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Abstract— Mobile robots with independently steerable wheels
possess many high maneuverability features of omnidirectional
robots while benefiting from better performance and capability
of moving on rough terrains. However, motion control of
such robots is a challenging task due to presence of singu-
lar configurations and unboundedly large steering velocities
in the neighborhood of those singularities. Many proposed
approaches rely on numerical solutions that keep the robot
out of bulky regions around the singular points and hence
lose some of the robot maneuverability. Based on a class of
traditional path followers we design a new globally stable path
following controller that exploits the high maneuverability of
the platform. This design allows us to derive a set of closed-
form analytical functions that describe the robot base velocity
as a function of the wheels driving and steering velocities while
abide to the robot non-holonomic constraints. Those functions
are then utilized to find the maximum instantaneous velocity
of the body that keeps the wheels velocities under the pre-
specified bounds no matter how much the robot gets close or
far from its singular configurations. The control algorithms
developed in this paper have been evaluated on iMoro, a four
wheel independently steered mobile manipulator designed and
developed at IHA/TUT. Experimental data is also shown that
show efficacy of the method.

I. INTRODUCTION

The interest in mobile robots with active steering wheels
has been increasing over time. This is due to their high
maneuverability and flexibility while being able to operate
on rough terrains and carry higher payloads with better
efficiency compared with the other types of omnidirectional
mobile robots. Such platforms are now being used in de-
veloping advanced mobile robots in many practical fields
such as service robotics [1], [2], agricultural tasks [3] and
space applications [4]. We as a part of the PURESAFE 1

project that aims to prevent human intervention in radioactive
environments have designed and developed a four wheeled
independently steerable mobile manipulator (iMoro) that is
shown in Fig. 1. Our goal is to take advantage of such plat-
forms maneuverability to perform manipulation and remote
inspection in the confined spaces of CERN LHC tunnel.

The platform high maneuverability comes from its om-
nidirectional nature. The mobile platform is able to realize
any arbitrary, independent set of linear and angular velocities
but only after it has initially reoriented its wheels to a
predetermined corresponding configuration. Hence, while
those platforms have three Degrees of Freedom (DoF) [5],
they are over-actuated [6] with all the actuators should abide
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the non-holonomic constraints of the robot. Hence, such
robots are sometimes called non-holonomic omnidirectional
robots[7] or pseudo-omnidirectional robots[8], [4].

The early researches on such robots have focused more on
over-constrained nature [9] and correction of wheel odometry
errors for deadreconing localization [10], [11]. Advances
in sensors and actuators along with sensor fusion based
algorithms for localization have solved many of those early
issues. The interest is now shifted to analyze and develop
more sophisticated control schemes for those robots [12],
[13], [14].

However, presence of singularities both inherently [15]
and in the presentation of the configuration space [16] makes
design and realization of motion controllers a challenging
task. One of the most popular ways to describe the platform
configuration space and those singularities, is with the notion
of Instantaneous Center of Rotation (ICR) [15]. The ICR
of the robot body is defined on the horizontal Cartesian
plane and with respect to the coordinate frame attached to
the body. Each wheel is following an instantaneous circle
with ICR at its center. As the ICR gets close to the wheel
axis the radius of that circle becomes smaller. Hence, the
driving velocity of that wheel decreases while its steering
velocity unboundedly increases. When the ICR coincides
with the wheel steering axis the driving velocity of the wheel
becomes zero and its steering angle becomes undefinable.
Hence, the 2D position vector of the ICR along with the
angular velocity around it can serve as the state space for

Fig. 1. The iMoro Mobile Manipulator
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the platform except when a wheel is singular and should be
treated separately [15]. Moreover, when traversing along a
straight line, ICR remains at infinity which can be regarded
as a presentation singularity for that state space. Authors in
[16] proposed an alternative ICR representation to avoid such
singularities. Results in [16] are later extended in [17], where
a singular-free switching state space has been proposed that
addresses both inherent and presentation singularities. In
another approach by [18], to avoid singularity, each wheel
has been given an extra degree of freedom which makes the
wheels footprint variable. However, the problem of operating
in the close neighborhood of the singular configurations still
remains unsolved.

Most of the solutions proposed so far try to plan ICR
trajectories in singular free regions of platform velocity space
[15]. Other solutions [8], [19] treat the singular configu-
rations and their neighborhood as obstacles and solve a
navigation problem based on potential field and/or model
predictive control methods. However, in all of those methods
considerable portions of the configuration space are avoided,
thus reducing maneuverability of the platform. Even when
realizing some simple maneuvers, at some points of the
operation ICR will necessarily get relatively close to at least
one wheel. One of the simple cases is when the platform is
moving on a straight line while changing its heading by 180
degrees.

Furthermore, when the robot is required to follow a desired
path and heading profile, ICR position has already been
determined. Hence none of those approaches are suitable
for path following problems. To clarify this matter, lets
call the footprint of a wheel steering axis, the wheel path.
Consider the platform body frame is moving on a regular
curve called the body path with its natural parameter denoted
′s′. Moreover, its heading, changes as a smooth function of s
namely the heading function. Regardless of the velocities, the
wheel path can be determined as a function of the body path
and the heading function. Clearly, relative distance between
the platform ICR and a wheel axis is the reciprocal of the
wheel path curvature. Hence, a wheel is singular when the
ICR coincides with its steering axis and equivalently when
wheel path curvature is infinity.

In this paper, following ideas from classical path followers
[20], we extend our earlier work[21] and develop a novel path
following controller that guides the platform on a desired
path and correct the heading accordingly. Consider the mag-
nitude of the platform velocity is v, we show that stability
of the origin of the error space is achieved regardless of v.
Moreover, the control signals simplify the non-holonomic
constraints and makes the curvature of the wheels paths
independent of v and only as functions of desired body path,
heading function and error signals. Hence, the steering and
driving velocities of the wheels become linear proportions of
v. Having v as an independent variable, this solution allows
us to analytically find a maximum v at each sample time
that keeps the actuators equal or less than their pre-specified
bounds. The solution for a given path and heading function
is time optimal since at each time step at least one actuator

Fig. 2. Desired path and the required coordinate frames

operates at its maximum velocity.
The paper is organized as follows. In Section II, we

describe the general architecture of the robot. Next, we define
the problem at hand and the error space. In section IV, we
describe the controller. Next, in Section V, by means of the
proposed control signals we derive the analytical velocity
constraints and based on that the optimal velocity of the
platform is derived in VI. In the last section, we show the
efficacy of the proposed solution through experiments done
with the iMoro mobile platform.

II. GENERAL DESCRIPTIONS

A. Robot’s Architecture

iMoro, shown in Fig.1, consists of a rigid base and four
wheels, each of which has two DOF. In fact, each wheel
is equipped with two independent servo drives for steering
and driving. The steering actuator rotates the whole wheel
along its vertical axis, hence determining the heading of that
wheel. The driving actuator drives the wheel and its contact
point with the ground coincides with the wheel’s vertical
axis. The robot is equipped with off-the-shelf control drivers
that provide velocity and position control options. Because
of control strategy adopted in this paper, it is desirable to
control the position of the steering and velocity of driving
actuators. Hereafter, we will assume that control signals are
four steering angles and four wheel speeds.

B. Notations and Symbols

We denote the vectors in bold with hat-sign( ˆ ) for unit
vectors. A left superscript to a vector denotes the frame in
which it is expressed, except for the inertial frame, which is
omitted for the sake of brevity. Moreover, for two arbitrary
vectors a and b, a.b and a × b are the inner and cross
products of the two vectors, respectively.

Fig. 2 depicts a schematic view of the platform together
with a desired path. The coordinate frame U{X̂, Ŷ } is the
inertial frame with unit vectors X̂ , and Ŷ . Frame B{x̂, ŷ}
is a fixed-body frame defining the heading of the robot,
and Bv{v̂, û} is the velocity frame, that is, unit vector v̂
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determines the direction of the robot’s base linear velocity
vector and scalar v its magnitude. Both B and Bv are
attached to the robot’s base at point Q which can be chosen at
will. Angles ψv and θb are the angle of v̂ and x̂, respectively,
in U . The tangent frame T {t̂, n̂} is the Serret-Frenet frame
at point P attached to the desired path P d(s) and the angle
between t̂ and X̂ is denoted as ψt. To determine the desired
heading, we define frame Bd{x̂d, ŷd} attached to P such
that the angle of x̂d in U which is θd, equals the desired
heading function θd(s). Note that both desired path P d(s)
and desired heading θd(s) are parametrized with the same
parameter s. Moreover, vectors p and q define points P and
Q, respectively, in U .

III. PROBLEM DEFINITION

The desired path P d(s) is assumed to be a regular curve
with bounded curvature on a horizontal plane. It is defined
by a vector-valued function P d : [0, LP ] → R2, where s
and LP are natural parametrization and length of the path,
respectively. The curvature of P d(s) which is a function
of s is denoted as Cc(s). Moreover, we assume that the
desired heading function θd(s) : [0, LP ] → R is two times
differentiable function of s.

As long as P d(s) and θd(s) with mentioned conditions are
defined, the scalar s determines the pos of the platform base.
Moreover, the wheels configurations are uniquely determined
since the wheels steering are tangent to the wheels paths.
Hence, as long as the curvature of a wheel path is less
than infinity the configuration of the whole platform is
determinable by s. In case of errors, three values for errors
in x, y directions and one for the heading in addition to s
are needed to determine the platform configuration. Hence,
along s we derive the following error signals to serve as state
variables, [

xe
ye

]
= UR

−1
T (q − p) (1a)

θe = θd − θb (1b)
ψe = ψt − ψv, (1c)

where URT is the rotation matrix R(ψt) that defines the
rotation from frame T to frame U . In this case the error
signals xe and ye are position errors measured along t̂ and
n̂, respectively.

Time derivative of eqs. (1a) and (1b) results in,

ẋe = ṡ(Cc(s)ye − 1) + v cos(ψe) (2a)
ẏe = −ṡCc(s)xe − v sin(ψe) (2b)

θ̇e =
∂θd
∂s

ṡ− ωb (2c)

in which, ωb = θ̇b is the angular velocity of B.
Problem 1: Given desired path P d(s) and heading profile

θd(s), derive feedback control laws for the speed and the
steering angle of each wheel such that,

1) Path following: frame Bv converges and follows frame
T , that is, error signals xe, ye and ψe remain bounded
and converge to zero. See eqs. (1a) and (1c).

Fig. 3. Schematic block diagram of the whole system

2) Heading control: frame B converges and follows frame
Bd, that is, error signal θe remain bounded and con-
verge to zero. See (1b).

3) Bounded control signal: rate of steering and speed of
the wheels do not exceed predefined actuator bounds.

We consider the following assumptions to derive our solu-
tion. There is no mechanical constraint for wheels steering.
The wheels are free-turn. The robot moves on a flat and
horizontal plane. The base and the wheels are rigid and the
wheels are non deformable. Furthermore, the condition of
pure rolling without any side slippage is assumed for the
wheels.

We will solve Problem 1 in two stages. First, assuming
speed v a free variable, we use angular velocity ωb and
base linear velocity direction v̂ as control inputs and propose
control laws to address subproblems 1 and 2 of Problem 1.
This is presented next in Section IV. These control laws are
then mapped to actuator signals (wheels steering and speed
commands) using inverse kinematic relations. In the second
stage, we use velocity magnitude v to address actuator
bounds. This is addressed in Section VI. Fig. 3 schematically
depicts the block diagram of control architecture. In this
paper we do not discuss the localization block. We have
described Inverse and Forward kinematic blocks in [22].
Many standard localization algorithms for mobile robots
along with more specific approaches such as the one given in
[23] are applicable. However, one of the key requirements of
our approach is that the error signals should be continuous
and differentiable which imposes the localization block to
provide smooth signals for the platform pose.

IV. DERIVATION OF CONTROL LAWS

Next we derive the control laws for ωb and ψv (direction
of v̂). Consider the error states eqs. (1a) to (1c). The control
objective is to derive feedback control laws for ψv , ωb, and
ṡ such that xe, ye, θe, ψe asymptotically converge to zero.
Notice that ṡ becomes an auxiliary control signal. First,
define functions σ as,

σ(ye) = − sgn(v)sin−1
k2ye
|ye|+ ε

(3)

where, 0 < k2 ≤ 1 and ε > 0. σ(ye) is a function that
generates an appropriate approach angle from the robot to
P d(s). We assume that v ≥ 0, so sgn v = 1 and σ(ye)
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becomes independent of v. Since steering angle can take any
value from [−π, π], choice v ≥ 0 puts no constraint on the
configuration space.

Proposition 1: The feedback control laws given by,

ṡ = (k1xe + cosσ(ye))v = ksv (4a)

ωb = (k3θe +
∂θd
∂s

ks)v = kbv (4b)

ψv = ψt − σ(ye) (4c)

where k1, k3 > 0 solves sub-problems 1 and 2 of Problem
1. In particular, the origin of the error space is stable and is
semi-globally exponentially stable if v(t)≥vm>0.

Proof: Here we use similar Lyapunov functions as in
[24] and [25], while new control laws are chosen to make
curvatures independent of speed v, importance of which will
be clear later. Consider the following Lyapunov function,

V
P
=

1

2
x2e +

1

2
y2e +

1

2
θ2e (5)

which is positive definite and radially unbounded. The
derivation of V

P
along solution of eqs. (2a) to (2c) result

in,

V̇
P
= −(k1x2e + k2

y2e
|ye|+ ε

+ k3θ
2
e) v(t) (6)

which is negative, thus the origin is stable. For a given d1 >
0, if v(t) ≥ vm > 0 and initially |ye(t0)| < d1, it is easy
to show that V̇

P
< −λVP . Thus, the origin is semi-globally

exponentially stable [26]. Detail of the proof follows similar
steps as in [20]. Now, note that substituting ψv from (4c)
into (1c) results in ψe = σ(ye). Hence, ψe is bounded and
when ye converges to zero, error ψe will converge to zero.

It is worth noticing that gains ks and kb defined in (4a)
and (4b), respectively, are independent of v. Thus rate of
progress ẋe, ẏe, and θ̇e become proportional to scaler v.
This can be easily shown by investigating V̇P or substituting
the control laws in (2a), (2b), and (2c) and they are given
in Appendix. This means that as the platform goes faster
it compensates the errors faster. As we show in the next
section this choice simplifies the non-holonomic constraints
to great extents. One way to derive k1 and k3 is to assume
a maximum for v namely vmax and design constant error
gains k1,max and k3,max based on vmax and then select k1
and k3 such as,

k1 =
k1,max
vmax

, k3 =
k3,max
vmax

(7)

Last but not least, while the controller require the P d(s)
to be a regular curve, the actual desired path may consist
of multiple regular curves that are non-smoothly connected
together and a higher level state-machine can be designed
to feed the regular segments individually to the controller.
When the platform reaches the end of a segment the state
machine stops the platform and rotates the steering wheels to
comply with the start of the next segment and then feeds the
new segment to the controller. Moreover, while a segment
could be infinitesimally small in order to emulate a spot turn

Fig. 4. Denoted kinematic parameters

for the platform, that higher level state machine can also be
incorporated to provide the platform with exact spot turn at
the end of any desired segment.

V. DERIVATION OF KINEMATICS CONSTRAINS

In Fig. 4 the necessary variables are defined. Based on the
figure, B`i , i ∈ {1, 2, 3, 4} are constant vectors related to
the geometry of the robot with their magnitude being li.
φi is the steering angle of the ith wheel and the vector
Bv̂i can be written in the form of [cos(φi) sin(φi) 0]T .
viv̂i is the velocity vector of the attachment point Li which
also coincides with the wheel steering axis. ηi is the angle
between v̂ and `i.

The following kinematic constraint maps the base velocity
space to the wheels velocities.

Bv̂ = R(ψv − θb)[1 0 0]T (8a)

vi
Bv̂i = v Bv̂ + ωb(ẑ × B`i) (8b)

in which, ẑ = [0 0 1]T and R(ψv−θb) is the rotation matrix
with angle ψv − θb around z-axis, that is, frame Bv in B.
The norm of (8b) and also its time differentiation can be
simplified to,

vi =
√
v2 + ω2

b l
2
i + 2vωblisin ηi (9a)

v2i φ̇i = li (ω̇bv − v̇ωb) cos ηi+v (ωv − ωb) (v+liωbsin ηi)
(9b)

in which, ωv = ψ̇v . Note that deriving (9b) requires some
tedious but elementary algebraic manipulation. Notice the
presence of acceleration terms v̇ and ω̇b in the above equation
and also its non-linearity with respect to v. In what follows
we show that the choice of control signals in previous section
cancel out those accelerations. It is virtually impossible to
derive the velocity v based on the other variables. Moreover,
the singular configuration is when |ωb| becomes v/li, sin ηi
becomes − sgn(ωb) and consequently cos ηi becomes zero.
In this case vi becomes zero and φ̇i is undefined. Notice
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that as the robot gets close to its singular configuration φ̇i
becomes unboundedly large.

Here, we simplify above equations using the control
signals presented in previous section. Based on (4b) and (4c),
ω̇b and ωv can be written as,

ω̇b = k′b v
2 + kb v̇ (10a)

ωv = kv v (10b)

in which, k′b and kv are independent of the platform speed
v and are given in Appendix. Substitute ω̇b, ωb and ωv from
eqs. (4b), (10a) and (10b) into eqs. (8b), (9a) and (9b),

Bv̂i =
Bv̂ + kb(ẑ × B`i)√
1 + k2b l

2
i + 2likbsin ηi

(11)

v =
vi√

1 + k2b l
2
i + 2likbsin ηi

(12a)

v = φ̇i
1 + k2b l

2
i + 2likbsin ηi

k′blicos ηi + (kv − kb) (1+likbsin ηi)
(12b)

As described in Section II, the input values for steering and
driving actuators of the wheel i are φi and vi, respectively.
Based on (11), the wheel steering angle is independent of v.
Hence, even if the robot is stopped, the wheel path and so the
steering angle can be determined. Moreover, k′b, kb and kv
are functions of errors signals xe, ye, θe and desired variables
P d(s), θd(s) and their partial differentiations. Hence, for a
given vi, (12a) gives the velocity v that realizes that velocity.
Correspondingly, given a φ̇i, (12b) gives the velocity v that
realizes that steering velocity. The curvature of the wheel
path namely κi is φ̇i/vi which is independent of v. Hence,
as the platform moves toward its singular position and κi
goes to infinity, (12b) reduces v with an appropriate rate to
retain the given steering velocity.

Notice that right at the singular configuration, (12b) gives
zero for v and the platform stops. Hence, if the robot were
to be entrapped exactly in a singular configuration it would
stop indefinitely. However, we state without proof that such
configuration is an unstable equilibrium point of the system
and practically it cannot become deadlock for the platform.

VI. BOUNDED VELOCITY SOLUTION

In this section, we present our strategy to find the upper-
bounds for vc; the command signal for v, to limit the driving
and steering velocities of wheels to prespecified bounds.

For a robot that has n independently steered wheels there
are 2n velocity constraints to fulfill which are n deriving
and n steering constraints. Consider the maximum driving
velocity of a wheel is Vd,max and the maximum steering
velocity is φ̇max. At each step of time, k′b, kb and kv
are calculated so as the control signals ωb and ψv . Next,
substituting vi by Vd,max in (12a) and evaluate it for n
wheels result in n candidates for the platform velocity.
Equivalently, substituting φ̇ by φ̇max in (12b) and again
evaluate it for all the wheels result in another set of n velocity
candidates. Hence, there are 2n candidates for v namely vc,j ,
we select v as,

vc = min(|vc,j |), j ∈ {1, 2, .., 2n} (13)

Note that functions (12a) and (12b) are strictly monotonic
with respect to vi and φ̇i respectively and so is their inverse
with respect to v. Hence, the minimum of those eight
candidates result in driving and steering velocities less than
or equal to the given bounds. Moreover, based on this method
at each point in time, at least one actuator is performing at its
limit. When the wheels are far from the body ICR, the limit
is determined by driving bond. When a wheel gets close to
the body ICR, the limit is set by the steering bond. Hence, at
each step the given velocity is the maximum feasible velocity
to satisfy the actuators constraints and the solution is time
optimal. In real robot, command speed vc differs from v. It
can be shown that the system is input-to-state stable with
deviation v − vc as input. See [26] for more details.

VII. EXPERIMENTAL RESULTS

In this section, experimental results of the proposed control
system are presented. Experiments are done on iMoro, Fig.
1, with parameters shown in Table I. The limit for steering
velocity mentioned in the table is considerably lower than
feasible value to show the efficacy of the algorithm. Con-
troller software is implemented in an embedded PC with
real-time Linux [27].

Fig. 5 shows the actual path taken by the robot in the
experiment based on wheel odometry. The desired path is a
Bezier curve and the heading function is a simple polynomial
of the path variable that changes from zero to 2π and
hence require the robot to turn around itself while it follows
the path. There is a relatively large intentional initial error
between the start of the path and the initial position of the
platform to test the performance of the controller. The figure
shows that the robot properly follows the desired path and
the heading profile.

Notice that even with some fluctuations due to the robot’s
unmodeled dynamics, the velocity boundaries are kept in
comply with the velocity requirements. Fig.6 shows that
the steering velocities remain below the bound, while Fig.7
shows that the driving velocities are saturated to the bound.
Fig.8 show the maximum allowable speed command in the
experiment. The figures show how the propose algorithm
reduces the command speed (particularly sharply at critical
areas) and thus retain the steering velocities below the
prespecified limit.

TABLE I
SPECIFICATIONS OF iMORO ROBOT FOR THE EXPERIMENTAL STUDIES

Description Quantity

Main Body Length (x direction) 655 mm

Main Body Width (y direction) 335 mm

Maximum Velocity of Steering Servo Motors 0.4 rad/sec

Maximum Velocity of Driving Servo Motors 50 mm/sec

Wheel Diameter 210 mm

Approximate Overall Mass 120 kg
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Fig. 5. Robot footprint in the experiment

Fig. 6. Steering velocities φ̇i

Fig. 7. Driving velocities vi

Fig. 8. Command signal for base speed vc

VIII. CONCLUSION

This paper proposes a new solution to the path following
problem of independently steered mobile robots. We show
that utilizing this controller, the robot smoothly follow the
desired path while it changes its heading based on a given
desired function. Moreover, this design leaves the speed of
the robot base as an arbitrary variable. We show that the
proposed control signals significantly simplifies the non-
holonomic kinematic constraints of the robot. Hence, the
speed of the base can be determined analytically to keep
the steering and driving velocities of the wheels under pre-
specified values. Therefore, unlike many previous methods,
our approach allows the robot to get close to its singular
configurations and hence exploit its inherent maneuverability.
The experiments show that even without considering any
model-based approach or dynamic analysis, the designed
path follower and related kinematics formulations are ca-
pable of bounding both steering and driving velocities in
practice with some tolerances. Since this approach gives
an analytical solution; it is capable of real-time imple-
mentation with low process costs. Our future work will
target performance improvement of the controller for mobile
manipulation purposes and its fault tolerance.

APPENDIX

Substituting the control signals (4b) and (4c) in the error
states (2a), (2b), and (2c), they can be written as,

ẋe = (ks (Ccye − 1) + cos (ψe) ) v = kxv (14a)
ẏe = − (ksCcxe + sin (ψe) ) v = kyv (14b)

θ̇e =

(
∂θd
∂s

ks − kb
)
v = kθv (14c)

Differentiating from (4c) and (4b) respectively yields to,

ωv =

((
1 +

∂σ (ye)

∂ye
xe

)
Ccks +

∂σ (ye)

∂ye
sin(ψe)

)
v = kvv

(15a)

ω̇b = k′b v
2 + kbv̇ (15b)

in which,

k′b = k2kθ+
∂2θd
∂s2

k2s+
∂θd
∂s

k1kx −
∂θd
∂s

∂σ (ye)

∂ye
kysinσ(ye)

(16)
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