
  

 

Abstract—In this paper, we propose a Bayesian conditional 

probability with latent-structure model for context-aware ac-

tivities of daily living (ADL) recognition. The proposed ADL 

recognition system takes RGBD sensor (Microsoft Kinect) as the 

input device. In ADL recognition, the object interacted with 

human is a sort of important context as well as human action. 

To better understand the activity, we model the interacted ob-

ject and the human action together. As far as we known, many 

related works failed to take into account the relation between 

the context information and human action features, instead, 

most of them only consider the human action features, causing 

ambiguity in classifying the activities with similar human ac-

tions. In this paper, the context information and human action 

features are taken into consideration, concurrently, so that the 

performance of recognition can be greatly improved from pre-

vious works as has been demonstrated in our experimental 

results. 

 

I. INTRODUCTION 

Recent years, as the RGBD sensor becomes more and more 

epidemic, such as Microsoft Kinect and ASUS Xtion, it has 

attracted a lot of attention on taking the advantage of depth 

information for action recognition and object detection. Now 

we can easily capture the skeleton feature and depth image 

from RGBD sensor via OpenNI [1] or Microsoft Kinect SDK 

[2]. How to exploit these information to build a highly dis-

criminate activity recognition model is what we mostly con-

cern about.  

Automatically recognizing human activity is essential in 

many applications, such as human nursing robot, and daily 

life logger for health care. For instance, if the robot can un-

derstand the user working on computer, it will be able to 

remind the user to take a rest when the user focuses himself 

on the computer for too long. However, human activities are 

different from human actions, because: 1) Human actions 

usually take short period of time, and don’t contain semantic 

meanings, whereas human activities often last for a long time, 

and contain semantic meanings, such as drinking water, 

brushing teeth, and cooking. 2) One activity may contain two, 
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or three actions. For example, the activity of drinking water 

consist of raising of hand, approaching of hand to mouth, and 

lowering of hand, and 3) In addition, human activities usually 

involve special objects. As shown in Fig. 1, the user is 

working on a computer, and the special objects here include 

chair, table, and computer. The specific combination of dif-

ferent objects is defined as “context information” in our work. 

Here, we focus on recognizing activities of daily living 

(ADLs), and define the ADL recognition with specific con-

text as context-aware ADL recognition.  

In this paper, we propose an approach combining the con-

text information as well as human action features. With the 

context information, it is much more confident to classify 

different activities but with similar human action features.  

For example, “drinking water” and “making phone call” have 

similar human actions features, such as “raising of hand”, 

“approaching of hand to head” and “lowering of hand”. 

However, the context information of each is totally different 

from one the other; for instance, the cup is necessary when 

drinking, whereas a phone is necessary when a phone call is 

being made. Actually, in our daily living, many activities 

have similar human actions but with different specific context 

information. Alternatively, some activities have similar con-

text information but with different human action features, like 

“rinsing of the mouth” and “drinking water”. Both activities 

involve the same context information, but the user doesn’t 

always need bend him-self down when drinking water. As far 

as we known, in ADL recognition, context information and 

human action features are both important, and they are not 

one less. Thus, our approach models them together for ADL 

recognition.  

The rest of the paper is organized as follows. Section II 

presents the related work and some state-of-the-art recogni-

tion models. Section III describes the context-aware ADL 

recognition. Section IV discusses about the advanced context 
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Fig. 1. The snapshot of working on computer of RGBD data from Kinect. 
We detect context information on RGB image, and extract skeleton 

features as well as Depth Histogram of Oriented Gradients (DHOG) 

features on depth image.  
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Fig. 2. We divide the whole depth image into blocks. And compute the 

histogram of oriented gradients for each block. The bounding boxes of  

body parts are computed according to joint positions, and add up the 

histograms of the blocks whitin the bounding box.  

information extraction. The dataset and experimental results 

are presented in section V. Finally, conclusions are given in 

Section VI. 

 

II. RELATED WORK 

From the ubiquitous computing community, there have 

been a fair amount of researches and works on activity 

recognition, such as Philipose, et al. [3]. In this field, many  

works address the problem from the view of “life-logging”, 

such as Blum, et al. [4].  Most approaches ignore visual cues, 

but focus on alternate sensors such as RFID tags or accel-

erometers instead. This requires a fairly involved effort for 

instrumenting both the observer and the environment. One 

may argue that it is more practical to instrument the observer 

than instrument both the observer and environment, for ex-

ample, Pirsiavash and Ramanan [5] suggest wearable camera 

may be a choice to place on observer, and observe the front 

scene. 

There is a rich history of activity recognition in the vision 

community. One common approach is to use space-time 

interest point to model the features in video, which is intro-

duced by Laptev [6]. And many similar works like [7, 8]. 

However, this approach is only capable of classifying, rather 

than detecting activities. In addition, this approach often 

needs to consume a lot of time. Despite only 2D image fea-

tures are extracted from the video, more and more approaches 

have attempted to capture skeleton features and depth image 

features as RGBD sensors have been widely used. Sung, et al. 

[9] propose to use a RGBD sensor (Microsoft Kinect) as the 

input sensor, and compute a set of features based on human 

pose, human motion, RGB image and depth information. 

Although this approach has achieved quite good performance, 

the result is still unsatisfactory when two activities involving 

similar human postures. As many human daily activities 

involve special objects, the interacted objects and other sur-

rounding objects become a vital cue in human-object inter-

action ADL recognition [10, 11]. Pirsiavash and Ramanan [5] 

prove the essential of the objects near the observer, they only 

use the observed objects to model the temporal representation 

for the histogram of objects. However, due to use the weara-

ble camera to observe the surrounding environment, it lacks 

the feature of human-self action. 

Object detection has a long history in the field of computer 

vision. Dalal and Triggs [12] introduce the histogram of 

oriented gradients (HOG), which has been the most widely 

used approach on object detection. To deal with the occlu-

sions and deformable objects in real environment,   

Felzenszwalb, et al. [13] propose a discriminative part-based 

model (DPM), which detects the whole object as well as the 

parts of the object. Within these years, the RGBD sensor is 

also used for object detection. Yu, et al. [14] propose a hier-

archical representation with scarcity for RGBD object 

recognition approach. Lai, et al. [15] introduce the approach 

using 3D reconstruction. 

To capture the temporal relations in the observation se-

quences of the input video, the recognition model should be 

well defined. Morency, et al. [16] propose a discriminative 

approach named Latent-Dynamic Conditional Random Field 

(LDCRF) model for gesture recognition. This approach in-

corporates hidden state variables which are able to model the 

sub-structure of a sequence and learn dynamics between class 

labels. Song, et al. [17] extend the LDCRF model for mul-

ti-view action detection. 

Our context-aware ADL recognition model is inspired by 

the excellent performance of DPM [13]. Although part-based 

detector has high time complexity, we can just detect the 

region near hand and foot rather than the whole image, since 

the region of interest (ROI) can be found with respect to 

human skeleton features. To emphasize the importance of the 

sub-activity model, LDCRF is employed to model our human 

action features. Inspired by Li, et al. [18] and Gupta, et al. 

[10], we model the human action and context information 

using the conditional probability. For the detail, our approach 

is introduced in Section III, IV, and is evaluated in Section V. 

 

III. CONTEXT-AWARE DAILY ACTIVITY RECOGNITION  

A supervised learning approach is employed where we 

collect labeled data as ground-truth as training data. There are 

12 functional activities, such as talking on the phone (TP), 

writing on whiteboard (WW), drinking water (DW), rinsing 

mouth with water (RM), brushing teeth (BT), wearing 

contact lenses (WL), talking on chair (TC), relaxing on chair 

(RC), cooking with chopping (CC), cooking with stirring 

(CS), opening pill container (OC), and working on com-

puter (WC). Besides, another 2 activities are used for recog-

nizing the neutral activity, including standing still and ran-

dom actions. The input of our system are RGBD images from 

a Kinect sensor, from which we extract the features. Sung, et 

al. [9] introduce the features about the human actions, in-

cluding body pose features, hand position, motion infor-

mation as well as body shape features. However, combing 

these features results in a large dimension. We don’t use 

motion feature and body pose features, because the difference 

of skeleton joints motion are not quite obvious in activities of 

daily living and different users may have different poses 

when performing the same activity. In addition, the foot po-

sition feature is also extracted, which similar to the hand 
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position feature. Here, HOG features are extracted for depth 

image. The context information is extracted from object de-

tection using DPM [13], which is the state-of-the-art ap-

proach to object detection problem. A conditional random 

field-like model is trained to capture the relations among 

activity, action and context, including activity-action relation, 

action-context relation, and activity-context relation.  

A. Human Action Features 

Hand position. Hand is the most common body part per-

forms action in activities of daily living. And as an 

end-effector that interacts with object directly, hand plays an 

important role. We compute the relative positions of left and 

right hands with respect to head position and torso position, 

respectively.  

Foot position. Body pose can be inferred from relative foot 

position with respect to torso position. For example, it can be 

inferred from the relative positions of feet whether the user is 

standing or sitting. Thus, we compute the relative positions of 

both feet, respectively. 

HOG feature. Although the relative positions of hand and 

foot describe human’s pose, we still need some features to 

describe the shapes of body parts. Here, the depth image is 

regarded as gray scale image from which HOG features are 

extracted. HOG feature descriptors, which gives 32 features 

in a block that count how often certain gradient orientations 

are seen in specified bounding boxes of an image, is widely 

used in human detection. To boost the feature extraction, 

firstly, the whole depth image is divided into blocks with 8 

pixels high and 8 pixels wide, and compute the HOG feature 

for each block, as shown in Fig. 2. Secondly, the regions of 

body parts are located in terms of joint positions, including 

head, left arm, right arm and torso, and add up the features of 

every block in the body part region. Thirdly, the histogram 

which represents the HOG feature is normalized between 0 

and 1. 

B. Context Information 

The context information is extracted from the RGB image. 

It is the combination of specific objects which are detected 

using DPM [13]. Activities often involve specific context 

information, as shown in Table I. In normal object detection 

problem, it is a hard task to detect the location and the cate-

gory of the object, which also consumes a lot of time. But in 

our work, the location is limited to the neighborhood of the 

region of body part. That will reduce much search space for a 

sliding window method in object detection.  

C. Model Formulation 

The object categories and the human actions are estimated, 

simultaneously. Then the activity can be inferred base on the 

object categories and human actions. We model the relations 

as shown in Fig. 3.  

To simplify our model, we assume the activity A and 

combination of objects 1 2{O , O , ..., O }mO are conditional 

independent under the observation of object
O

x , and the 

TABLE I.  OBJECTS AND ACTIVITIES OF DAILY LIVING 

Objects 
Activities of Daily Living 

TP WW DW RM BT WL TC RC CC CS OC WC 

Table 0 0 0 0 0 0 0 0 1 1 0 1 

Chair 0 0 0 0 0 0 1 1 0 0 0 1 

Computer 0 0 0 0 0 0 0 0 0 0 0 1 

Cup 0 0 1 1 1 0 0 0 0 0 0 0 

Teeth 

brush 
0 0 0 0 1 0 0 0 0 0 0 0 

Phone 1 0 0 0 0 0 0 0 0 0 0 0 

White 

board 
0 1 0 0 0 0 0 0 0 0 0 0 

Container 0 0 0 0 0 0 0 0 0 0 1 0 

Contact 

lenses 
0 0 0 0 0 1 0 0 0 0 0 0 

Bucket 0 0 0 1 0 0 0 0 0 0 0 0 

Talking on the phone (TP), Writing on whiteboard (WW), Drinking water (DW), Rinsing mouth with water (RM), Brushing teeth (BT), Wearing contact lenses (WL), Talking on chair (TC), Relaxing on 
chair (RC), Cooking with chopping (CC), Cooking with stirring (CS), Opening pill container (OC), and Working on computer (WC) 

1: The activity involves the object 

0: The activity doesn’t involve the object 

Fig. 3. Graphical Model for activity recognition. The gray nodes represent 

observations, O node represents detected object categories and A node 
represents activity. 

XO 

O 

A 

XH 
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observation of human action H
x . The joint probability is 

decomposed using conditional independence relations: 

   , | ( | ) ( | ),
H O H O

P A P A PO x x x O x   (1) 

where ( | )
H

P A x computes the candidates of the activity 

recognition according to the human actions, and ( | )
O

P O x

computes the result of object detection for the surrounding 
objects.  

We consider the following terms.  

 ( | )
O

P O x : The context term is modeled by detecting 

the probability of object categories given the obser-

vation Ox . Thanks to the skeleton model from depth 

image, joint positions of the user can be obtained. 
Thus we only consider the nearby regions around the 
user using a mask to crop the whole image. K object 
models are used to detect the objects in every frame, 
and score the pixel at particular position (r, c) as well 
as scale s. So the score of the kth object model in frame 
i at the particular location and scale can be written as 
(2). The maximum score of the kth object model at the 

particular (r, c, s) in frame i  is regarded as the score of 

the kth object model in frame i . The score of the kth 

object in the whole observation can be represents as 
(3), which is the average score of the object in all 
frames. Then, the score of the kth object is converted 
to conditional probability using (4). We make a nor-
malized probability vector p as (5), which includes the 
detection result for each object. At last, the probability 
of context is computed by Bhattacharyya distance [19] 

as shown in (6), where 
A

N  represents the normal 

vector of the context information according to Table I 
for activity A.  

 g( ) score ( )max
k

i

r,c,s

k,i r,c,s   (2) 

 
1

G( ) g( , )
| | i T

k k i
T 

    (3) 

 
G (k)

( | )=0.5+0.5
max G( )

k O

i K

P O
i



x   (4) 

 
1 2

{ ( | ), ( | ), ..., ( | )}
O O K O

P O P O P Op x x x   (5) 

 
( ) ( )

( | ) ln( )
O

i K

i i

A
P



  O x Np   (6) 

 ( | )
H

P A x : We model this human action term using 

latent-structure model as shown in Fig. 4. Here the 

bottom depth images represent the observations
H

x . 

The system learns a mapping between a sequence of 

observations , , ...,
1 2

{ }
H n

x x xx and a sequence of la-

bels , , ...,
1 2

{y y y }
n

y . Each 
j

y  is a class label for the 

jth frame of the depth image sequence and is a member 
of a set y of possible class labels. Each frame obser-

vation 
j

x is represented by human action feature 

vector ( )
d

j
x R  . For each sequence, we also as-

sume a vector of “sub-structure” variables

1 2 m
{h , h , ..., h }h . This sub-structure can be re-

garded as sub-activity in our problem, and an entire 
activity is consist of several sub-activities. These 
variables are not observed in the training examples 
and will therefore form a set of hidden variables in the 
model. With the definition above, we model the term 
as (7), which is first proposed in [16] named La-
tent-Dynamic Conditional Random Field (LDCRF). 

 

( | ) ( | )

                 ( | , , ) ( | , )

,H H

H H

P A P

P P



 




h

x y x

y h x h x
  (7) 

where is the set of parameters of the model. 

 

IV. ADVANCED CONTEXT INFORMATION 

In the previous section, we manually assign the involved 

objects to the related activities. It will be too naïve when the 

more and more objects are involved as the activity become 

more and more complex. In this section, we introduce an 

advanced method to present the relations between objects and 

activities. 

Latent semantic indexing (LSI) [20] is a method widely 

used in the field of Information Retrieval.  LSI is based on the 

principle that words occur in the same contexts of a document 

tend to have similar meanings.   

Here, the objects are regarded as indexing terms, and the 

activities are regarded as context of the document. LSI is 

employed to extract the latent relations of objects by estab-

lishing associations between those objects that occur in sim-

ilar activities. For example, when the user is brushing teeth, 

the necessary context information is the combination of 

toothbrush, and cup, then we assume toothbrush and cup have 

similar meaning. However, the cup is also involved in the 

activity of rinsing mouth with water. Thus we concern 

whether the toothbrush relates to rinsing mouth with water 

latently. Actually, the user often brushes teeth and rinsing 

mouth with water in the bathroom, and the toothbrush can be 

 
Fig. 4. We model the human action feature using latent-struct model. The 

entire activity can be divided into sevral sub-activities. 
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observed in both situations.   

The content of Table I is transfer to matrix A, and de-

composed using Singular Value Decomposition (SVD) as 

shown below, 

 
T

A UDV  (8) 

where U is a unitary matrix, D is a diagonal matrix with 

sorted eigenvalues, and 
T

V  is a conjugate matrix. The rank 

of D is r. Rank-reduce is applied to set the eigenvalues to 0 

whose value is under a threshold, and thus the rank of D 

becomes k, written as
k

D . Then matrix A is converted to 

matrix 
k

A as shown below. 

 
T

k k
A UD V  (9) 

 We use
k

A as the new context information matrix. 

 

V. EXPERIMENTS 

A. Dataset 

Sung, et al. [9] provide Cornell Activity Datasets (CAD-60) 

recorded by Microsoft Kinect with RGB images, depth im-

ages and skeleton data. The dataset includes 14 activities 

performed by 4 different subjects. Among the activities, there 

are 12 functional activities, and 2 activities for recognizing 

the neutral activity. These activities are common in our daily 

living, like brushing teeth, drinking water and talking on the 

phone. Shown in Table II, the length of a collection is be-

tween 400 and 2000 frames. The data was collected in dif-

ferent parts of regular household with no occlusion of arms 

and body from the view of sensor. We split each activity into 

150 to 200 frames, and use leave-one-out cross validation to 

train and test our model. 

It is difficult to train a reliable object detection model even 

though the state-of-the-art DPM is employed. Because the 

objects interacted with human during the activity are highly 

occluded, and have arbitrary orientations. So, we collect the 

cropped object image among part of CAD-60 dataset, which 

are used for training. Besides, we obtain more images from 

Google image search as our positive samples, and use some 

negative data from INRIA and CALTECH dataset.  

B. Experimental results 

We compare our Bayesian conditional probability model 

with Hierarchical Maximum Entropy Markov Model 

(HMEMM) [9]. Different settings are evaluated to show the 

outstanding performance of involving context information 

and latent-structure model. Table III shows the overall aver-

age performance of our approach with different settings and 

HMEMM. Since the original work of HMEMM aims to 

classify un-segmented data, so we only compare with it over 

un-segmented data. A sliding window method is applied with 

TABLE III.  OVERALL AVERAGE OF DIFFERENT APPROACH 

Approach Pre-segmented Non-segmented 

Prec. Rec. Prec. Rec. 

Context+LDCRF 95.4 95.3 90.1 89.5 

LSI Context+LDCRF 95.3 94.1 88.4 89.1 

Context+CRF 92.5 91.3 80.4 80.3 

LDCRF 87.4 86.7 83.1 80.4 

HMEMM N/A N/A 84.7 83.2 

 

Fig. 5. Confusion matrix of Context+LDCRF approach for pre-segmented 

data and non-segmented data. 

TABLE II.  STATISTIC OF DATA LENGTH 

Activity name mean of length 

(frames) 

std. dev. of length 

(frames) 

Talking on the phone 1500 200 

Writing on whiteboard 1500 100 

Brushing teeth 1350 300 

Cooking (stirring) 1200 200 

Working on computer 1300 50 

Rinsing mouth with water 1500 100 

Wearing contact lenses 400 50 

Relaxing on a chair 1300 200 

Opening a pill container 400 200 

Drinking water 1500 100 

Cooking (chopping) 1600 200 

Talking on a chair 1400 300 

Still 1000 100 

Random 1900 200 
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100 frames long window size when testing un-segmented 

data. After involving the context information, the precision 

and recall are both improved about 5%. Comparing with the 

LDCRF setting and CRF setting, the improvement is re-

markable. However, not all objects can contribute to improve 

the performance of the ADL recognition, for example, con-

tact lens and teeth brush are too small to be detected using 

DPM, and these kinds of activities are mainly recognized by 

human’s actions. In our approach, the human action domi-

nates the result of activity recognition, the context infor-

mation plays a role of supporter to refine the result of ADL 

recognition. 

We evaluate the approach with LSI, however, the perfor-

mance is not higher than that without LSI, even lower in 

several cases. Because the activities in the dataset don’t in-

volve very similar combination of objects, and in the most 

case, the activity only involve one object according to Table I. 

LSI needs more similar combination of objects associated 

with the different activities. 

In activities of daily living, many of them are quite similar 

on the view of human actions. Such as talking on the phone 

and drinking water. In our approach, the context information 

is taken into consideration. Fig. 5 shows the confusion matrix 

of our recognition result for pre-segmented data and 

non-segmented data. From the results of confusion matrix, 

the similar human action but with different context infor-

mation, such as brushing teeth and talking on the phone, can 

be distinguished well in our experiment. As the activities 

involving specific objects, like working on computer and 

writing on white board, they can be recognized at a high 

accuracy. At the same time, the activities that have similar 

context information but with different human actions can be 

also classified, due to our latent structure human action 

model. 

 

VI. CONCLUSION 

In this paper, we considered the problem of ADL recogni-

tion in home environment. The RGBD sensor (Microsoft 

Kinect) is used as the input sensor, which is inexpensive to 

build applications like human nursing robot, and daily living 

logger for health care. We presented a Bayesian conditional 

probability model which combining DPM and LDCRF. Our 

approach involves context information in activity recognition, 

which is different from the traditional activity recognition 

method only concerns human actions. During inference, our 

algorithm exploited the nature of human-object interaction in 

activities to classify the category of the activity. In our ap-

proach, the human action dominates the result of activity 

recognition, the context information plays a role of supporter 

to refine the result of ADL recognition. We tested our algo-

rithm extensively on twelve different activities performed by 

four different people with different objects around the people. 

It achieves good recognition performance in both inter-user 

and intra-user.  
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