
Evolving Decision-Making Functions in an Autonomous Robotic
Exploration Strategy using Grammatical Evolution

Mohd Faisal Ibrahim1 and Bradley James Alexander2

Abstract— Customising navigational control for autonomous
robotic mapping platforms is still a challenging task. Control
software must simultaneously maximise the area explored whilst
maintaining safety and working within the constraints of the
platform. Scoring functions to assess navigational options are
typically written by hand and manually refined. As navigational
tasks become more complex this manual approach is unlikely
to yield the best results. In this paper we explore the automatic
derivation of a scoring function for a ground based exploration
platform. We show that it is possible to derive the entire
structure of a scoring function and that allowing structure
to evolve yields significant performance advantages over the
evolution of embedded constants alone.

I. INTRODUCTION

Setting up navigational control for robotic platforms for
autonomous mapping in unknown environments remains
a challenging task. Control software must maximise area
explored whilst maintaining safety and working within the
kinematic and power constraints of the robotic platform.
Lack of a-priori knowledge of the exploration environment
obliges the control software to make navigational decisions
dynamically on the basis of provisional information. These
navigational decisions must come from an implicit or explicit
ranking of immediate navigational options [1]. Where the
ranking is explicit, some form of scoring function must
assign a level of utility to each navigational option. Sub-
sequently the navigational option with the highest utility
is selected as the next navigational goal. The exact form
taken by this scoring function depends on many factors
including: the nature of the environment; the robot hardware
and sensors; computer processing resources; the algorithms
used to extract signals from the environment; and the way
in which navigational options are specified. Unsurprisingly,
given this diversity of context, there is a corresponding
diversity of approaches to scoring navigational options [1],
[2], [3], [4], [5], each of which is well-suited to its particular
context.

One common characteristic of most current approaches is
that the scoring function they use to rank navigational options
is composed by hand. Given the complexities of platform,
sensors, software, operating environment, and navigational
tasks it is highly unlikely that these hand-written scoring
functions were derived – perfectly formed – from first
principles [6]. Much more likely, they are at least partly

1M. F. Ibrahim is with Department of Computer Science, The University
of Adelaide, SA 5005, Australia and Universiti Kebangsaan Malaysia
mohd.f.ibrahim at cs.adelaide.edu.au

2B. J. Alexander is with Department of Computer Science, The University
of Adelaide, SA 5005, Australia brad at cs.adelaide.edu.au

the product of experimental refinement. In other words,
we assert that handwritten scoring functions are, in part,
the product of a search process. As the complexity of
navigational environments grow and the number of factors
to consider increases, the effectiveness of hand-driven search
for a scoring function will become harder to sustain. This
being so, an interesting question is the extent to which this
search process can be automated and what benefit can be
derived from such automation?

A. Contributions

In earlier works [7], [8], we demonstrated that evolutionary
search can be used to successfully evolve numeric constants
in a scoring function and show, in simulation, that the
evolved functions can outperform handwritten code. In this
work we extend the function search space substantially to
include the structure of the scoring function. We show, in
simulation, that allowing constants, functions and structure
of the scoring function to evolve produces better navigational
outcomes than evolving constants alone. The ability of evolve
structure is a significant step as it eliminates bias arising from
predetermined structure, thus giving the control function
much more freedom to adapt to its context.

In our experiments, the evolved solutions generalise well
to a more challenging environment. Moreover, we have
found, by sampling evolved scoring functions, that struc-
turally different scoring functions can embed very similar
ranking relationships. These relationships appear to reveal
the important trade-offs between exploration, safety and
power usage in the given framework.

The remainder of this paper is organised as follows. In the
next section we describe the application domain and related
work. In section III we describe the exploration strategy
used by the robot. In section IV we outline our evolutionary
framework. In section V we describe our experimental setup.
Our results are presented and discussed in section VI. Finally,
we conclude in section VII.

II. APPLICATION DOMAIN AND RELATED WORK

This work applies to autonomous exploration of unknown
environments by an unmanned ground vehicle (UGV’s). We
assume that navigation works in a control-loop where a new
navigational goal is chosen, either, after a previous goal is
reached or a predetermined time has elapsed. We assume that
the body of the control loop has the form shown in fig. 1.
This loop body takes environmental information Env and a
set of current navigational options NOpts. Env is sampled at
each NOptsi to produce the same list of navigational options:

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4340

!"#$%&'() *!+,-.) /01)23$4!)

523$4!6)7&(!8) 523$4!6)7+,-.!8)
23$4!9.!4)

:';)

Fig. 1. Body of a generalised control loop mapping environmental infor-
mation Env and current navigational options NOpts to the best navigational
choice NOptsbest.

NOpts paired with corresponding navigational signals Sigs.
The scoring function fscore combines the signals for each
navigational option to produce a small set of numeric scores
(signals) corresponding to that option. In this work, fscore
is the subject of evolutionary search – all other components
remain fixed. Finally a simple MAX function is used to deter-
mine the maximum score and the corresponding navigational
option NOptsbest is returned as the navigational target for this
control iteration.

A number of approaches in the literature either conform or
could be made to conform to this general schema [1], [2], [3],
[4], [5], [7], [8], [9]. For example, in Yamauchi’s navigational
framework [2] Env can be considered to current pose and
distance fields; NOpts is a set of unvisited frontier cells; and
Sigs are the distances to the frontier cells. In contrast, for
Knudson [5] Env consists of a field histogram and robot pose;
NOpts are candidate bearings; and Sigs are clear-traversal
distance, and bearing relative to goal. In this paper NOpts
is a list of nearby candidate navigational poses; Env is a
set of distance fields, current pose and a power-consumption
model; and Sigs are relative-distance to goal, collision-hazard
and peak power consumption.

Note that, for the loop body above to be effective, the
signals in Sig must embed enough information to enable
good decisions. For example, in our framework, the signal
indicating relative-distance-to-goal for a navigation option is
informed by a distance field which embeds all possible paths
to the goal. In contrast, responding to a signal indicating
goal direction, runs the risk of being stuck behind occluding
obstacles.

Relating our evolutionary approach to others: while the
use of GP for direct derivation of reactive control has a long
history [10], [11], this work is the first to evolve the code
structure of a scoring function for autonomous mapping.
Neuro-evolutionary approaches to control also have a long
history [12]. Of these, Knudson [5] appears most similar
by evolving a neural net to assume the role of a scoring
function to rank navigational directions. However, like all
neuro-evolutionary approaches the evolved control is black-
box and not open to inspection.

Evolutionary methods are also commonly applied to path
planning [13], [14], [15]. This work differs from ours in
that it involves dynamic creation of a path to a known
target whereas our evolved function encodes the logic for
immediate target choice.

III. EXPLORATION STRATEGY

In this section, we describe the robotic platform and
mission objectives. These form the environmental constraints

that guide the design of the control software and the evolu-
tion of the scoring function.

A. Robot Description

We consider a wheeled skid-steered robot of rectangular
shape as in Fig. 2(a) to explore an unknown environment.
This simulated non-holonomic robot is equipped with a 360o

laser-range finder to measure proximity data. Localisation
and pose approximation are achieved by using a simulated
global positioning unit (GPS) and an inertial management
unit (IMU) readings. We are using direct data from the
simulated sensor as our simulated robot kinematics are
carefully derived from physics-based models. The use of
direct localisation enables us to speed up our evolutionary
framework without the cost of running the simultaneous
localisation and mapping (SLAM) module. However, for
a real robot implementation or later stages of evolution, a
SLAM module can be integrated to improve pose and map
accuracies.

The kinematic model of the robot is based on configura-
tion transition equations [16] using translational velocity vt
(forward movement) and angular velocity vt (rate-of-turn) as
below:-

ẋ = rvtcosθ ẏ = rvtsinθ θ̇ =
r

L
va (1)

where (ẋ, ẏ) is change of robot pose in Cartesian coordinate
and θ̇ is change of its bearing. L is the distance between two
wheels, meanwhile r is the radius of robot wheels. Maximum

Fig. 2. (a) Robot’s point-and-shoot motion. Stage 1 turns robot to its
desired direction, stage 2 drives robot forward at its specified distance (b)
Navigational Options

velocities of the robot are set as vt = 2m
s and va = 40deg

s .
The robot is moved using point-and-shoot motion where the
robot first turns to the desired direction and then moves
forward to the specified distance.

B. Exploration Strategy Framework

Our exploration strategy framework is adapted from our
previous work in [7], [8] with few modifications to cater
single robot exploration task. Furthermore, the exploration
task has two objectives: maximising exploration and min-
imising power consumption; and one constraint: collision
avoidance. Fig. 3 shows a block diagram of the exploration
framework with respect to the robot described in III-A.
In each control cycle t, current pose of the robot qrobot,
direction and scan readings are acquired from the robot’s

4341

Fig. 3. Exploration strategy framework

sensors. These readings are used to build/update a two-
dimensional occupancy grid O. Here, the resolution of a
grid square of O is set to 10cm to obtain reasonable map
accuracy. A Bayesian map update formula is used as in [17]
to determine whether each grid square is empty, occupied or
unexplored. Subsequently, we use a frontier-based strategy
[2] to identify a long-range target locations. The closest
frontier location to qrobot is selected as the target location:
qfrontier. Note that, our approach differs in that the frontier
is used as a proxy to inform the robot of the rough direction
of the closest unknown area. Because the laser scan precedes
the robot, qfrontier is normally reassigned long before the
robot reaches the old frontier.

Next, two auxiliary fields are derived from O: a static-
hazard-distance field Fsh and a frontier-cost field Ffc. Fsh

is a global field that assigns each free cell in O with the
distance to the nearest fixed obstacle, distq ⊂ Fsh [7]. distq
of an occupied or unexplored cell is set to zero. On the
other hand, Ffc contains traversal costs from each cell in O
to qfrontier, costq ⊂ Ffc. Both fields are calculated using
a deterministic variant of the value iteration algorithm [1].
An example of these fields is shown in fig. 4(b) and 4(c)
corresponding to map in fig. 4(a).

The latest values of Fsh and Ffc, combined with a power
consumption model derived from the robot’s kinematics form
the environment Env which is sampled in the control loop in
fig. 1. The components in Env are sampled at the navigational
options qi shown in fig. 2(b) to produce three signals for the
scoring functions. These scalar signals are target-strength,
embodying relative distance to qfrontier, extracted from Ffc;
static hazard embodying risk of collision, extracted from
current robot pose and Fsh; and, finally, power consumption
is derived directly from kinematic models. These signals
are combined using the scoring function fscore to assign a
score to each navigational option. The best option, called
next-best-view (NBV) becomes the short-range navigational
target:qnbv . The final process in the control cycle is to
set velocities vt and va to move the robot from qrobot to
qnbv . This low-level controller translates velocities to wheel
rotation to execute the point-and-shoot motion to qnbv .

Fig. 4. (a) Exploration map, (b) Corresponding static hazard distance field
(fully explored map), (c) Corresponding frontier cost field after certain robot
movements

C. Selection of the Next Best View (NBV) Location

The sampling process to extract target-strength, static-
hazard and power-consumption at each navigational option
warrants further description. We briefly discuss each in turn.

The target-strength tsi of each navigational option qi mea-
sures the relative distance of qi point to qfrontier, compared
to the distance between qrobot and qfrontier. This can be
calculated by sampling cells’ cost value in Ffc. The value
of tsi ranges between 0.0 and 1.0 where a value greater than
0.5 indicates a qi closer to qfrontier than qrobot. Meanwhile,
a tsi value less than 0.5 denotes a qi as further from the
desired target. Pseudocode to generate tsi is shown in fig. 5.

1) Acquire traversal cost of moving from qi to qfrontier .

costqi ⊂ Ffc

2) Acquire traversal cost of moving from qrobot to qfrontier .

costqr ⊂ Ffc

3) Calculate the Euclidean distance between qrobot and qi, D.
4) Calculate target-strength value, tsi.

tsi =
costqr − costqi

2 ∗D
+ 0.5 ∈ [0, 1]

Fig. 5. Pseudocode to generate target strength signal of a candidate NBV
point

The static hazard, shi, of each qi measures the risk of
collision with static obstacles. shi is calculated by first
checking for possible collisions when the robot moves from
qrobot to qi. If no collision detected, then, the normalised
shi is calculated based on distance of qi from the nearest
obstacle, distqi . Both processes use Fsh to extract distance
information. Pseudocode to generate shi is shown in fig. 6.

Power consumed by the robot moving from qrobot to qi can
be estimated by summing the power used to turn the robot
and power used to move the robot forward. This cumulative
power can be calculated by using robot dynamic model
taking into account vt and va. We adopt models from [19]
to calculate the power consumption signal, pwi of every qi.
Pseudocode to generate pwi is explained in fig. 7. The higher
pwi value the higher power consumed to drive robot to qi
and vice-versa.

D. The Scoring function

We apply a decision-theoretic approach to build a scoring
function, fscore [1]. This approach allows several signals to

4342

1) Apply a collision-detection algorithm. We use the Separating Axis
Theorem technique [18].

shi =

{
1 if collide
0 otherwise

2) If shi = 0 (no collision), re-calculate shi in respect to distqi
value.

shi =
1

mn−mx
distqi − (

mx

mn−mx
) ∈ [0, 1]

where, mn is the lower bound value in Fsh before collision
happens and mx is the upper bound value in Fsh before the robot
moves to safe area.

Fig. 6. Pseudocode to generate static hazard signal of a candidate NBV
point

1) Calculate power consumed to turn from qrobot direction, θr to qi
direction, θi.

pturn =MR ∗ |θr − θi|

2) Calculate power consumed to move robot forward from qrobot to
qi.

pfwd = mass ∗ at + FR ∗ vt

3) Calculate pwi as

pwi =
pturn + pfwd

powMax
∈ [0, 1]

where MR is moment of resistance, FR is longitudinal resistance,
mass is the robot mass in kg, at is the robot acceleration and
powMax is the maximum estimated power consumption of the
longest possible movement.

Fig. 7. Pseudocode to generate power consumption signal of a candidate
NBV point

be combined in fscore. The general structure of our fscore
for each qi: fscorei is as follows:-

fscorei = f(shi, pwi, tsi) (2)

Eq. 2 indicates that fscorei is built from the aggregation of
function of signals shi, pwi and tsi. In the next section,
we describe our evolutionary mechanism to generate good
forms for fscore. Note that, fscorei returns a real value with
a greater score indicating a more desirable qi. fscorei below
or equal to 0.0 indicate that it is better for the robot to stay
at qrobot than to move to qi.

IV. EVOLUTION OF THE SCORING FUNCTION

In this section, we explain the evolutionary mechanism
implemented in our exploration strategy. The objective is
to find the best fscore we can in terms of exploration
performance. We use Grammatical Evolution (GE) as the
search framework. We briefly describe GE next followed by
its use in deriving fscore.

A. Grammatical Evolution

Grammatical Evolution is an evolutionary framework that
is used for the automatic generation of program code in
arbitrary languages [20]. In GE, the framework is given
a grammar for the problem domain in Backus-Naur Form
(BNF). GE uses this grammar to map binary strings rep-
resenting individuals to syntactically correct expressions in

the grammar. The primary advantage of GE is that it gives
the user the freedom to define grammars suited to their
application without the risk of generating large numbers of
syntactically incorrect individuals.

In this paper, we compose the BNF grammar to define
particular elements in fscore. We describe experiments using
three distinct grammars. The first grammar restricts GE
to evolving only the constants of fscore with the rest of
the structure fixed. The second grammar is more relaxed
allowing different choices of unary functions with each term
but restricting aggregation to simple multiplication of terms.
The third grammar is most flexible, allowing terms and
the aggregation operators to evolve freely. We detail these
grammars next.

B. Experimental Grammar 1: Evolving Constants

In this grammar, constants are allowed to evolve but the
rest of the grammar is a fixed product of linear terms.
Several works in the literature use combinations of weighted
linear terms [3], [4], [9] so this represents a benchmark of
interest. Fig. 8 shows the BNF grammar for evolution of
constants. The structure of fscore is fixed with multiplicative

<expr>::= (1− Linear(pwi, <num linr>)) *
(1− Linear(shi, <num linr>)) *
Linear(tsi, <num linr>)

<num linr>::= <num type1>,<num type2>
<num type1>::= <num10>.<num10><num10>
<num type2>::= <sign><num2>.<num10><num10>
<num10>::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<num2>::= 0 | 1
<sign>::= | -

Fig. 8. BNF Grammar for constants evolution

operators that combines linear functions of pw, sh and
ts. The constants are num type1 and num type2 which
represent value of a1 and b1, respectively, in a linear function
as in eq. 3.

a1 ∗ x+ b1 ∈ [0, 1] (3)

where x is a state signal value. a1 has range between 0.00
to 9.99, while b1 has value between −1.99 to 1.99.

C. Experimental Grammar 2: Evolving Functions

In certain problems, tuning the constants is not adequate
to give a good solution. For example, a non-linear problem
represents by a linear solution will often handle a problem
ineffectively. Therefore, we propose an evolution of state
signals’ functions as well as its corresponding constants
simultaneously. We extend the grammar in section IV-B
to find the best function for each signal which can be
chosen among the following function types: linear function,
polynomial function or logistic function. Eq. 4 and 5 describe
the polynomial and logistic functions, respectively, with its
corresponding constants (a2, b2, a3, b3).

a2 ∗ (xb2) ∈ [0, 1] (4)

1.0

1.0 + exp(−a3 ∗ (x− b3))
∈ [0, 1] (5)

4343

where the constants are ranged as follow: a2 : 0.00 to 9.99,
b2 : 0.00 to 9.99, a3 : 0.00 to 29.99 and b3 : 0.00 to 0.99,
Fig. 9 shows the extension of the BNF grammar from fig. 8
that is used to cater evolution of functions and constants.

<expr>::= (1− <pw func>) * (1− <sh func>) * <bs func>;
<pw func>::= Linear(pw,<num linr>) |

Polynomial(pw,<num poly>) |
Logistic(pw,<num lgtc>)

<sh func>::= Linear(sh,<num linr>) |
Polynomial(sh,<num poly>) |
Logistic(sh,<num lgtc>)

<gs func>::= Linear(gs,<num linr>) |
Polynomial(gs,<num poly>) |
Logistic(gs,<num lgtc>)

<num poly>::= <num type1>,<num type1>
<num lgtc>::= <num type3>,<num type4>
<num type3>::= <num3><num10>.<num10><num10>
<num type4>::= 0.<num10><num10>
<num3>::= 0 | 1 | 2

Fig. 9. BNF Grammar for functions evolution

D. Experimental Grammar 3: Evolving Structure

The grammar above still limits the structure of fscore to
the product of terms dependent on ts, sh and pw. This fixed
structure may rule out good design options. In this grammar
we lift the restrictions on operators and allow the evolution
of:

1) mathematical operators for aggregation between sig-
nals (+,−, ∗, /).

2) order of signals in fscore.
3) the function for each signal.
4) corresponding constants for each signal term.
Fig. 10 presents a more general extension of the BNF

grammar from from fig. 8 and 9 to accommodate structure
evolution. Note that we include explicit options for different
orderings and associativity of terms. These ensure that each
signal is included once in any solution but gives maximum
flexibility in how it contributes. With this general method,
GE has a very much larger search space than solution in IV-
B and IV-C. As a consequence, fscore’s candidate structure
has larger diversity.

<expr>::=<pw struc>;<sh struc>;<bs struc>;<scorefunc struc>;
<pw struc>::= pwf = <pw func> | pwf = 1− <pw func>
<sh struc>::= shf = <sh func> | shf = 1− <sh func>
<gs struc>::= gsf = <gs func> | gsf = 1− <gs func>
<scorefunc struc>::= scorefunc = pwf<op>shf<op>gsf |

scorefunc = (gsf<op>shf)<op>pwf |
scorefunc = (gsf<op>pwf)<op>shf |
scorefunc = (shf<op>gsf)<op>pwf |
scorefunc = (shf<op>pwf)<op>gsf |
scorefunc = (pwf<op>gsf)<op>shf |
scorefunc = (pwf<op>shf)<op>gsf

<op>::= +| − | ∗ |/

Fig. 10. BNF Grammar for structure evolution

V. EXPERIMENTAL SETUP
Three different experiments were designed to evalu-

ate the proposed evolution of fscore. The first experi-
ment (CONST EVO) uses the BNF grammar in fig. 8 to

tune constants of linearised fscore. Meanwhile, the second
(FUNC EVO) and third (STRUC EVO) experiments imple-
ment the BNF grammars as in fig. 9 and 10, respectively.

For all experiments, any candidate function, fcand pro-
duced by the BNF grammar is scored by embedding fcand
in a high-fidelity simulation platform. The evaluative process
for each fcand is:

1) embedding: fcand is substituted into the C++ source
code as fscore of the exploration strategy and then code
re-compilation is performed.

2) simulation: the exploration strategy with the embedded
fcand is run in a simulated environment. We use a
map emulates the office-like environment as in fig.
4(a) to measure robot performance. Stage, a soft-
ware development platform [21] is utilised to perform
the simulation. Simulation time-frame and maximum
power usage are set. The robot must explore the map
within the time-frame. The simulation is terminated
whenever the following conditions occur first: i) run-
time exceeds time-frame (we set 180 seconds), ii) col-
lision, iii) robot in stall position, iv) robot consumes
power more that the maximum power usage, or v)
robot explores the map completely. With simulation
time sped up between 20-50 times faster, we are able
to improve evolution time significantly.

3) evaluation: Fitness for every fcand is taken using the
equation 6:

fitness =

(
area +

1

1 + power

)
∗
(

1

1 + coll

)
(6)

where area is the total area explored, power is the total
power consumed and coll is the number of collisions
with obstacles. This fitness function is created to reflect
the multi-objective exploration task as described in
section III-B. It indicates that a fcand with larger
area of exploration with relatively low power usage
is rewarded with higher score. Collisions penalise the
fitness.

Experiments were conducted on an IBM HS22 server with
an 3.47GHz eight core Intel Xeon X5677 CPU and 48GB
of memory. We ran each experiment 15 times. The longest
evolutionary runs would consume 2 days of CPU time. In
GE, we set population to 100 and generation to 100, 200
and 300 for CONST EVO, FUNC EVO and STRUC EVO,
respectively. Different numbers of generations were used to
allow enough time for convergence in each experiment1. We
use a standard one-point crossover and point-mutation.

VI. RESULTS AND DISCUSSION

The experimental results for the above evolution are
considered in this section. Fig. 11 shows the statistical
data of all runs represented in box plots (boxes span the
25th to 75th percentiles). The first observation found that
fscore from CONST EVO produces the lowest performance

1Due to its smaller search space CONST EVO typically converged in
only 50 generations.

4344

(median fitness:63) compared to fscore from FUNC EVO
(median fitness:188) and STRUC EVO (median fitness:186).
This reveals that fscore in linear form is not adequate to
produce the best strategy in this framework. In contrast,
results from FUNC EVO and STRUC EVO present a sig-
nificant improvement to the exploration performance. Both
experiments prove that good solution can be achieved with
the right selection of fscore structure. STRUC EVO has
advantages over FUNC EVO in that the complete structure of
fscore is designed automatically. In contrast, FUNC EVO re-
quires designers to manually define the aggregation method.
Equations 7 to 9 present the best found fscores from the
three experiments.

Fig. 11. Boxplot comparison of fscore evolutions

CONST EVO:

s = 4.93 ∗ sh− 1.93 ∈ [0, 1]

p = 0.90 ∗ pw − 0.02 ∈ [0, 1]

t = 0.54 ∗ ts+ 0.11 ∈ [0, 1]

fscore = (1− s) ∗ (1− p) ∗ t (7)

FUNC EVO:

s = 7.6 (sh5.61) ∈ [0, 1]

p = 0.96 (pw9.62) ∈ [0, 1]

t =
1

1 + exp(−26.9 ∗ (ts− 0.62))
∈ [0, 1]

fscore = (1− s) ∗ (1− p) ∗ t (8)

STRUC EVO:

s = 2.92 (sh4.67) ∈ [0, 1]

p =
1

1 + exp(−16.27 ∗ (pw − 0.06))
∈ [0, 1]

t =
1

1 + exp(−20.75 ∗ (ts− 0.55))
∈ [0, 1]

fscore = (1− s)/p ∗ t (9)

A. Validation

Once the optimised fscore has been found, the robot can
be used to explore any new unknown environment that has
almost the same features as the map used in the evolution
process. In order to validate the performance of the findings,
we test fscore as in eq. 7 to 9 on another simulated office-
like environments as in fig. 12. We run the simulation until
the whole maps are covered by the robot. After 10 runs

of each function, we found the average performance of the
robot on both maps as per table I. The table shows that the
robot explores the maps completely with fscore produced
by FUNC EVO and STRUC EVO. However, fscore pro-
duced by CONST EVO unable to complete the exploration
and stop after it gets stalled. Comparing power consump-
tion, FUNC EVO uses less power than CONST EVO and
STRUC EVO as the evidence shows that the total path length
the robot moves is shorter than the others. In overall, we
can conclude that fscore of FUNC EVO and STRUC EVO
outperforms CONST EVO proving that the ideal relationship
between signals and scores, in our setup, is unlikely to be
expressed using linear terms.

Fig. 12. Test maps showing footprints of the robot using three different
fscore: red line for STRUC EVO, green line for FUNC EVO, and blue line
for CONST EVO (a) test map 1 at 240 sec (b) test map 2 at 234 sec

TABLE I
PERFORMANCE COMPARISON OF EVALUATIVE FUNCTIONS.

PERFORMANCE PARAMETERS: A-EXPLORED AREA, T-EXPLORATION

TIME, P-CONSUMED POWER AND TP-TOTAL PATH LENGTH

[TESTMAP1/TESTMAP2]

fscore A(m2) T(sec) P(kW) TP(m)
CONST EVO 51/145 ∞/∞ 4.02/5.47 64.02/94.52
FUNC EVO 225/225 217/236 3.52/3.77 58.72/62.38

STRUC EVO 225/225 240/234 3.83/3.97 62.74/65.55

B. Discussion

From the experimental results, we have shown the in-
fluence of the selection of fscore to the exploration per-
formance. By using GE to search for the best structure of
fscore, we manage to improve the exploration task signifi-
cantly. Using fscore from FUNC EVO and STRUC EVO as
the choices, area coverage is significantly improved while
maintaining reasonable power consumption.

To further investigate what is happening in these exper-
iments, we represent fscore of CONST EVO, FUNC EVO
and STRUC EVO graphically. We reduce the dimension of
fscore graph by keeping pw constant. In this case, we can
analyse the relationship between ts and sh and their influ-
ence to the navigational choice. In general, signal-to-signal
relationship analysis can be performed by assigning other
signals with fixed values. Fig. 13 shows the ranking surfaces
of fscore for CONST EVO, FUNC EVO and STRUC EVO
at pw = 0.1.

From the figure, the highest score is at ’peak’ point
indicating a point with the highest ts and the lowest sh as

4345

the best point to navigate. Meanwhile, the lowest score with
zero value is in ’valley’ (region in black) where those points
are unlikely to be chosen as the navigational point. In com-
parison, we can see that STRUC EVO and FUNC EVO are
able to be more aggressive in exploration than CONST EVO.
To illustrate, navigation choice A shown in each surface,
is a high-pay-off(ts=0.9)/high-hazard(sh=0.6, but consider-
ably safe) navigational choice. In CONST EVO choice A
has a very low ranking - it will almost never be chosen
while in STRUC EVO and FUNC EVO it ranks very highly.
Conversely, choice B which is low-pay-off(ts=0.5)/low-
hazard(sh=0.4) is relatively attractive in CONST EVO but
ranked very poorly in STRUCT EVO and FUNC EVO.

Fig. 13. Decision making surfaces

Therefore, we can infer that the ranking surfaces of
STRUC EVO and FUNC EVO yield better navigational de-
cision making compared to CONST EVO. The most persis-
tent features of the ranking surfaces of STRUC EVO and
FUNC EVO are being the sharply defined low plain for sh
above 0.8, the low plateau for ts below 0.5 and the gentle
rise for ts values above 0.5. This echelon structure, and its
boundaries, seem to characterise what is required of a good
fscore in our particular setup.

VII. CONCLUSIONS AND FUTURE WORKS

To achieve optimal robotic exploration performance in an
unknown environment, one must adopt an optimal decision
making function for the given exploration strategy frame-
work. In this paper, we have introduced the mechanism to
design the structure of a decision making function auto-
matically using Grammatical Evolution (GE). Experimental
results had shown that GE is able to search for good function
structures in a very large search space and improve the
exploration performance significantly.

For future works, we would like to introduce more state
signals to take account of more complex environments con-

taining moving obstacles and multiple robots. We aim to use
multi-stage evolution for the evolution of structure and then
constants. We would like to evolve individuals in a larger
variety of environments with differing levels of noise to
provide insight into the impacts these have on the scoring
function. Finally, we would like to use diverse individuals,
evolved under different conditions as a pool to underpin real-
time adaptation on real robotic platforms.

REFERENCES

[1] C. Stachniss, Decision-Theoretic exploration using coverage maps,
Robotic Mapping and Exploration, 2009.

[2] B. Yamauchi, Frontier-based exploration using multiple robots, in
Proc. of the 2nd Int. Conf. on Autonomous Agents, USA, 1998, pp.
47-53.

[3] W. Burgard, M. Moors, C. Stachniss, and F.E. Schneider, Coordinated
multi-robot exploration, IEEE Trans. Robotics, vol. 21, no. 3, pp. 376-
386, 2005.

[4] A. Mobarhani, S. Nazari, A.H. Tamjidi, and H.D. Taghirad, Histogram
based frontier exploration, in Proc. of IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems, USA, 2011, pp. 1128-1133.

[5] M. Knudson, and T. Kagan, Adaptive navigation for autonomous
robots, Journal of Robotics and Autonomous Systems, vol. 59, no.
6, pp. 410-420, 2011.

[6] I. Harvey, Artificial evolution and real robots, Artificial Life and
Robotics 1(1),pp. 35-38, 1997.

[7] M.F. Ibrahim, and B. Alexander, Evolving a path planner for a multi-
robot exploration system using grammatical evolution, in Proc. of the
7th Int. Conf. on Intelligent Sensors, Sensor Networks and Information
Processing, Australia, 2011, pp. 590-595.

[8] M.F. Ibrahim, and B. Alexander, Designing a navigational control
system of an autonomous robot for multi-requirements planetary
navigation using evolutionary algorithms approaches, in Proc. of the
12th Australian Space Science Conf., Australia, 2012, pp. 223-234.

[9] N. Basilico, and F. Amigoni, Defining effective exploration strategies
for search and rescue applications with multi-criteria decision making,
in Proc. of IEEE Int. Conf. on Robotics and Automation, 2011, pp.
4260-4265.

[10] P. Nordin and W. Banzhaf, An on-line method to evolve behavior and
to control a miniature robot in real time with genetic programming,
Adaptive Behaviour, 5(2), pp. 107–140, 1997.

[11] M. Mataric and D. Cliff, Challenges in evolving controllers for
physical robots, Robotics and Autonomous Systems, 19(1), pp. 67–
83, 1996.

[12] J. Meyer, P. Husbands and I. Harvey, Evolutionary robotics: A sur-
vey of applications and problems, Evolutionary Robotics, pp. 1-21,
Springer Berlin/Heidelberg, 1998.

[13] H. Mahjoubi, F. Bahrami and C. Lucas, Path planning in an envi-
ronment with static and dynamic obstacles using Genetic Algorithm:
A simplified search space approach, in Proc. IEEE Congress on
Evolutionary Computation, 2006, Canada, pp. 2483-2489.

[14] J. Chakraborty, A. Konar, U.K. Chakraborty and L.C. Jain, Distributed
cooperative multi-robot path planning using differential evolution, in
Proc. IEEE Congress on Evolutionary Computation, 2008, pp. 718-
725.

[15] M. Naderan-Tahan, and M.T. Manzuri-Shalmani, Planning a robust
path for mobile robots in dynamic environment, in Proc. 14th Int. CSI
Computer Conference, 2009, pp. 470-476.

[16] S.M. LaValle, Planning algorithms, Cambridge University Press, Cam-
bridge, U.K., 2006.

[17] L. Matthies, and A. Elfes, Integration of sonar and stereo range data
using a grid-based representation, in Proc. of 1988 IEEE Int. Conf.
on Robotics and Automation, 1988.

[18] D. Eberly,Intersection of Convex Objects: The Method of Separating
Axes, http://www.geometrictools.com/, 1998.

[19] O. Chuy, E.G. Collins, Wei Yu and C. Ordonez, Power modeling of
a skid steered wheeled robotic ground vehicle, in Proc. of IEEE Int.
Conf. on Robotics and Automation, 2009, pp. 4118-4123.

[20] M. ONeill and C. Ryan, Grammatical Evolution, IEEE Transactions
on Evolutionary Computation, vol. 5, no. 4, pp. 349-358, 2001.

[21] R. Vaughan, Massively multi-robot simulation in stage, Swarm Intel-
ligence Journal, vol. 2, pp. 189-208, 2008.

4346

