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Abstract— This paper describes a feedback excitation control
system with consideration of gravity, which is a control method
to obtain high kinetic energy by utilizing passive potential
energy. In the case of a robot that has series elastic joints, peak
kinetic energy becomes higher than that of a rigid robot with
same motors. We have proposed the feedback excitation control
for horizontal multiple-joint robots in our previous work. In
this paper, we extend the feedback excitation control to systems
that are affected by gravity, and we analyze the feedback
excitation control system from the viewpoint of linear vibration
mode. Validity of the proposed ’coordinate or opposite phase
controller’ is suggested by the modal analysis. We examine
effective excitation controllers to utilize gravitational and elastic
potential energy by simulations and experiments.

I. INTRODUCTION

The purpose of this research is to establish a motion
control method utilizing passive elements such as elasticity,
gravity and nonlinear dynamic properties of multiple-joint
robot system. It is expected to realize a motion that does
not depend only on actuator power by utilizing them. In the
case of a robot that has series elastic elements[1] as shown in
Fig.1, for example, speeds of links becomes instantaneously
higher than that of a rigid robot with same motors[2], [3],
[4]. This means that it is possible to obtain high kinetic
energy by using low power driving systems and it is useful
for “explosive” tasks in robots such as pitching and jumping.

Since Hogan’s research on mechanical impedance control
[5], many researchers have been investigating utilization of
mechanical elasticity ([1], [6], [7] etc.). Pioneering work
on the utilization of elasticity for explosive motion in
robots includes the 3D Hopper investigated by Raibert et
al.[8]. High dynamic performance by a series elastic joint
was investigated recently by the DLR group[2], [9], [10],

Fig. 1. Construction of a 2-joint series elastic manipulator
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Fig. 2. Concept of feedback excitation control: resonance on a 1-joint
series elastic system that is excited by a moveable equilibrium point

[11]. Control methods for obtaining high kinetic energy
utilizing elasticity and gravity on multiple-joint robots that
have nonlinear dynamics have not been discussed, however.
Braun et al.[12] and Nakanishi et al.[13] discussed optimal
variable stiffness control for explosive tasks with a 2-joint
variable stiffness robot. This method needs a precise dynamic
model and it is vulnerable to disturbance and variation
in control objectives since this method depends on offline
trajectory optimization. Ugurlu et al.[14] discussed a hopping
trajectory generation method at resonance frequency. This
method depends on, however, the experimental identification
of resonance frequency, which may not be optimal frequency
since resonance frequency of nonlinear systems depends on
amplitude of state variables.

In our previous work[4], we proposed feedback excitation
control and the excitation limit hypersurface to obtain high
kinetic energy on multiple-joint series-elastic robots within
joint limit ranges. It is difficult, however, to use this method
for robots that is influenced by gravity since a horizontal
robot is considered in [4]. Feedback excitation control should
be extended to treat gravity. It is expected, in addition, to
utilize not only elastic energy but also gravitational potential
energy by taking gravity into consideration. In this paper, we
examine 2 points as follows:

• Utilization of gravitational potential energy by feedback
excitation control.

• Feasibility of higher kinetic energy amplification by
synchronization of voltage command for each joint.

Feasibility of the control method is verified by simulations
and ball throwing experiments.
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Fig. 3. Difference between horizontal and gravitational feedback excitation
controllers: total energy is not increased by using the horizontal feedback
excitation controller[4] when θG > θ > θ0 or θ0 > θ > θG.

II. FEEDBACK EXCITATION CONTROL WITH
CONSIDERATION OF GRAVITY

A. Concept of Feedback Excitation Control: Resonance on
Vibration System of Manipulator

Fig.2, right, shows a 1-joint series elastic robot that is
excited by movement of equilibrium. Fig.2, left, shows
energy level curves of the system in state space whose state
variable is x = [θ θ̇]T. θ is the link angle. We assume that the
equilibrium point is not influenced by dynamic interaction
from the spring. Here, we discuss energy transition of the
system when the system is excited at the resonance fre-
quency. When equilibrium x0 = [θ0 0]

T moves, energy level
curves also move as shown in Fig.2. The relative position
between the state point and energy level curves then changes.

Energy transition depends on link angle θ, the equilibrium
position of the system θ0 and the direction of movement
(or velocity) of the equilibrium position θ̇0. When θ > θ0,
total energy increases if θ̇0 < 0, and energy decreases if
θ̇0 > 0. When θ < θ0, total energy increases if θ̇0 > 0,
and energy decreases if θ̇0 < 0. By switching the moving
velocity of the equilibrium position based on the relative
position between θ and θ0, the equilibrium position moves
in the resonance frequency when the system is linear. The
resonance frequency or natural frequency cannot be defined
for nonlinear dynamic systems such as a multiple-joint robot.
By focusing on the energy increase, however, we obtain a
feedback controller for nonlinear systems. In the case of an
N -DOF manipulator, total energy increases by controlling
the equilibrium position moving velocity of each joint θ̇0i
based on the relative position of each joint θi − θ0i [4].

A resonance-based feedback controller was proposed by
Uemura et al.[15], [16], [17] for robots that have parallel
elastic joints. We propose a controller to be used for robots
that have series elastic joints. The controller we propose can
be used even for nonlinear spring joints as well.

B. Derivation of Feedback Excitation Controller with Con-
sideration of Gravity

The feedback excitation controller for horizontal systems
is derived by using energy integral of which anchoring

point is gear shaft angles θG since the equilibrium point of
horizontal series elastic systems is always equal to gear shaft
angles [4]. On vertical systems, however, the equilibrium
position θ0 is not equal to θG in general. Total energy of
the vertical system is not always increased by using the
horizontal feedback excitation controller as shown in Fig.3.
Feedback excitation controllers for vertical systems should
be derived by considering this point. In this section, we will
derive them.

Equation of motion of an N -joint series elastic robot is
described as

M(θ)θ̈ +H(θ̇,θ) +G(θ) + S(θ − θG) = 0, (1)

where θ ∈ ℜN×1 is the link angle vector, ω = θ̇ ∈ ℜN×1 is
the link angular velocity vector, θG ∈ ℜN×1 is the gear shaft
angle vector, M(θ) ∈ ℜN×N is the inertial matrix of the link
part, H(θ,ω) ∈ ℜN×1 is the vector that describes centrifugal
force and Coriolis force, G(θ) ∈ ℜN×1 is the vector that
describes gravity torque and S(θ − θG) ∈ ℜN×N is the
restoring torque vector of joint springs that has nonlinear
characteristics in general. We obtain the following expression
by multiplying (θ̇ − θ̇0)

T from the left to (1).

θ̇T
{
M(θ)θ̈ +H(θ̇,θ)

}
+ (θ̇ − θ̇0)

T {G(θ) + S(θ − θG)}

= θ̇T
0

{
M(θ)θ̈ +H(θ̇,θ)

}
(2)

The following expression is derived by integrating (2) by
time.

T + P =

∫ {
M(θ)θ̈ +H(θ̇,θ)

}T

θ̇0dt+ C (3)

The first term of the left part of (3) T represents total kinetic
energy of links as

T =

∫
θ̇T

{
M(θ)θ̈ +H(θ̇,θ)

}
dt. (4)

(4) is derived by using passivity of the system. The second
term P represents total potential energy, which is the integral
of the second term of the left part of (2).

P =

∫
{G(η + θ0) + S(η + θ0 − θG)}T dη (5)

Here η = θ − θ0. Note that the relative angular velocity
vector θ̇ − θ̇0(= η̇) in (2) becomes dη in (5) by using the
following variable transformation: η̇dt = dη. Total potential
energy P whose origin is θ = θ0 (η = 0) is derived
by integrating total restoring torque (G + S)T by η since
restoring torque is 0 when η = 0.

Because the left part of (3) represents the total mechanical
energy and the right part represents the input energy, the
integrand of the right part of (3) should be equal to or larger
than 0 to constantly increase total energy of the system.{

M(θ)θ̈ +H(θ̇,θ)
}T

θ̇0 ≥ 0 (6)

(6) is described by using restoring torque of the springs and
gravity as shown below by using (1).

−{G(θ) + S(θ − θG)}T θ̇0 ≥ 0 (7)
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Fig. 4. Coordinate system of simulation model

(7) contains θ̇0, which cannot be controlled directly. θ̇0 is
controlled by controlling θ̇G. Relation between θ0 and θG
is described as

G(θ0) + S(θ0 − θG) = 0. (8)

Following expressions are derived by differentiating (8) by
time.

∂G(θ0)

∂θ0
θ̇0 +

∂S(θ0 − θG)

∂θ0
θ̇0 −

∂S(θ0 − θG)

∂θG
θ̇G = 0

→ (Σg +Σs)θ̇0 = Σsθ̇G (9)

(7) can be described as follows by using (9).

−{G(θ) + S(θ − θG)}T (Σg +Σs)
−1Σsθ̇G ≥ 0 (10)

Here, we introduce a vector as

σT = {G(θ) + S(θ − θG)}T (Σg +Σs)
−1Σs

= [ σ1 σ2 · · · σi · · · σN ] . (11)

(10) is described by using the vector σ as

−
N∑
i=0

σiθ̇Gi ≥ 0. (12)

The following expression is a sufficient condition for (10).

θ̇refGi = −θ̇maxisign(σi), ∀i (13)

θ̇maxi is the maximum gear shaft angular speed of the i-
th joint. Total energy of the system always increases by
controlling θ̇Gi based on (13). A velocity controller is
needed to control gear shaft velocity. From the viewpoint
of maximizing input power from the motors to the spring,
however, it is desirable that the maximum voltage of the
driving system Emax is always applied to the motors. In
this paper, the following controllers are used instead of the
controllers (13).

Ei = −Emaxsign(σi), ∀i (14)

Ei is the voltage command for the i-th joint motor.

III. SIMULATIONS OF FEEDBACK EXCITATION CONTROL

A. Comparison between Horizontal and Vertical Systems

In this section, we evaluate kinetic energy increasing by
using the controllers (14) in simulations. The simulation
model is a 2-joint model that includes a motor mechanical
and electrical dynamics as

RI+ Lİ+ ΓKθ̇G = E (15)
Γ2Jθ̈G + Γ2Fθ̇G − S(θ − θG) = ΓKI. (16)

TABLE I
SYSTEM PARAMETERS

Parameter value
ϕ1 0.0155 [kgm2]
ϕ2 0.00392 [kgm2]
ϕ3 0.00338 [kgm2]
g1 0.880 [kgm2]
g2 0.241 [kgm2]

M(θ) =

[
ϕ1 + 2ϕ3 cos θ2 ϕ2 + ϕ3 cos θ2
ϕ2 + ϕ3 cos θ2 ϕ2

]
H(θ̇,θ) =

[
−ϕ3θ̇2(2θ̇1 + θ̇2) sin θ2

ϕ3θ̇
2
1 sin θ2

]
G(θ) =

[
g1 sin θ1 + g2 sin(θ1 + θ2)

g2 sin(θ1 + θ2)

]
TABLE II

MOTOR PARAMETERS (MAXON RE16 4.5W)

Parameter Value
Resistance Ri 11.2[Ω]
Inductance Li 4.52× 10−4[H]
Shaft inertia Ji 1.29× 10−7[kgm2]

Torque constant Ki 1.62× 10−2[Nm/A]
Visco friction coef. Fi 2.28× 10−7[Nm · sec/rad]

Reduction ratio γi 157:1 (1st joint)
84:1 (2nd joint)

• R = diag(R1, R2, · · · , RN ): resistance matrix
• L = diag(L1, L2, · · · , LN ): inductance matrix
• K = diag(K1,K2, · · · ,KN ): torque constant matrix
• E ∈ ℜN×1: input voltage vector
• I ∈ ℜN×1: motor current vector
• J = diag(J1, J2, · · · , JN ): rotor inertial matrix
• F = diag(F1, F2, · · · , FN ): viscous friction coef. ma-

trix
• Γ = diag(γ1, γ2, · · · , γN ): gear reduction ratio matrix

Coordinate system of the simulation model is shown in
Fig.4. The link and motor parameters are shown in Table
I and Table II respectively. The spring characteristics are
linear whose spring constants are 0.492 [Nm/rad] in the
simulations. The maximum input voltage Emax is 7 [V]. The
equilibrium angle vector θ0 and σ are calculated by using
Newton’s method and Gaussian elimination.

Fig.5 shows kinetic energy transition in the simulation.
Blue dotted curve indicates a result of the horizontal system
with horizontal feedback excitation controller and an excita-
tion limit hypersurface[4], black solid curve indicates a result
of the vertical system with gravitational feedback excitation
controller (14) and red chain curve indicates a result of the
vertical system with the following controller.

E1 = −Emaxsign(σ1), E2 = −Emaxsign(σ1) (17)

In this paper, we call the controller (17) as the first joint
reference controller. Peak kinetic energy of the vertical
systems became larger than that of the horizontal system.
The first joint reference controller (17) is the most effective
in the three cases although (17) is not a sufficient condition
for (10). We discuss a reason of this from the viewpoint of
linear vibration mode in the next subsection.
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Fig. 5. Kinetic energy transition with feedback excitation control (simu-
lation)

(a) 1st joint ref. (b) Normal excitation (14)

Fig. 6. Transition of joint angles of vertical systems (simulation)

B. Linearized System Analysis of First Joint Reference Con-
trol

Fig.6 shows transition of joint angles θ of vertical systems.
Fig.6-(a) shows the result of the first joint reference controller
(17) and Fig.6-(b) shows the result of the normal feedback
excitation controller (14). Joint angles transition is almost
cyclic and coordinate phase when the first joint reference
controller is used as shown in the figure. We discuss this from
the viewpoint of linear vibration mode. Following equation
is a linear approximated system of (1) that is approximated
around θ = 0.

M(0)θ̈ + {Σg(0) +Σs(0)} (θ − θ0) ≈ 0 (18)

(18) is decoupled by using a diagonalization matrix P ∈
ℜN×N .

ξ̈ +Λ(ξ − ξ0) ≈ 0 (19)

ξ = P−1θ and ξ0 = P−1θ0 are modal variable
vectors and Λ = P−1M(0)−1 {Σg(0) +Σs(0)}P =
diag(λ1, λ2, · · · , λN ) is an eigenvalue matrix. (19) is de-
scribed as individual differential equations of each modal
variable ξi as

ξ̈i + λi(ξi − ξ0i) ≈ 0. (20)

An N -joint system has N modes. Here, we define the first
mode as the mode that has the most small eigenvalue λ1 <
λi, ∀i ̸= 1. The first mode describes a coordinate phase
transition component of joint angle and angular velocity of
all joints. Energy increase condition is described by using
modal variables as

−ξ̇T0 Λ(ξ − ξ0) ≥ 0. (21)

Here, we focus on the first mode energy.

−ξ̇10λ1(ξ1 − ξ10) ≤ 0 (22)

Fig. 7. Second mode excitation by using opposite phase controller (28)

Equilibrium position moving velocity of the modal space ξ̇10
is described by using that of the joint space θ̇0 as

ξ̇10 = θ̇T
0 p1, p1 = [ p11 p12 ... p1N ]

T (23)

where [ p1 p2 · · · pN ] = P−1. (23) is described using
θ̇G.

−θ̇T
GΨp1λ1(ξ1 − ξ10) ≥ 0 (24)

Ψ = ΣT
s (0)

{
(Σg(0) +Σs(0))

−1
}T

= {ψij} (25)

Voltage commands E1 and E2 for 2-joint system are de-
scribed as follows similar to (14).

E1 = −Emaxsign{λ1(ψ11p11 + ψ12p12)(ξ1 − ξ10)} (26)
E2 = −Emaxsign{λ1(ψ21p11 + ψ22p12)(ξ1 − ξ10)} (27)

λ1, ψij and pij are constants since the linearized system is
considered. This means that voltage commands for all joints
are decided by the same variable ξ1−ξ10, and the first mode
vibration is excited by this controller. The voltage command
transition of each joint becomes coordinate phase or opposite
phase transition in accordance with a sign of ψ11p11+ψ12p12
and ψ21p11+ψ22p12. They are calculated as follows by using
parameters shown in Table I.

ψ11p11 + ψ12p12 = −0.269

ψ21p11 + ψ22p12 = −0.140

In this case, the first mode vibration is excited by coordinate
phase controllers.

On 2-joint robots whose joint axes are parallel, kinetic
energy becomes large when angular velocity of all joints
are same sign compared with opposite sign if the absolute
angular speeds are the same, and the first joint reference
controller, which is a coordinate phase controller, generate
higher kinetic energy than that of normal excitation con-
troller, which is a coordinate and opposite phase combined
controller. We have discussed the linearized system (18) and
this is not a strict discussion, and (17) does not always satisfy
the energy increasing condition (6). Energy loss phase would
be included by using (17), and it is needed to the energy loss
is sufficiently small to obtain a kinetic energy amplification.

The simulation results show that, however, the direction
of the linear modal analysis may be useful. For example,
the second mode vibration is excited by an opposite phase
controller as follows according to the same analysis as shown
in Fig.7.

E1 = −Emaxsign(σ1), E2 = −Emaxsign(−σ1) (28)
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Fig. 8. Overview of experimental setup

Fig. 9. Kinetic energy and gripper speed transition with feedback excitation
control (experiment)

Vibration mode switching would be important when a spe-
cific task is considered. For example, the first mode vibration
is useful for ball throwing motion. The first mode vibration
contributes not only the kinetic energy amplification but also
the end-tip speed amplification as shown in experiments in
the next section. On the other hand, second mode vibration
would be important for motions such as jumping.

IV. BALL THROWING EXPERIMENTS ON 2-JOINT SERIES
ELASTIC ROBOT

This section describes pitching motion experiment as an
application of feedback excitation control on the 2-joint
series elastic robot as shown in Fig.8. This robot has a
1DOF gripper as the end effector. We tested 2 cases of
different mass of the throwing object: 2.7 [g] and 40 [g].
Maximum input voltage Emax is 7 [V]. The controller is
the first joint reference controller (17), which is the most
effective controller in simulations shown in Fig.5.

Fig.9 shows kinetic energy and gripper speed transition
in the experiments. Red dotted curves indicate results of
2.7 [g] ball throwing and blue solid curves indicate results of

2.7 [g] ball

40 [g] ball

Fig. 10. Joint angle transition in experiments

40 [g] ball throwing. Kinetic energy shown in Fig.9 is sum of
links and pitching object kinetic energy. Maximum kinetic
energy Trigid and gripper speed vrigid without any springs
and gravity are also indicated in Fig.9. They are described
as

Trigid =
1

2
ωT

∞M(0)ω∞ (29)

vrigid =
√
ωT

∞J(0)TJ(0)ω∞, ω∞ = [ ω∞1 ω∞2 ]
T
.(30)

ω∞i (i = 1, 2) is steady-state angular speed of the i-th
joint gear shaft and J(θ) is a Jacobian matrix between the
joint angles and position of the gripper. Maximum kinetic
energy and gripper speed became larger than that of rigid
cases Trigid and vrigid. Maximum kinetic energy became
about 4.5 times larger than Trigid and maximum gripper
speed became about 2 times larger than vrigid on 2.7 [g]
ball throwing. Fig.10 shows the joint angle transition in
experiments. Coordinate phase vibration is excited by the
first joint reference controller as shown in Fig.10 similar to
the simulations. Fig.11 shows a sequential photographs of
the ball throwing experiment.

V. CONCLUSIONS

In this paper, we have proposed feedback excitation
control with consideration of gravity, which is a control
method to obtain high kinetic energy utilizing gravitational
and elastic potential energy. Kinetic energy amplification
by the control method have been verified by simulations
and experiments. In addition, we have examined higher
kinetic energy amplification by using first joint reference
control than the normal excitation. It is suggested that linear
first or second vibration modes are excited by coordinate
or opposite phase controllers. Vibration mode switching is
important when a specific tasks is considered, and there is a
possibility of adaptive control for various control objectives
in “explosive” tasks of multiple-joint series-elastic robots.
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Fig. 11. Sequential photographs of ball throwing motions with feedback excitation control

Feasibility of the control method has been evaluated in
experiments. Maximum kinetic energy became about 4 times
larger than that of a rigid robot with the same motors and
links.

Extending the modal analysis for nonlinear systems is a
future work. Extending the feedback excitation control for
legged mobile robots and application to jumping and running
motions is also a future work. Kinetic energy amplification is
useful for these motions too. Establishing a control method
with consideration of balancing and landing is, however, left
to a future work. Establishing a feedback excitation control
method for variable stiffness joints is also a future work.
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