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Abstract— In this paper, we propose a novel method for
fast limit cycle walking using active control of a wobbling
mass. Limit cycle walkers achieving energy-efficient walking
have been developed in the last decade. Many researchers have
recently studied methods for improving walking speed of limit
cycle walkers. In human walking, humans swing their arms
according to walking phases and the motion is a regularly
symmetric motion about the torso. We consider that this motion
is an active up-and-down motion for a mass and improves biped
walking speed. We numerically and mathematically show that
a biped robot achieves fast limit cycle walking by the proposed
method.

I. INTRODUCTION

Biped robots can easily change walking directions even

in narrow spaces and walk on various environments. These

properties are excellent as mobile robots and we thus want

to develop a biped robot that achieves fast, energy-efficient

and robust dynamic walking anywhere.

Many researchers have studied biped robots that achieve

robust dynamic walking in uneven terrains and stairs [1],

[2], [3]. Biped robots achieving energy-efficient walking also

have been studied in the last decade. One of the approaches

is active walking based on energy-efficient passive dynamic

walking [4] and this walking is called limit cycle walking

[5], [6], [7], [8], [9], [10].

Limit cycle walkers achieve more energy-efficient biped

walking than many recent biped robots using their own

dynamics and small amount of energy [11]. Methods for

improving walking speed of limit cycle walkers have also

been studied since their walking speed are, generally, slower

than those of many recent biped robots (e.g., ASIMO [1],

PETMAN [3]).

Asano et al. have shown fast limit cycle walking using

effects of arc-feet [12], and they have also shown fast limit

cycle walking using parametric excitation mechanism [13].

Hobbelen et al. have developed a limit cycle walker with

ankle springs [14], [15], [16], and this limit cycle walker has

achieved high-speed walking using posture of the upper-body

[15]. Hanazawa et al. have shown that a biped robot has more

appropriate ankle impedance for high-speed walking by the

ankle springs and inerters [17], [18], and they also developed
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Fig. 1. Analogy of swinging arms and wobbling mass

a limit cycle walker with ankle springs and inerters [19]. This

walker has achieved fast limit cycle walking by appropriate

ankle impedance for high-speed walking due to the ankle

springs and inerters.

Although these approaches are effective for increasing

walking speed, we want to achieve a more high-speed limit

cycle walker by the conventional methods in combination

with novel other methods. To achieve a more high-speed

limit cycle walker than conventional limit cycle walkers, we

must thus develop a novel method that is very different from

the conventional methods for improving walking speed.

We consider that up-and-down motions of a wobbling

mass during walking improve walking speed as the method.

Rome et al. have shown that walking performance of humans

with a heavy backpack is improved by up-and-down motions

of the backpack using elastic elements [20]. Tanaka et al.

have shown increasing walking speed of a combined rimless

wheel that can be achieved by using up-and-down motions

of a wobbling mass [21]. We also notice that swinging arms

in human walking are similar to the up-and-down motions

of a wobbling mass when we observe human walking from

sagittal plane (i.e., 2D-plane) as shown in Fig. 1. This active

motions are not an irregular pattern but a regular pattern

according to walking phase. Moreover, humans change the

amplitude of the swinging arms according to walking speed,

and this amplitude is small in slow walking and big in fast

walking.

We thus strongly infer that the regular active up-and-down

motions of a wobbling mass like swinging arms improve

walking speed. In this paper, we propose a novel method for
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Fig. 2. Model of biped robot with upper-body and wobbling mass

improving walking speed using active control of a wobbling

mass. We show the validity of the proposed method through

numerical simulations and mathematical analyses.

II. MODEL OF BIPED ROBOT

A. Dynamic equation

Fig. 2 shows the model of a biped robot with arc-feet and

an upper-body that consists of a torso frame and wobbling

mass. The wobbling mass can move up and down with

respect to the torso by the actuator. This robot also has two

actuators for active control of the upper-body and swing-leg.

Dynamic equation of the robot is given by

M(q)q̈ +C(q, q̇)q̇ +G(q) = S1u+ Jc(q)
Tλ, (1)

where q = [θ1, θ2, θ3, lb, x1, z1]
T is the generalized

coordinate vector, M(q) ∈ R
6×6 is an inertia matrix,

C(q, q̇) ∈ R
6×6 is a Coriolis and centrifugal force matrix,

G(q) ∈ R
6 is a gravitational vector, u = [u1, u2, u3]

T

is an input vector, S1 ∈ R
6×3 is the driving matrix and is

detailed as

S1 =

















0 −1 0
1 0 0
−1 1 0
0 0 1
0 0 0
0 0 0

















. (2)

Jc(q) ∈ R
N×6 is a Jacobian matrix and is determined

according to the constraint conditions of the robot, N is the

number of constraint conditions. λ ∈ R
N is a constraint

force vector given by

λ=−X(q)−1(Jc(q)M(q)−1Γ(q,q̇,u)+J̇c(q, q̇)q̇), (3)

X(q)=Jc(q)M(q)−1Jc(q)
T, (4)

Γ(q,q̇,u)=S1u−C(q, q̇)q̇ −G(q). (5)

B. Constraint conditions

In this paper, we analyze limit cycle walking with ac-

tive control of up-and-down motions of a (unlocked) wob-

bling mass and a mechanically locked wobbling mass to

show effectiveness of the proposed method. We also show

Jc(q), J̇c(q, q̇) in each case.

1) Unlocked wobbling mass case: Since the contact point

of the biped robot is constrained with ground, constraint

equations are expressed as

R(cos θ1 − 1)θ̇1 + ẋ1 = 0, (6)

−R sin θ1θ̇1 + ż1 = 0. (7)

From these equations, we obtain Jc(q) ∈ R
2×6 and

J̇c(q, q̇) ∈ R
2×6 as

Jc(q)q̇ =

[

R(cos θ1−1) 0 0 0 1 0
−R sin θ1 0 0 0 0 1

]

q̇ = 02×1, (8)

J̇c(q, q̇) =

[

−Rθ̇1 sin θ1 0 0 0 0 0

−Rθ̇1 cos θ1 0 0 0 0 0

]

. (9)

2) Locked wobbling mass case: When the wobbling mass

is locked mechanically (i.e., lb = l0), we obtain the following

constraint equation:

l̇b = 0. (10)

From (6)(7)(10), Jc(q) ∈ R
3×6 and J̇c(q, q̇) ∈ R

3×6 are

expressed as

Jc(q)q̇ =





R(cos θ1−1) 0 0 0 1 0
−R sin θ1 0 0 0 0 1

0 0 0 1 0 0



 q̇ = 03×1,

(11)

J̇c(q, q̇) =





−Rθ̇1 sin θ1 0 0 0 0 0

−Rθ̇1 cos θ1 0 0 0 0 0
0 0 0 0 0 0



 . (12)
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C. Impact equation

We assume that the collision of the swing leg with ground

is inelastic and instantaneous. We can derive the velocity

immediately after the impact by solving the impact equations

described in the following [22].

1) Unlocked wobbling mass case: Since the contact point

of the biped robot is constrained with ground at the collision

of the swing leg, constraint equations are expressed as

l1 cos θ1θ̇1 + ((R− l1) cos θ2 −R)θ̇2 + ẋ1 = 0, (13)

−l1 sin θ1θ̇1 + (l1 −R) sin θ2θ̇2 + ż1 = 0. (14)

From these equations, the instantaneous constraint matrix

JI(q) ∈ R
2×6 at the unlocked wobbling mass case is given

by

JI(q)=

[

l1 cos θ1 (R−l1) cos θ2−R 0 0 1 0
−l1 sin θ1 (l1−R) sin θ2 0 0 0 1

]

. (15)

2) Locked wobbling mass case: We obtain the following

constraint equation when the wobbling mass is locked me-

chanically (lb = l0):

l̇b = 0. (16)

From (13)(14)(16), JI(q) ∈ R
3×6 at the locked wobbling

mass case is given by

JI(q)=





l1 cos θ1 (R−l1)cos θ2−R 0 0 1 0
−l1 sin θ1 (l1−R)sin θ2 0 0 0 1

0 0 0 1 0 0



 . (17)

Impulsive force vector, λI ∈ R
N , and a velocity vector,

q̇+
∈ R

6, immediately after the impact are given by

λI = −XI(q)
−1JI(q)q̇

−, (18)

XI(q) = JI(q)M(q)−1JI(q)
T, (19)

q̇+ = (I −M(q)−1JI(q)
TXI(q)

−1JI(q))q̇
−, (20)

where q̇−

∈ R
6 is a velocity vector immediately before

the impact, N is the number of instantaneous constraint

conditions at the impact. We thus use (15) for the unlocked

wobbling mass case, and (17) for the locked wobbling

mass case. The biped robot then changes the stance leg

immediately after the impact.

Table I lists the mechanical parameters of the biped robot.

We use these parameters for simulations in section 4.

III. CONTROL METHODS

A. Swing leg and upper-body posture control

We first show control methods of the swing leg and posture

of the upper-body for level ground walking. We realize level

ground walking of the biped robot using the following simple

PD-control methods:

u1 = −KP1(φd − (θ1 − θ2))−KD1(θ̇2 − θ̇1), (21)

u2 = −KP2(θ3 − θ3d)−KD2θ̇3 + u1, (22)

where KP1, KP2, KD1 and KD2 are the control gains, φd is

the desire hip-joint angle, θ3d is the desire torso angle. The

biped robot can raise its swing leg by (21) and maintain the

desired torso angle by (22).

(b)(a) (c)

Fig. 3. Biped walking with active swinging arms

(b)(a) (c)

Fig. 4. Biped walking with active wobbling mass

B. Up-and-down motion control for wobbling mass

For achieving up-and-down motions of the wobbling mass,

we consider swinging arms in human walking. Fig. 3 shows

a schematic illustration of human walking with swinging

arms. Mass points of both arms go down from the initial

position immediately after the heel-strike collision as shown

in Fig. 3(a), and they come at the lowest point on the mass

point trajectories with respect to the torso when the stance

leg is vertical as shown in Fig. 3(b). The mass points then

go up by the next heel-strike collision as shown in Fig. 3(c).

These relationships do not depend on walking speed and

humans regularly swing their arms according to walking

phase. Moreover, the amplitude of the up-and-down motion

TABLE I

MECHANICAL PARAMETERS

Symbol Unit Value

l0 m 0.25

l1 m 1.0

l2 m 1.0

a1 = b1 = l1/2 m 0.5

a2 = b2 = l2/2 m 0.5

R m 0.1

m1 kg 5.0

m2 kg 5.0

mH kg 5.0

mb kg 2.5

I1 kg· m2 4.17× 10−1

I2 kg· m2 4.17× 10−1
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of the mass points is big when the walking is fast, and it is

small when the walking is slow.

We thus consider the serial motion as an active up-

and-down motion control of a wobbling mass as shown

in Fig. 4. The wobbling mass goes down from the initial

position immediately after the heel-strike collision as shown

in Fig. 4(a), and it comes at the lowest point on the trajectory

of wobbling mass with respect to the torso when the stance

leg is vertical as shown in Fig. 4(b). Moreover, the wobbling

mass goes up by the next heel-strike collision as shown in

Fig. 4(c). Since we see that this motion is antiphase with

respect to the up-and-down motion of the mass point of

the torso, we propose a control method that generates this

antiphase up-and-down motion of a wobbling mass. This

control input is given by

u3 = −KP3(lb − lbd)−KD3(l̇b − l̇bd), (23)

lbd = k(ptz − p0), (24)

where KP3 and KD3 are the control gains, lbd is the desire

trajectory function for the wobbling mass, ptz is the position

(height) of the mass point of the torso (m2), p0 is the position

offset, k is the gain.

Table II shows the control parameters in the numerical

simulations. We decided the values empirically.

IV. WALKING ANALYSIS

A. Increasing walking speed by proposed method

In this section, we show effectiveness of the proposed

method by a numerical simulation. Fig. 5(a) shows the angle

of the stance leg, Fig. 5(b) shows the height of the mass

point of the torso (i.g., m2 in Fig. 2) and Fig. 5(c) shows

the height (amplitude) of the up-and-down motion of the

wobbling mass with respect to walking time. We can see

that the phase of the up-and-down motion of the wobbling

mass is almost antiphase with respect to that of the mass

point of the torso by the proposed control method.

Table III lists the walking speed without a wobbling mass,

that with a mechanically locked wobbling mass, and that

with an actively controlled wobbling mass according to the

proposed method. We see that the walking speed without a

mass is faster than that with a mechanically locked wobbling

mass. We can also see that the walking speed with an active

control wobbling mass is much faster than that without a

wobbling mass.

This result clearly shows the effectiveness of our proposed

method and we see that the active antiphase up-and-down

TABLE II

CONTROL PARAMETERS

Symbol Value Symbol Value

KP1 100 θ3d 0.00 [rad]

KD1 25 KP3 100

KP2 300 KD3 25

KD2 50 k 6

φd 0.60 [rad] p0 8.7/6 [m]
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Fig. 5. Angle of stance leg, height of mass point of torso and up-and-down
motion of wobbling mass with respect to time

TABLE III

SIMULATION RESULTS

Walking type Walking speed [m/s]

without wobbling mass 0.59

with locked wobbling mass 0.51

with active wobbling mass (proposed) 0.73

motion of a wobbling mass increases speed of limit cycle

walking. In the next subsection, we discuss the speeding-up

mechanism mathematically.

B. Mechanism of increasing walking speed

We consider reaction force due to up-and-down motions

of the wobbling mass to show a speeding-up mechanism by

our proposed method. We first define a position vector from

the origin to the mass point of torso (m2) as

pt =





x1 + l1 sin θ1 + a2 sin θ3
0

z1 + l1 cos θ1 + a2 cos θ3



 , (25)

where each x, y and z-elements of the vector are shown in

Fig. 2. The y-element of the vector is 0 [m] since our model

is planar. We analyze the height (i,e., z-element of the vector)

of the torso during walking since the up-and-down motions

of a wobbling mass are determined by the height of the mass

point of the torso that is the third element of (25).

For simplicity, we assume that the arc-radius of the foot is

very small (R ≈ 0 [m]) and z1 is nearly equal 0 [m] during

walking. Moreover, our proposed method (control) almost

achieves that the posture of the torso is vertical. Hence, the

following relationship is satisfied since the torso angle (θ3)

is nearly equal to 0 [rad],

a2 cos(θ3) ≈ a2 × 1 ≈ a2. (26)
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Therefore, the height of the mass point depends on the

second term in the third element of (25), l1 cos θ1, and it is

determined by the stance leg angle (θ1). The height of the

mass point monotonically increases with respect to time from

immediately after the stance leg exchange, and it comes up

a max value when the stance leg is vertical (θ1 = 0).

Then, the height of the mass point monotonically de-

creases with respect to time from θ1 > 0. Our proposed

method achieves that the up-and-down motion of the wob-

bling mass is antiphase with respect to the height of the

mass point of the torso, and it generates reaction force for

propulsive effects of the biped walking when the angle of the

stance leg is negative (θ1 < 0) as shown in Fig. 6. Moreover,

it generates reaction force for propulsive effects of the biped

walking when the angle of the stance leg is positive (θ1 > 0)

as shown in Fig. 7.

We thus see that the reaction force due to the proposed

control generates moment around the contact point of the

stance leg which is given by

M = r × F , (27)

where r is a position vector from the contact point of the

stance leg to the hip joint of the robot and F is a vector of

reaction force due to the proposed control. We can consider

that the biped robot has a virtual ankle joint and this ankle

generates torque for propulsive effects of the biped robot.

To more clearly show the propulsive effects, we assume

that the angle of the stance leg (θ1) is monotonically in-

creases during the stance phase. We also assume that the

reaction force of the wobbling mass is strictly positive when

the angle of the stance leg is negative (θ1 < 0) and that

of the wobbling mass is strictly negative when the angle

of the stance leg is positive (θ1 > 0). We consider the

propulsive effects in equilibrium point (θ1 ≈ 0) under above

assumptions, and mechanical energy due to the virtual ankle

torque is given by

E =

∫

T0

Ts

θ̇1(−Fl1θ1)dt+

∫

Te

T0

θ̇1(Fl1θ1)dt, (28)

where Ts is a time immediately after the stance leg exchange,

T0 is a time when the angle of the stance leg is vertical and

Te is a time immediately after the collision of the swing leg

(the next stance leg exchange). We see that the angle of the

stance leg is negative from Ts to T0 and positive from T0 to

Te.

If our assumptions are satisfied, the first term of the

right hand side in (28) is always positive from Ts to T0.

Similarly, the second term of the right hand side in (28) is

always positive from T0 to Te. We see that the virtual ankle

torque generates positive mechanical energy for propulsive

effects of the biped robots since these assumptions are almost

satisfied by the antiphase up-and-down motion with respect

to the torso mass due to our proposed control method as

shown in Fig. 5. Therefore, this virtual ankle torque improves

walking speed of limit cycle walking and we see that the

antiphase up-and-down motion is effective for achievement

of high-speed limit cycle walking.

bm

Upper body

Wobbling massF

F

r

FrM ×=

01 <θ

Fig. 6. θ1 < 0 (when wobbling mass is dropped)

bm

Upper body

Wobbling mass

F

F

r

FrM ×=

01 >θ

Fig. 7. θ1 > 0 (when wobbling mass is raised)
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Fig. 8. Prototype of our biped robot

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel method for high-

speed limit cycle walking using active up-and-down mo-

tions control of a wobbling mass. We first showed that the

biped robot achieves high-speed limit cycle walking by the

proposed method through numerical simulations. To show

the speeding-up mechanism, we mathematically analyzed the

biped walking with the up-and-down motion of the wobbling

mass. These results showed that the antiphase up-and-down

motions of a wobbling mass with respect to that of the torso

mass generates virtual torque for propulsive effects of biped

robots. It is expected that walking speeds of limit cycle

walkers would be further improved by adding our proposed

mechanism. We are now developing a biped robot with knee

joints as shown in Fig. 8 and plan to verify the effectiveness

of our proposed method in experiments.
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