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Abstract— Rapidly-Exploring Random Trees (RRTs) have
been successful at finding feasible solutions for many types
of problems. With motion planning becoming more computa-
tionally demanding, we turn to parallel motion planning for
efficient solutions. Existing work on distributed RRTs has been
limited by the overhead that global communication requires.
A recent approach, Radial RRT, demonstrated a scalable
algorithm that subdivides the space into regions to increase
the computation locality. However, if an obstacle completely
blocks RRT growth in a region, the planning space is not
covered and is thus not probabilistically complete. We present
a new algorithm, Blind RRT, which ignores obstacles during
initial growth to efficiently explore the entire space. Because
obstacles are ignored, free components of the tree become
disconnected and fragmented. Blind RRT merges parts of the
tree that have become disconnected from the root. We show how
this algorithm can be applied to the Radial RRT framework
allowing both scalability and effectiveness in motion planning.
This method is a probabilistically complete approach to parallel
RRTs. We show that our method not only scales but also
overcomes the motion planning limitations that Radial RRT
has in a series of difficult motion planning tasks.

I. INTRODUCTION

Motion planning has been an active research area in the

field of robotics. It also has many other applications includ-

ing computer graphics [2], virtual reality [22], computational

biology [3], and computer-aided design [7]. Problems in

motion planning range from simple 2-D scenarios to high

complexity robots with many degrees of freedom (DOF ).

Given that exact solutions are intractable for DOF ≥ 5 [20],

sampling-based motion planning has emerged as a promising

technique for solving such problems [14], [17].

Within sampling-based motion planning, we find two

main approaches: graph-based approaches, e.g., Probabilistic

Roadmaps (PRM) [14], and tree-based approaches, e.g.,

Rapidly-Exploring Random Trees (RRT) [17]. RRTs itera-

tively grow one or more trees from a given configuration

towards random configurations in the configuration space

(Cspace) [19]. In each iteration, a robot configuration qrand
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is chosen as an expansion direction, and the nearest node

qnear in the tree to qrand is selected and expanded towards

qrand. Construction stops when the tree reaches the goal.

Even though sampling-based strategies are quite efficient,

the computational costs of obtaining a solution can be expen-

sive, especially in environments where the ratio of obstacle

space, Cobst, to the free space, Cfree, is high. Parallel motion

planning embraces the notion that these kinds of problems

can be solved with one or more processes collaboratively

yielding a more efficient solution. One such method, Radial

RRT [13], radially decomposes Cspace into conical regions

with the origin at the initial configuration and grows an RRT

independently in each region. After this, branches are joined

in adjacent regions using connected component connection

techniques. Finally, cycles are removed so the resulting graph

is a tree. This method scales well but is not probabilistically

complete.

In this work, we present an RRT variant, Blind RRT,

that ignores obstacles during the initial tree construction,

retaining all vertices (invalid and valid) and all valid edges.

Blind RRT expands regardless of encountering obstacles.

After initial construction, a post processing step is required

where invalid nodes are removed and unconnected pieces of

the tree are merged back to the root. We apply this method

in parallel, providing a probabilistically complete alternative

to Radial RRT.

Contributions of this work include:

• A novel method, Blind RRT, capable of exploring Cfree

regardless of the Cobst to Cfree ratio.

• Application of Blind RRT to Radial RRT to provide

both scalability and probabilistic completeness in mo-

tion planning.

• Experimental analysis of the scalability of our strategy

and the effectiveness in finding paths measured through

tree coverage. We compare our results to RRT and

Radial RRT.

II. PRELIMINARIES AND RELATED WORK

In this section, we review definitions and present related

motion planning techniques relevant to this work.

A. Preliminaries

Motion planning is the problem of finding a valid path

(e.g., collision-free) taking a movable object (e.g., a robot)

from a start configuration to a goal configuration in an

environment [8]. A configuration of a robot is described

by its n degrees of freedom (DOFs), each corresponding

to an object component (e.g., a position and orientation).

The space of all possible configurations, feasible or not, is
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called the configuration space (Cspace) [19] and consists of

two sets: Cfree, all feasible configurations, and Cobst, all

infeasible configurations. Thus, motion planning becomes

the problem of finding a continuous trajectory in Cfree

from a start configuration to a goal configuration. Exact

solutions become intractable for high-dimensional spaces as

it is difficult to explicitly compute Cobst boundaries [20].

However, the feasibility of a configuration can be determined

quite efficiently using collision detection (CD) tests.

B. Sampling-based Motion Planning

Because of the intractability of motion planning, sampling-

based methods, which find approximate solutions, are both

successful and effective in practice [14], [17]. Probabilistic

Roadmaps (PRMs) [14] and Rapidly-Exploring Random

Trees (RRTs) [17] are two common approaches to sample-

based motion planning. Whereas PRMs construct a graph

representing the connectivity of Cfree, RRTs iteratively grow

a tree rooted at a start configuration and towards unexplored

areas of Cspace, as described in Algorithm 1. In each itera-

tion, RRT generates a random configuration, qrand ∈ Cspace,

and then it identifies the configuration qnear in the tree that

is nearest to qrand. qnear is expanded towards qrand at a

distance of ∆q to generate a new configuration qnew ∈ Cfree.

qnew is added to the tree as well as an edge between qnear

and qnew. RRT iterates until a stopping criteria is met, e.g., a

query is solved. RRT-Connect [15] is a variant that greedily

grows two trees, usually rooted at the start and the goal,

towards each other until a connection between them is found.

Algorithm 1 RRT

Input: Configuration qroot and expansion step ∆q
Output: Tree τ

1: τ ← qroot

2: while ¬done do

3: qrand ← RandomCfg()
4: qnear ← NearestNeighbor(τ, qrand)
5: qnew ← Expand(qnear , qrand, ∆q)
6: UpdateTree(T, qnear, qnew)
7: end while

8: return τ

C. Parallel Motion Planning

The computation required for motion planning problems

has motivated work on parallel motion planning. Early

parallel motion planning was aimed at the discretization of

Cspace, but it was limited to low dimensional problems [6],

[18]. PRM was first parallelized in [1]. A scalable Parallel

PRM was presented in [12] where Cspace is subdivided, each

processor independently constructs a roadmap in a region,

and the resulting roadmaps are connected in a global con-

nection phase. One of the first parallel RRTs built multiple

trees at the same time, concurrently exploring Cspace and

returning once a process finds a connection to the goal [5].

Three different distributed RRT algorithms are presented in

[10]. The first is a message-passing implementation where

a process sends an end-signal when the goal is found. The

second allows processes to build the tree collaboratively by

communicating when a new node and edge are found. The

last parallelization uses the manager-worker pattern, where

the workers perform collision detection on edges assigned

by the manager. The bottle-neck of this approach is the

unbalanced work that the manager(s) may need to perform

while workers wait idly to receive their task.

Radial RRT [13] achieves scalability by introducing Cspace

subdivision to RRTs. Radial RRT divides Cspace into conical

regions with a common origin, the root, and builds an RRT

in each of them. These trees are then connected to trees

in neighboring regions and cycles are pruned. While Radial

RRT has almost linear scalability, it may fail to successfully

explore Cspace and find valid paths, lacking probabilistic

completeness (as shown in Section IV). This is due to the

fact that an obstacle can completely prevent a region from

expanding its tree, leaving a portion of the space that may

contain a valid path to the goal unexplored.

III. BLIND RRT

In this section, we describe the design, motivation and

advantages of Blind RRT compared to the standard RRT.

Although used in this work to improve Radial RRT, we

present Blind RRT as a probabilistically complete strategy

for motion planning, capable of solving problems indepen-

dently of parallel computation. The motivation behind Blind

RRT is the incapability of expansion for Radial RRT when an

obstacle completely blocks progress in a region. Therefore,

we propose to ignore obstacles, or blindly expand through

them. Blind RRT takes advantage of the rapid expansion rate

of RRTs.

A. Algorithm

The Blind RRT strategy, shown in Algorithm 2, starts

by iteratively expanding a tree τ rooted at a configuration

qroot, similar to RRT. We alter the standard RRT Expand

subroutine to continue growing through obstacles recording

a set of configurations Qnew that occur during an expan-

sion step. These witnesses are added to τ in the Update

function. If valid edges exist between successive nodes in

Qnew, these edges are added as well. Note that at this

point, the Blind RRT has the same nodes as an RRT in

an obstacle free environment and the RRT edges that are

valid considering obstacles. After performing Nbr Blind RRT

expansion iterations, Blind RRT deletes all invalid nodes in

τ and performs a connection phase for the various connected

components (CC s). Following this, all CC s other than the

CC containing the root are deleted. τ is returned.

Note that one benefit of the standard RRT algorithm is

early termination if coarse coverage is sufficient to solve

the query. This can be achieved here by interleaving tree

construction and evaluation and setting Nbr appropriately.

Blind Tree Expansion. We describe two alternatives when

performing blind expansion. Note that other RRT expansion

algorithms could be modified and used appropriately. The

first performs validity checking for the entire line from qnear
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Algorithm 2 Blind RRT

Input: A root configuration qroot, the initial number of

nodes Nbr, a maximum expanding distance ∆q
Output: A tree τ containing Nbr nodes rooted at qroot

1: τ ← {qroot}
2: for n = 1 . . .Nbr do

3: qrand ← RandomNode()
4: qnear ← NearestNeighbor(τ, qrand)
5: Qnew ← Expand(qnear, qrand, ∆q)
6: τ.Update(qnear, Qnew)
7: end for

8: τ.DeleteInvalidNodes()
9: ConnectCCs(τ)

10: τ.DeleteInvalidCCs()
11: return τ

Fig. 1: RRT Expand expands greedily up to ∆q, qrand, or

an obstacle is hit (a). Blind RRT Expand always expands up

to ∆q distance or qrand while also retaining either all free

witnesses (b) or only the first free witness (c) to return a set

of expansion nodes Qnew.

to qnew (either at a distance ∆q from qnear towards qrand

or qrand itself, whichever is closer), collecting nodes that

are valid along the boundary of Cobst (Figure 1(b)). It adds

all the nodes collected as well as qnew (which itself may

or may not be valid). The second stops at the first validity

change, records the valid node, and directly jumps to qnew

and adds it (Figure 1(c)). The latter skips part of the collision

detection, while the former keeps track of more valid nodes.

It is important to note that nodes contained in Cobst may be

added to the tree if they are found ∆q away from qnear,

but only edges between valid configurations are added to the

tree.

Connected Component Connection. At the end of the

first step, any obstacles found along the expansion may have

caused parts of τ to become disconnected from the root,

yielding multiple CC s in τ . However, we would like to

only have one CC in τ to find a path from the root to

any node within τ . For this, we join pairs of CC s, CC a

and CC b, using RRT-Connect [15] where τa = CC a and

τb = CC b. In the connection step, we first choose CC a

as a random CC , and then choose a target CC , CC b, by

the CC whose centroid is closest to the centroid of CC a.

A nearest neighbor query is performed from the centroid

of CC a to the centroids of the other CC s. It significantly

reduces the nearest neighbor computation, as the number of

CC s is much less than the number of nodes in the tree.

This is used as an approximation scheme in selecting the

closest CC . We have explored a number of other ways to

select CC b and found that this mechanism has the most

consistent results and is the cheapest method to perform [21].

Component connection iteratively selects CC s to connect to

until either one CC is achieved or a maximum number of

failures is reached. After the CC connection phase we retain

only the component containing the root.

B. Probabilistic Completeness

Probabilistic completeness is a desirable property of ran-

domized planners which describes their ability to find a

solution path, assuming one exists, as the number of samples

tends to infinity. In this section, we describe and prove the

probabilistic completeness of Blind RRT. We assume that the

Cspace is ǫ-good [11] for some ǫ > 0.

Theorem 1: Blind RRT is probabilistically complete.

Proof: Given any two configurations qs and qg in the same

connected component of Cfree, a path exists between qs

and qg . If no obstacles are present in the environment, i.e.,

Cfree ≡ Cspace, then an RRT rooted at qs will reach within

ǫ of qg after n0 fixed step expansions of distance ∆q. (i.e.,

a path exists in the tree between qs and qg.) n0 Blind RRT

expansions are also sufficient to reach within ǫ of qg . This

is due to the fact that Blind RRT explores Cspace identically

to an RRT grown in the absence of obstacles because Blind

RRT expansions ignore Cobst.

After Blind RRT removes invalid nodes of the tree, qg exists

in some component of the tree CC g. If CC s ≡ CC g , where

CC s is the component of the tree containing qs, then a path

exists in the tree between qs and qg . If CC s 6≡ CC g, then

Blind RRT uses RRT-Connect to merge CC g with CC s. It

follows from the probabilistic completeness of RRT-Connect

[15] that Blind RRT will connect CC g to CC s to yield a

valid path between qs and qg .

IV. AN IMPROVED RADIAL RRT USING BLIND RRT

In this section, we introduce an improved Radial RRT

framework for parallelizing RRTs which uses Blind RRT as

a subroutine.

A. Algorithm

Radial Blind RRT starts by radially subdividing Cspace

as in Radial RRT [13]. It makes use of a region graph,

which is an abstraction of the different subdivisions of
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Cspace. To subdivide Cspace and construct the region graph,

the algorithm randomly samples Nr points QNr
on a d-

dimensional hypersphere of radius r centered at qroot, where

d is the dimension of Cspace, r is a bound on the growth of

the region, and qroot is the root configuration of the RRT.

Note that this applies to any dimension of Cspace. These

samples that define the subdivision become the vertices of

the region graph. A k-closest connection routine determines

the adjacency of the regions defining the edges of the region

graph. The number of neighbors a region has, and thus the

communication later required, can be tuned by k.

Radial Blind RRT, shown in Algorithm 3, constructs a

Blind RRT in parallel in each region. Each region constructs

a tree of Nbr/p nodes whose growth is bounded to the region,

where Nbr is input as the number of nodes for the tree and

p is the number of processing elements. Most likely, each

region will contain several CCs that need to be connected

back to the root component. This takes place in a global

region connection phase.

Algorithm 3 Radial Blind RRT

Input: A root configuration qroot, the number of nodes

Nbr, a maximum expansion distance ∆q, the number of

processors p, the number of regions Nr, a region radius

r, the number of adjacent regions k
Output: A tree τ containing Nbr nodes rooted at qroot

1: Gr(V, E)← ConstructRegionGraph(Nr, r, k)
2: for all vi ∈ V par do

3: τ ← τ ∪ BlindRRT(qroot, Nbr/p, ∆q, vi)
4: end for

5: τmst ← MinimumSpanningTree(Gr(V, E))
6: for all (vi, vj) ∈ τmst par do

7: ConnectRegions(vi, vj)
8: end for

9: return τ

The region connection phase, described in Algorithm 4,

attempts to connect CC s from neighboring regions. The

neighboring regions found from the region graph allow

for reducing the global communication between processing

elements, thus improving scalability of the approach. Prior to

the region connection phase, a minimum spanning tree of the

region graph is computed so that no cycles are produced in

the tree when connecting regions. Additionally, the minimum

spanning tree provides information as to which neighbors are

closest, and thus there is a higher probability of successful

connection. To reduce the communication overhead in the

region connection phase, we import all necessary information

from the target region Rt, instead of updating the CC
information every time a connection is performed. At the

beginning, we know that none of the CC s in the source

region Rs are connected to the CC s in Rt, so we initialize

two sets: U the unconnected CC s and C the already merged

CC s. Initially, the first contains all Rt CC s and the second

is the empty set. P is a queue containing all the CC s in the

source region, Rs. The goal is to merge U with P without

creating cycles. First, we dequeue a CC , CC local from P

and iterate through the CC s in C, attempting connections

and stopping if one is found. Then, we iterate through the

CC s in U , attempting connections to all of them; if a connec-

tion is made, we update the sets C and U by adding CC local

to C and removing it from U . We perform this operation until

P is empty. Note that connections between CCs from the

same region are not explicitly attempted in this phase. They

have already been attempted in the BlindRRT call for each

region (see Algorithm 3, line 3). However, multiple CC s
may connect to the same remote CC progressively merging

the CC s into one. This procedure not only performs region

connection with reduced communication overhead, but may

also indirectly connect local CC s through the remote CC s.

After this global CC connection step, we may or may not

have connected all CC s of the overall tree back to the root

component. Therefore, we remove all remaining CC s.

Algorithm 4 Connect Regions

Input: Two regions Rs and Rt

1: Pending CC s Queue P ← Rs.GetCCs()
2: Connected CC s C ← ∅
3: Unconnected CC s U ← Rt.GetCCs()
4: while ¬P.IsEmpty() do

5: CC local ← P.Dequeue()
6: for all CC remote ∈ C do

7: if RRT− Connect(CC local,CC remote) then

8: break

9: end if

10: end for

11: for all CC remote ∈ U do

12: if RRT− Connect(CC local,CC remote) then

13: C = C ∪ CC remote

14: U = U\CC remote

15: end if

16: end for

17: end while

Figure 2 shows an example of the different steps of the

parallel algorithm on a simple 2-D environment with p =
4 processors. Figure 2(a) shows the example environment

with regions decomposed. Regions are represented by points

(blue) on the outer sphere. Figure 2(b) shows a Radial

Blind RRT expanded for Nbr/p = 20 expansions. Notice

how Radial Blind RRT ignores and expands through Cobst

covering all of Cspace. Figure 2(c) shows the tree after local

CC connection is performed. New edges are emphasized

by magenta ellipses. Figure 2(d) shows the tree after global

region connection. Again new edges are emphasized with

magenta ellipses.

B. Probabilistic Completeness

In this section, we show two things: the probabilistic

incompleteness of Radial RRT and the probabilistic com-

pleteness of Radial Blind RRT.

Observation 1: Radial RRT is not probabilistically complete

because an obstacle can entirely block exploration of a
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(a) Region Decomposition (b) Blind RRT Expansion (c) Local CC Connection (d) Region Connection

Fig. 2: (a) An example environment with four regions, represented by their points (blue) on the outer circle. (b) Radial

Blind RRT concurrently expanding in the four regions ignoring obstacles as it goes. (c) Radial Blind RRT concurrently and

locally removes invalid nodes of the tree and connects CC s within each region (new edges emphasized in magenta). (d)

Radial Blind RRT connects CCs between regions yielding a final tree.

region, in such a way that connections between adjacent

regions will not be able to cover Cspace, see Figure 3.

Fig. 3: Example of Radial RRT not being able to solve an

example query.

Theorem 2: Radial Blind RRT is probabilistically complete.

Proof: Without loss of generality assume Cfree is a single

connected component. Collectively the Blind RRTs built in

each region will be able to expand and cover all of Cspace

in the initial expansion phase, for the reasons stated in the

proof of Theorem 1. After the local connection phase, Radial

Blind RRT recombines adjacent regions with RRT-Connect.

By the probabilistic completeness of RRT-Connect [15], all

regions will be merged and all components of the tree will be

merged into one. Thus, Radial Blind RRT is probabilistically

complete.

C. Algorithm Analysis

In this section, we present complexity analysis of Radial

Blind RRT as a conceptual proof of our claim for scalability.

Recall that the original RRT algorithm as presented in [16]

requires O(N2) time (in the worst case) to construct a tree

with N configurations. This analysis assumes a brute force

strategy for nearest neighbor queries, as will our analysis. We

note to the reader that more efficient mechanisms for nearest

neighbor queries exist in the literature, e.g., KD-trees, but for

simplicity of analysis we assume worst case computation.

The Radial Blind RRT given in Algorithm 3 can be broken

down into four phases: region graph construction, Blind RRT

construction, minimum spanning tree (MST) computation,

and region connection. The overall time complexity of the

algorithm can be described in terms of these four phases as:

T = Trg + TBRRT + TMST + Tc

where the total time T is the sum of the cost Trg of region

graph construction for a given environment subdivided into

nr regions with each region having d neighbors, the cost

TBRRT of constructing nr sequential Blind RRTs, the cost

TMST of computing an MST of the region graph, and the

cost Tc of connecting neighboring CC s between adjacent

regions given from the MST. In our analysis, p refers to the

number of parallel processing elements. Please note that our

formulation assumes a uniform cost of constructing subtrees

in each region; this assumption may fail in a situation where

the regions are non-uniform.

In the first phase, we construct the region graph of nr

vertices and dnr edges. The dominant factor in constructing

the region graph is the d-nearest neighbor search, with

O(n2
r log d) complexity assuming a brute force search. Each

processor p will generate nr

p
regions. So in parallel con-

structing the dnr edges will take O(
n2

r
logd

p
) time.

The second phase of the algorithm constructs a Blind RRT

in each region of size Nbr = N
nr

, where N is the expected

number of nodes for tree construction. Since the complexity

of sequential Blind RRT is equivalent to the complexity of

RRT, the total work for this phase is O(( N
nr

)2). Assuming

uniform distribution of work across the processing elements,

the time complexity is O(( N
nr

)2/p).
Most inter-processor communication occurs when con-

necting regional subtrees in phase four. However, this com-

munication is managed by reducing the region graph to a

MST in phase three, which will require a time complexity

of O(dnr log nr

p
) [9]. Then, phase four will require O(cnr) in-

stantiations of RRT-Connect, each requiring O(N2
rrtc) work,

where c is the maximum number of CC s within a region

and Nrrtc is the maximum number of nodes allotted per

RRT-Connect tree. Upon parallelization, phase four requires

O(
cnrN2

rrtc

p
) time.
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(a) 2-D Clutter (b) 2-D Grid (c) 2-D Maze (d) 3-D Maze

Fig. 4: (a), (b), and (c) are 2DOF problems, and (d) is a 6DOF problem. All RRTs begin expansion from the origin of the

environment.

We assume that N >> nr and Nrrtc >> nr, so the final

time complexity for Radial Blind RRT can be reduced to:

T = O((
N/nr

p
)2) + O(

cnrN
2
rrtc

p
)

implying that the time spent per phase can vary based upon

the success in covering the space with fewer CC s, i.e., lower

connection time.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we analyze Radial Blind RRT under two

different perspectives. We compare its effectiveness to that

of sequential RRT and Radial RRT. Also, we present the

scalability of the algorithm against Radial RRT. Section V-

B compares the methods in a few environments showing the

efficiency of Radial Blind RRT exploration, and Section V-C

presents the performance of Radial Blind RRT with different

processor counts. Recall, the goal of this algorithm is to have

a scalable RRT useful for motion planning. Standard parallel

RRT methods do not scale well, whereas Radial RRT does.

However, Radial RRT is unable to cover the planning space

as well as RRT. Thus, the goal of this work is to show that

Radial Blind RRT allows both scalability, like Radial RRT,

and good coverage, comparable to RRT.

A. Experimental Setup

Experiments were conducted on a Linux computer center

at Texas A&M University. The cluster has a total of 300

nodes, 172 of which are made of two quad core Intel Xeon

and AMD Opteron processors running at 2.5GHz with 16

to 32GB per node. The 300 nodes have 8TB of memory

and a peak performance of 24 Tflops. Each node of the

cluster is made of 8 processor cores, thus, for this machine

we present results for processor counts in multiples of 8.

All methods were implemented in a C++ motion planning

library which uses the Standard Template Adaptive Parallel

Library (STAPL), a C++ parallel library [4], [23]. Our code

was compiled with gcc-4.5.2.

All the methods use Euclidean distance as the distance

metric, straight-line local planning, brute force neighborhood

finding, and collision detection tests as validity tests. Four

different environments were used: 2-D Clutter (Figure 4(a)),

2-D Grid (Figure 4(b)), 2-D Maze (Figure 4(c)), and 3-D

Maze (Figure 4(d)).
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Fig. 5: Comparing coverage after performing RRT, Radial

RRT, and Radial Blind RRT. All results are normalized to

RRT.
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B. Map Coverage

In this section, we compare each method’s ability to map

space by analyzing the coverage of the generated trees. We

approximate coverage with a sample size of 250 uniformly

sampled nodes. Since Radial Blind RRT deletes nodes at two

points of its execution, it is not effective to use a desired final

number of nodes. Instead, we fixed the parameter Nbr to be

500. Another parameter that plays an important role is the

number of CC connection attempts in the local phase. Given

that for each environment the number of CCs will vary, we

set the number of CC connection attempts to be five times

the number of CC s after the initial expansion phase. This

number was chosen according to initial testing results which

demonstrated that a high number of CC connection attempts

only increases the number of nodes but does not connect the

tree significantly better, making the method rather slow. To

have a fair comparison between methods, for each random

seed, we ran Radial Blind RRT first and recorded the number

of nodes, Ni. Then, we took the number of nodes to be the

Ni for both RRT and Radial RRT. Radial Blind RRT and

Radial RRT were tested with Nr = [1, 2, 4, 8]. Coverage

results are averaged over 10 random seeds and normalized

to RRT. Results are shown in Figure 5.

Radial Blind RRT results in better map coverage compared

with Radial RRT, except in one case (2D-Grid with one

region) in which Radial Blind RRT was comparable to Radial

RRT. Moreover, in most of the 2D environments Radial

Blind RRT has higher or comparable coverage compared

to RRT. In higher dimensional cases (3D-Maze), we believe

radial decomposition hampers exploration for a fixed number

of nodes. However, we note that Radial Blind RRT still

performs better than Radial RRT in these cases. We will look

at improving these results for higher dimensional problems

in the future. From these results, we can see that Radial Blind

RRT shows usefulness in planning over Radial RRT alone,

and in some cases, e.g., 2D homogeneous environments,

Radial Blind RRT actually outperforms RRT.

C. Parallel Performance

We evaluated Radial Blind RRT on the Linux cluster

varying the processor count from 1 to 16. We compare Radial

Blind RRT to Radial RRT to see differences in performance

as the number of regions increases. In these experiments,

the number of cores is equal to the number of regions. It is

important to note that Radial RRT’s and Radial Blind RRT’s

trees differ as the region count differs. We carried out the

experiments in the 2-D Clutter, 2-D Grid, and 3-D Maze

environments. The initial input sample size was fixed at 1600.

Each experiment was run five times and the average runtime

of the longest running processor was computed. Results are

shown in Figure 6.

We observe that the relative performance of each algorithm

depends on the environment. When Radial RRT requires

more time, many failed attempts occur as regions restrict the

expandability of the tree. In these cases, more computation

time is spent attempting expansions as the tree attempts to

grow to a specific size. When Radial Blind RRT requires
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Fig. 6: Execution times of Radial RRT and Radial Blind RRT

in (a) 2-D Clutter, (b) 2-D Grid, and (c) 3-D Maze.

more time, more work is spent in attempting to connect

disconnected components. The tree size for Radial Blind

RRT is larger, so we expect that Radial Blind RRT requires

more work from an initial sample set. Considering runtime,

we can see that even though Radial Blind RRT does more

work, as it explores space better, running times are still

comparable. Additionally, as the number of regions and

processors increases, the running times decrease. We would

like to explore this effect at larger core counts in the future

and perform scaling experiments with a fixed region count to

see how our implementation scales on distributed platforms.
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VI. CONCLUSIONS

We show a scalable Radial Blind RRT that subdivides

Cspace, builds an RRT in each region by ignoring obstacles,

and then connects disjoint CC s. After the local computation,

it attempts connections across CC s in different regions. As

a post-processing step, it removes any parts of the graph that

could not be connected back to the root. In the experiments,

we show that Radial Blind RRT scales well while effectively

covering the space as opposed to Radial RRT which does not

cover the space well. In future work, we will analyze the CC

selection policy to optimize it and implement a sequential

version.
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