

0T σj2

k

]

(10)

Thus, every time robot i generates its own iteratively quan-

tized measurements or processes iteratively quantized bits

communicated by other robots, it has to augment its own

state vector with the corresponding measurement noise so

that the noise statistics can be correctly estimated. Then the

quantization process in (8) becomes identical to that of the

sign-of-innovation quantization rule from [14].

2) Decoding rule (Estimator design): For the iterative

quantization rule in (8), we now derive the Q- and H-

estimators. The Q-estimator, by definition, is identical to the

IQKF presented in [16] and is not presented here due to

space constraints. The H-estimator, H-IQKF, is obtained as

follows.
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Proposition 2: H-estimator (H-IQKF)

Consider the linear model of (10) and the quantiza-

tion rule in (8). If robot i assumes the posterior pdf

p
[

x̆k−1|bq 6=i
0:k−1, z

i
0:k−1

]

∼ N
(

ˆ̆xHi

k−1|k−1, P̆
Hi

k−1|k−1

)

, the

state/covariance propagation equations are given by

ˆ̆xHi

k|k−1 = F̆k−1
ˆ̆xHi

k−1|k−1 (11)

P̆Hi

k|k−1 = F̆k−1P̆
Hi

k−1|k−1F̆
T
k−1 + Ğk−1Q̆k−1Ğ

T
k−1. (12)

If robot i assumes the pdf

p
[

x̆k|bq 6=i
0:k−1, z

i
0:k−1,b

m 6=i
k ,b

j(1:p−1)
k

]

∼
N

(

ˆ̆x
Hi(p−1)
k|k,j , P̆

Hi(p−1)
k|k,j

)

, then the MMSE estimator

for robot i processing its own analog measurement, zik, is

identical to the KF.

For the MMSE estimator for robot i, that processes the

quantized measurement, b
j(p)
k , j 6= i, from robot j, the

state/covariance update equations are given by

ˆ̆x
Hi(p)
k|k,j = ˆ̆x

Hi(p−1)
k|k,j + α

P̆
Hi(p−1)
k|k,j h̆

j
k

√

h̆
jT

k P̆
Hi(p−1)
k|k,j h̆

j
k

b
j(p)
k (13)

P̆
Hi(p)
k|k,j = P̆

Hi(p−1)
k|k,j − β

P̆
Hi(p−1)
k|k,j h̆

j
kh̆

jT

k P̆
Hi(p−1)
k|k,j

h̆
jT

k P̆
Hi(p−1)
k|k,j h̆

j
k

(14)

where,

α =
exp[−∆2/2]

√
2πQ[−b

j(p)
k ∆]

, β = α2 + b
j(p)
k

∆exp[−∆2/2]
√
2πQ[−b

j(p)
k ∆]

∆ =
h̆
jT

k

(

ˆ̆x
Hi(p−1)

k|k,j − ˆ̆x
Q(p−1)

k|k,j

)

√

h̆
jT

k P̆
Hi(p−1)

k|k,j h̆
j

k

Proof: This proof is similar to that of Proposition 1

and is presented in [20].

Note that the first r = 3N elements of ˆ̆x
Q(p)
k|k,j and ˆ̆x

Hi(p)
k|k,j

correspond to the robots’ state estimates, and the top r × r

sub-matrices of P̆
Q(p)
k|k,j and P̆

Hi(p)
k|k,j correspond to their covari-

ance, respectively. Once all bits corresponding to zjk have

been processed, the robots can revert to the original state

vector, xk. When processing bits from a new analog mea-

surement, the robots will again augment the state with the

corresponding measurement noise and the above procedure

will be repeated.

From Proposition 2, we see that even though robot i cannot

communicate its analog measurement, zik, to the team, the

H-IQKF enables it to optimally process this measurement

locally using the KF. Next, note that the structures of the

IQKF and H-IQKF, are strikingly similar to that of the

single-bit SOI-KF [14] and H-SOIKF [18], respectively,

where the analog measurement is quantized to a single bit.

Specifically, as expected, when p = 1, the IQKF and H-

IQKF are identical to SOI-KF and H-SOIKF, respectively.

Moreover, the structure of the IQKF and H-IQKF is similar

to that of the KF, and as expected, the covariance reduction

of these quantized-innovation filters is smaller than that of

the KF. Lastly, similar to the H-BQKF, when the H-IQKF

processes quantized measurements, the state/covariance up-

date equations are a function of the difference between the

predicted measurements, h̆
jT

k
ˆ̆x
Hi(p−1)
k|k,j and h̆

jT

k
ˆ̆x
Q(p−1)
k|k,j , of

the H-IQKF and IQKF, respectively.

IV. SIMULATIONS AND EXPERIMENT

A. Simulation Results

The simulation set-up consists of a team of two robots

navigating in 2D while performing MC-CL. The continuous-

time dynamics for each robot are given by the constant

velocity motion model [19]:

ẋ = f(x) +Gc

[

wv

wω

]

(15)

where x = [x, y, φ, v, ω]
T

, f(x) =
[vcosφ, vsinφ, ω, 0, 0]

T
and Gc = [02×3, I2×2]

T
.

The standard deviation of the continuous-time noise in

the linear, v, and rotational, ω, velocity is chosen to

be σv = 0.6325 m/s.
√

Hz and σω = 0.4967 rad/s.
√

Hz

respectively. Each robot obtains measurements for its linear,

vm, and rotational, ωm, velocity, as well as its distance,

dm, and bearing, θm, to the other robot. The noise in these

measurements is modeled as zero-mean, white Gaussian

with standard deviation σvm
= 0.07 m/s, σωm

= 0.28
rad/s for the linear and rotational velocity measurements,

respectively, and σdm
= 0.05 m, σθm = 0.09 rad for the

corresponding distance and bearing measurements.

In this section, we compare the performance of the pro-

posed H-estimators (process local analog and remote quan-

tized measurements), H-BQKF and H-IQKF, with: (1) the

Q-estimators (process local and remote quantized measure-

ments), BQKF and IQKF, using 1−4 bits per remote analog

measurement, and (2) the standard EKF that uses analog

measurements from all robots and hence is our benchmark.

Figures 2, 3 show the root mean squared error (RMSE) in
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Fig. 2. Comparison of position RMSE for EKF, and 1− 2 bit H-BQKF,
H-IQKF, BQKF, and IQKF.

the position and orientation estimates for these estimators,

averaged over the 2 robots and 100 Monte Carlo trials. For

clarity, we have included only the results for n = 1, 2 bits.

Since the estimates generated by the H-estimator are different
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for each robot, the RMSE for the H-estimators, H-BQKF

and H-IQKF, are also averaged over estimators maintained

by each robot. Table I, presents the results for position and

orientation RMSE, for n = 1, 2, 4 bits, averaged over the

duration of the simulation run. Moreover, since the 1-bit

iterative- and batch-quantized estimators are identical, Table I

omits the results for the 1-bit iteratively quantized filters.

From Figs. 2, 3, and Table I, we observe that the estimates

generated by the proposed H-estimators, H-BQKF and H-

IQKF, are more accurate that their Q-estimator counterparts,

BQKF and IQKF, irrespective of the number of quantization

bits (n = {1,2,4}) considered. Specifically, the 1-bit hybrid

filters are 20% more accurate than the 1-bit quantized filters,

while the 2-bit hybrid filters show a performance improve-

ment of 13% over their quantized counterparts. Overall, the

error in the estimates decreases as we increase the number

of quantization bits and by communicating as few as 4 bits

per analog measurement, both the H- and Q-estimators are

able to achieve accuracy very close to that of the analog

EKF. Also, for a fixed number of bits, the performance

of both the batch and iteratively quantized estimators is

comparable. Thus, we conclude that by including their local

analog measurements in the estimation process, without any

additional communication overhead, the robots are able to

substantially improve the estimation accuracy of CL.

B. Experimental Results

Experimental validation was carried out using a team of

four Pioneer-I robots moving in a rectangular arena of 4 m

× 2.5 m for approximately 16 minutes. An overhead camera

is used to obtain the robots’ poses in a global coordinate

frame (ground truth).

The robots move with a constant velocity of 0.1 m/s

while avoiding collisions with the boundaries of the arena

and other robots in the team. The robots obtain linear

and rotational velocity (odometry) measurements, and rel-

ative distance and bearing measurements at a frequency

of 1 Hz. The noise standard deviations of the odometry

TABLE I

SIMULATION RESULTS FOR N = 2 ROBOTS

Pos. RMSE (m) Orient. RMSE (rad)

BQKF (1 bit): 1.0743 0.1689
H-BQKF (1 bit): 0.8584 0.1361

BQKF (2 bit): 0.7203 0.1171
H-BQKF (2 bit): 0.6199 0.1018

BQKF (4 bit): 0.5515 0.0910
H-BQKF (4 bit): 0.5337 0.0885

IQKF (2 bit): 0.6932 0.1120
H-IQKF (2 bit): 0.6105 0.0997

IQKF (4 bit): 0.6176 0.1007
H-IQKF (4 bit): 0.5673 0.0934
EKF (analog): 0.5151 0.0858

measurements for the heterogeneous robot team vary from

0.0078 rad/s to 0.02 rad/s for rotational velocity, and from

0.0032 m/s to 0.0059 m/s for linear velocity. The relative

distance and bearing measurements between the robots are

generated synthetically using data from the overhead camera

and adding Gaussian noise with standard deviation σd =
0.05 m for distance and σθ = 2 deg for relative bearing.

Table II, presents the position and orientation RMSE for each

TABLE II

EXPERIMENTAL RESULTS FOR THE HYBRID ESTIMATION FRAMEWORK

RMS Position error (m)

Robot 1 Robot 2 Robot 3 Robot 4
BQKF (1 bit): 1.3643 1.1973 1.2849 1.1794

H-BQKF (1 bit): 1.0254 0.9358 0.9716 0.9714
BQKF (2 bit): 0.8654 0.7405 0.8383 0.8752

H-BQKF (2 bit): 0.7516 0.6652 0.7254 0.7542
BQKF (3 bit): 0.5330 0.4824 0.5168 0.4742

H-BQKF (3 bit): 0.5821 0.5553 0.5665 0.5809
IQKF (2 bit): 0.5990 0.5961 0.5758 0.7062

H-IQKF (2 bit): 0.6023 0.5879 0.5870 0.6637
IQKF (3 bit): 0.6255 0.6187 0.6291 0.7028

H-IQKF (3 bit): 0.5770 0.5547 0.5650 0.5974
EKF (analog): 0.5651 0.5385 0.5239 0.5719

RMS Orientation error (rad)

Robot 1 Robot 2 Robot 3 Robot 4
BQKF (1 bit): 0.7793 0.7810 0.7777 0.7820

H-BQKF (1 bit): 0.6331 0.6337 0.6289 0.6345
BQKF (2 bit): 0.6305 0.6314 0.6294 0.6296

H-BQKF (2 bit): 0.5392 0.5402 0.5386 0.5385
BQKF (3 bit): 0.3182 0.3174 0.3171 0.3176

H-BQKF (3 bit): 0.4064 0.4062 0.4059 0.4058
IQKF (2 bit): 0.4530 0.4549 0.4540 0.4543

H-IQKF (2 bit): 0.4300 0.4316 0.4306 0.4314
IQKF (3 bit): 0.4480 0.4468 0.4461 0.4465

H-IQKF (3 bit): 0.3812 0.3802 0.3795 0.3796
EKF (analog): 0.4055 0.4064 0.4059 0.4060

robot, averaged over all time-steps. For the H-estimators,

these quantities are also averaged across all robot’s H-

estimators. From the RMSE data in the table, we conclude

that the n-bit, n = {1, 2}, H-estimators (H-BQKF and H-

IQKF) outperform the corresponding Q-estimators (BQKF

and IQKF). Thus the H-estimators, by enabling robots to
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include their local analog measurements in the estimation

process, significantly improve the estimation accuracy of

CL. Specifically, the improvement in performance of the H-

estimators over the Q-estimators is more pronounced for the

n = 1, 2 bit scenario, while with n = 3 bits, the performance

of both the Q- and H-estimators is very close to that of

the standard analog EKF. For this particular experiment, we

observe that the RMSE of the 3-bit BQKF is lower than that

of both the 3-bit H-BQKF and the EKF. Moreover, the RMSE

for the 3-bit H-IQKF is lower than that of the EKF. However,

these results are reported for a single experimental run, and

in general, we would expect the H-estimators to outperform

the corresponding Q-estimators and the EKF to outperform

all the Q- and H-estimators. To study the consistency of these

estimators, the results from the normalized estimation error

squared (NEES) test are available in [20].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we derived two MMSE-based estimators

for the hybrid estimation framework, the H-BQKF and the

H-IQKF, that can process local analog measurements along

with f ≥ 1 bits per remote analog measurement, in order to

improve the estimation accuracy of CL under time-varying

communication-bandwidth constraints. We tested the perfor-

mance and accuracy of the proposed multi-bit hybrid filters

for the CL application in simulations and experiment and

showed that they outperform the existing multi-bit quantized

filters, BQKF and IQKF. As part of our future work, we plan

to analytically evaluate the performance of the proposed H-

BQKF and the H-IQKF. Furthermore, we will also rigorously

analyze the effect of packet-loss and communication errors

on the performance of the proposed estimators.

APPENDIX

We now present an outline of the proof for the H-BQKF.

Due to space constraints, additional mathematical details of

the derivation can be found in [20].

Under the Gaussian assumption for the pdf

p
[

xk−1|bq 6=i
0:k−1, z

i
0:k−1

]

, the state and covariance

propagation derivations are identical to the standard KF [15].

When robot i processes its own analog measurement zik, the

state/covariance update derivations proceed as follows:

E[xk|bq 6=i

0:k−1,b
m 6=i

k , zi0:k] =

∫

R3N

xkp(xk|bq 6=i

0:k−1,b
m 6=i

k , zi0:k)dxk

=

∫

R3N

xk

(

p(zik|xk,b
q 6=i

0:k−1,b
m 6=i

k , zi0:k−1)

p(zik|b
q 6=i

0:k−1,b
m 6=i

k , zi0:k−1)

× p(xk|bq 6=i

0:k−1,b
m 6=i

k , zi0:k−1)
)

dxk (16)

In the above equation, p(zik|xk,b
q 6=i
0:k−1,b

m 6=i
k , zi0:k−1) ∼

N
(

hiT

k xk, σ
i2

k

)

and p(zik|bq 6=i
0:k−1,b

m 6=i
k , zi0:k−1) ∼

N
(

hiT

k x̂Hi

k|k,j−1,h
iT

k PHi

k|k,j−1h
i
k + σi2

k

)

. Therefore, all

pdfs in (16) are Gaussian, similar to that of the KF. The

derivation from this point onwards, is identical to that of

the KF and can be found in [15].

To obtain the state/covariance update equations when pro-

cessing quantized measurements received from other robots,

we use the following concept of iterated expectation [23]:

E[g(x)|y ∈ Ri] = E[E[g(x)|Y ]|y ∈ Ri] (17)

where g(x) is a function of the random variable x ∈ R
r, Y

is a random variable in R, y is its realization, and Ri ⊆ R.

We define the random variable z̃jk = zjk −
E[zjk|b0:k−1,b

m
k ]. From (4), we see that bjk is a

realization of the random variable z̃jk, i.e., when bjk = n,

Rj
k(n) := [τ jk(n), τ

j
k(n + 1)) and z̃jk ∈ Rj

k(n). Therefore,

when robot i is processing the quantized measurement

bjk = n from robot j, j 6= i, the state update, using (17),

can be written as:

E[xk|bq 6=i

0:k−1,b
m 6=i

k , zi0:k−1, b
j

k] (18)

= E[E[xk|bq 6=i

0:k−1,b
m 6=i

k , zi0:k−1, z̃
j

k]|b
q 6=i

0:k−1,b
m 6=i

k , zi0:k−1, b
j

k]

We first evaluate the inner expectation in the

above equation. For this, we compute the joint pdf

p(xk, z̃
j
k|b

q 6=i
0:k−1,b

m 6=i
k , zi0:k−1) and then obtain the desired

conditional pdf p(xk|bq 6=i
0:k−1,b

m 6=i
k , zi0:k−1, z̃

j
k). This joint

pdf (under the Gaussian assumptions stated in Proposition 1)

is also Gaussian and given by:

p(xk, z̃
j

k
|bq 6=i

0:k−1
,b

m 6=i

k
, z

i
0:k−1

) ∼ N









x̂
Hi
k|k,j−1

h
jT

k
(x̂

Hi
k|k,j−1

− x̂
Q

k|k,j−1
)





,





P
Hi
k|k,j−1

P
Hi
k|k,j−1

h
j

k

h
jT

k
P

Hi
k|k,j−1

h
jT

k
P

Hi
k|k,j−1

h
j

k
+ σ

j2

k









(19)

From (19), we can obtain the mean and covariance of the

the conditional pdf as:

E[xk|bq 6=i

0:k−1,b
m 6=i

k , zi0:k−1, z̃
j

k]

= x̂
Hi

k|k,j−1 + k
c(z̃jk − h

jT

k (x̂Hi

k|k,j−1 − x̂
Q

k|k,j−1)) := x̂
Hc

i

k|k,j

Cov[xk|bq 6=i

0:k−1,b
m 6=i

k , zi0:k−1, z̃
j

k] = P
Hi

k|k,j−1 − k
c
h
jT

k P
Hi

k|k,j−1

where k
c =

P
Hi

k|k,j−1h
j

k

h
jT

k P
Hi

k|k,j−1h
j

k + σj2

k

. (20)

Substituting (20) in (18), we obtain:

E[xk|bq 6=i

0:k−1,b
m 6=i

k , zi0:k−1, b
j

k] = x̂
Hi

k|k,j−1+ (21)

k
cE[z̃jk|b

q 6=i

0:k−1,b
m 6=i

k , zi0:k−1, b
j

k]− k
c
h
jT

k (x̂Hi

k|k,j−1 − x̂
Q

k|k,j−1)

In order to evaluate E[z̃jk|b
q 6=i
0:k−1,b

m 6=i
k , zi0:k−1, b

j
k] in (21),

we first consider the corresponding pdf which can be ex-

pressed as:

p(z̃jk|b
q 6=i

0:k−1,b
m 6=i

k , zi0:k−1, b
j

k = n)

= p(z̃jk|b
q 6=i

0:k−1,b
m 6=i

k , zi0:k−1, z̃
j

k ∈ Rj

k(n))

=
p(z̃jk|b

q 6=i

0:k−1,b
m 6=i

k , zi0:k−1)

Pr{z̃jk ∈ Rj

k(n)|b
q 6=i

0:k−1,b
m 6=i

k , zi0:k−1}
∀z̃jk ∈ Rj

k(n), else 0.

(22)

Therefore,
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E[z̃jk|b
q 6=i

0:k−1,b
m 6=i

k , zi0:k−1, b
j

k = n]

=

∫

R
j
k
(n)

z̃jk
p(z̃jk|b

q 6=i

0:k−1,b
m 6=i

k , zi0:k−1)

Pr{z̃jk ∈ Rj

k(n)|b
q 6=i

0:k−1,b
m 6=i

k , zi0:k−1}
dz̃jk (23)

Furthermore, in the above equation,

p(z̃jk|b
q 6=i
0:k−1,b

m 6=i
k , zi0:k−1)

∼ N
(

h
jT

k (x̂Hi

k|k,j−1 − x̂
Q

k|k,j−1),h
jT

k PHi

k|k,j−1h
j
k + σj2

k

)

(24)

and

Pr{z̃jk ∈ Rj
k(n)|b

q 6=i
0:k−1,b

m 6=i
k , zi0:k−1}

= Pr{τ jk(n) ≤ z̃jk < τ jk(n+ 1)|bq 6=i
0:k−1,b

m 6=i
k , zi0:k−1)}

= Q

[

τ jk(n)−m

σHi

]

− Q

[

τ jk(n+ 1)−m

σHi

]

(25)

Here, we define m := h
jT

k (x̂Hi

k|k,j−1− x̂
Q

k|k,j−1) and σ2
Hi

:=

h
jT

k PHi

k|k,j−1h
j
k + σj2

k . Also, Q[·] is the Gaussian tail prob-

ability function with Q[x] , 1√
2π

∫∞
x

exp(−u2/2)du, and if

Y ∼ N (µ, σ2), then Pr{Y > y} = Q[(y − µ)/σ].
After evaluating (23) using (24) and (25), the details of

which are available in [20], the expression in (21) can be

simplified to obtain the state update equation in (5).

The derivation for the corresponding covariance update

equation is also based on the concept of iterated expectations

[see (17)] as follows:

Cov[xk|bq 6=i
0:k−1,b

m 6=i
k , zi0:k−1, b

j
k]

= E[(xk − x̂Hi

k|k,j)(xk − x̂Hi

k|k,j)
T |bq 6=i

0:k−1,b
m 6=i
k , zi0:k−1, b

j
k]

= E[E[(xk − x̂Hi

k|k,j)(xk − x̂Hi

k|k,j)
T

|bq 6=i
0:k−1,b

m 6=i
k , zi0:k−1, z̃

j
k]|b

q 6=i
0:k−1,b

m 6=i
k , zi0:k−1, b

j
k]

(26)

To evaluate the above expectation, the term xk − x̂Hi

k|k,j ,

using (20) and (21), can be written as:

xk − x̂Hi

k|k,j = xk − x̂Hi

k|k,j + x̂
Hc

i

k|k,j − x̂
Hc

i

k|k,j

= xk − x̂
Hc

i

k|k,j + kc
(

z̃jk − E[z̃jk|b
q 6=i
0:k−1,b

m 6=i
k , zi0:k−1, b

j
k]
)

(27)

Substituting (27) in (26) and proceeding by first evaluating

the inner expectation, followed by the outer expectation

in (26), we obtain the covariance update equation in (6).

Due to space constraints, the details are presented in [20].
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