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Abstract²  We propose a learning-based controller to enable 

autonomous execution of the eFAST scanning by a lightweight 

robotic manipulator according to expert demonstrations. The 

benefits of this approach are two-fold. Firstly, the automatically 

acquired USS images can be sent to the expert radiologist from 

a remote location without the need for complex robotic tele-

operation. Secondly, the application of learning by 

demonstration alleviates the complexity of robotic 

programming and allows extracting operator-specific 

knowledge in situ in a natural and intuitive way. The provision 

of incorporating force information can further improve the 

versatility of the system, allowing easy adaptation to different 

dynamic environments.  

 

 

I. INTRODUCTION 

Intracavitary hemorrhage is potentially life threatening as 
it is considered to be non-compressible bleeding. This has 
been highlighted by military academics who state that in the 
past decade of war the majority of fatal hemorrhage has been 
due to truncal trauma (67.3%) [1]. In addition, identifying 
intracavitary bleeding in the pre-hospital care setting whether 
in the chest or abdomen remains a challenge with clinical 
examination alone being insufficient to diagnose bleeding. 
The Extended Focused Assessment with Sonography in 
Trauma (eFAST) scan has proven to be an effective 
diagnostic tool in experienced hands to identify bleeding. 
The traditional FAST scan examines for intraperitoneal fluid 
(perihepatic, perisplenic and pelvis) and this has recently 
progressed to the eFAST which also examines for pleural, 
pericardial fluid and pneumothoraces. Typically, the eFAST 
scan involves the radiologist placing the UltraSound 
Scanning (USS) probe at specific points on the thorax and 
interpreting the images [2, 3]. In spite of the advantages of 
this technique in terms of portability, accuracy and 
noninvasiveness, the need for an expert operator to generate 
meaningful images has limited its use in pre-hospital settings 
such as ambulances or combat zones. The concept of tele-
ultrasound has recently been introduced to overcome this 
limitation [4]. USS images can be sent in real-time from a 
remote location to an expert sonographer, who guides 
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untrained personnel to perform the scan. Nonetheless, the 
efficacy of this approach depends on the reliability of the 
communication with the expert, which can be affected by the 
cluttered and chaotic remote environment. 

To improve the accuracy of remote USS, a number of 
robotic tele-echography systems have been developed. Most 
efforts have been focused on the design of slave 
manipulators [5-7] and advanced control architectures such 
as visual servoing [8] and force-feedback tele-operation [9, 
10] to optimize the remote manipulation of the USS probe 
and therefore the quality of the images. Other research 
groups have used custom-made [11] or industrial [12] 
lightweight robotic arms with a redundant structure to 
achieve the dexterity required by the scanning task. 
However, all of the above systems are still limited by the use 
of robotic tele-operation, which requires complex control 
strategies to avoid the instability introduced by time-delays 
and loss of data during communication between the master 
and the slave [13]. In addition, although previous studies 
have implemented force control of the robotic manipulator 
through variable stiffness of the joints to ensure safe 
interaction with the patient  [11, 12, 14], the scanning 
trajectories are simple and the force exerted by the tip of the 
ultrasound probe on the tissue is only estimated on the basis 
of the torque measured at the joints.  

To the authors knowledge, only one research group has 
SUHYLRXVO\�XVHG�D�³WHDFKLQJ´�PRGH�WR�DXWRQRPRXVO\�H[HFXWH 
ultrasound scanning using a robotic manipulator [15]. 
However, the system simply records an input trajectory, 
which is generated according to the force and torque 
measurements acquired by a sensor mounted at the end-
effector of an industrial manipulator and directly handled by 
the operator. In addition, the resulting scanning trajectory 
can only be reproduced accurately in the same structured 
environment where the robot needs to be accurately 
registered to the target under examination. In this paper, we 
propose a learning-based controller to enable autonomous 
execution of the eFAST scanning by a lightweight robotic 
manipulator according to expert demonstrations. The 
benefits of this approach are two-fold. Firstly, the 
automatically acquired USS images can be sent to the expert 
radiologist from a remote location without the need for 
complex robotic tele-operation. Secondly, the application of 
learning by demonstration alleviates the complexity of 
robotic programming and allows extracting operator-specific 
knowledge in situ in a natural and intuitive way. The 
provision of integrating force information can further 
improve the versatility of the system, allowing easy 
adaptation to different dynamic environments. 
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II. SYSTEM DESCRIPTION 

The aim of the study is to demonstrate the feasibility of 
automating an eFAST ultrasound examination by means of a 
robot. For the first part of the task, learning from expert 
demonstrations is used. The last part involves the execution 
of the learned task by the robot as shown in Fig. 1. 

The key components of the experimental setup are the 
medical ultrasound machine and the robot. For data 
acquisition, position and force-tracking of a hand-held 
ultrasound probe is used. For the execution of the learned 
demonstrations, the ultrasound probe is mounted on a robotic 
arm. For both the demonstration and automated execution 
phases, the same custom-made ultrasound phantom model is 
used. 

A. Ultrasound machine and probe 

For the ultrasound examination, a Zonare USS machine 
(Zonare Medical Systems, Inc. Mountain View, CA USA) 
was used as the imaging platform. The machine provides 
more than 100,000 dynamic channels per frame at more than 
1000 frames per second and a total system dynamic range of 
220 dB. The images are GLVSOD\HG�RQ�D���´�KLJK�UHVROXWLRQ�
LCD monitor mounted on an articulating arm with 
1280x1024 pixels resolution and a minimum of 400:1 
contrast. For this study, the C4-1 Curved Array transducer 
(Zonare PN: Z119-00) was used which has a bandwidth of 1-
4MHz and provides 80 degrees of viewing angle. The curved 
transducer has a number of applications such as abdominal, 
vascular and obstetrics imaging. In our experiments the 
settings were fixed at standard abdominal 2D B-mode at a 
depth of 6cm. Images are stored and processed in DICOM 
format. 

For the hand held probe, the transducer is mounted onto 
an aluminum plate using a pair of sliding rails. This allows 
easy assembly and disassembly for quick conversion 

between the demonstration and the robotic tasks. Two force 
sensors (Honeywell FSG-15N1A) are appropriately mounted 
to provide the interaction force between the probe and the 
ultrasound phantom in 1 DoF along the longitudinal axis of 
the transducer. The whole assembly is packaged inside a 
plastic casing as seen in Fig. 2. A metallic boom is used to 
support a cubic structure that houses 12 infrared optical 
markers. These are used in combination with the Optotrak 
Certus system (NDI, Ontario, Canada) to provide and record 
the pose of the handheld probe at an average frequency of 
40Hz. The force readings from the force sensor are amplified 
and digitized using an Atmel based microcontroller that 
connects to the data collection computer over a USB port. 

For the part of the study involving the robot, the plastic 

  
 
Fig. 1. On the left, the experimental setup used for the expert demonstration data collection is shown. The key components of the experimental setup are the 

medical ultrasound machine, an ultrasound phantom model and a handheld ultrasound transducer with force sensing and built-in 3D position markers. The 

respective optical-tracking camera is also shown on the background. On the right, the experimental setup used for the execution of the autonomous 

ultrasound routines learned by the proposed framework is shown. Here, the key component is the robotically controlled ultrasound probe which replaces the 

human operator. 

   

Fig. 2. The image on the left shows the hand-held ultrasound probe 

packaged inside a plastic casing. The integrated force sensors, shown as the 

black blocks in the centre picture, allow sensing of the forces exerted 

between the probe and the tissue. A cubic rigid body (shown on top of the 

attached rod) allows continuous tracking of the 3D position and pose of the 

probe. On the right the actual device held by the operator in its homing 

cradle. 
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end-effector using an L-shaped back-plate as seen in Fig. 3. 
The force sensing capability is still available. 

   

Fig. 3. The image shows the easy conversion of the hand-held probe into a 

robotically held one. The force sensors (black blocks) are still providing 

readings on the probe-tissue interaction forces. 

 

B. Robot 

For this study, a KUKA Light-Weight Robotic arm 
(KUKA Roboter GmbH, Augsburg, Germany) is used. This 
is a 7-DoF manipulator which is rapidly gaining wide 
acceptance among research institutions around the world. 
The redundant structure of the KUKA LWR offers small 
footprint, enhanced dexterity and flexibility. Its lightweight 
structure in addition to the integrated torque sensors and 
position sensing on each axis, allow increased safety. For 
this study, the robot is controlled using the Fast Research 
Interface (FRI) library and in Cartesian impedance control 
mode. 

C. Examination phantom 

To carry out the study, an ultrasound compatible 
phantom was made. Inside the phantom, a number of letters 
(A, C and D) are placed and play the role of ultrasound 
identifiable targets which are not visible to the naked eye. 
The letters are placed at random orientations, as shown in 
Fig. 4, in such a way that often considerable probe angles are 
required in order to be identified. The model was made in 
two parts using 500mls of hot water to which 10 grams of 
gelatin was added and stirred until dissolved. This was then 
diluted up to 1 liter with cold water and refrigerated for 12 
hours to allow consolidation into a jelly consistency. The 
letters were made with plasticine and these were embedded 
on top of the phantom jelly. Another layer of gelatin and 
water was made up to 1 liter and poured over the 1st layer to 
encase the letters. Green food coloring dye was added to 
make the phantom opaque so that the letters were not visible 
and then it was refrigerated for another 12 hours before the 
phantom was ready for the experiment. In between 
experiments the phantom was kept refrigerated to ensure that 
it maintained the same consistency. Once ready for 
experiments, the phantom was mounted onto a metallic plate 
and was fixed into position based on a number of markers. 
Every effort was made to ensure the phantom was at the 
correct alignment at all times to maintain consistency 
between experiments. In order to provide a world frame-of-

reference which is common and consistent between the 
manual and the robotic tasks, a probe homing base was also 
included as shown in Fig. 4. The base allows positioning of 
the probe at the same relative position with respect to the 
phantom model during both the manual and the robotic tasks. 

 

Fig. 4 The ultrasound phantom model as seen from the top. The general 

location of the letter targets is highlighted. On the left, the probe homing 

base can be seen. 

III. METHOD 

In order to demonstrate the feasibility of the proposed 
approach, the study is conducted in two parts; the expert 
demonstration and the automation parts. For the 
demonstration, an experienced sonographer is manually 
controlling an ultrasound probe to carry out a number of 
demonstrations of the ultrasound examination task. For the 
automation part, the ultrasound probe is mounted onto the 
robot that is used to execute the learned demonstrations. In 
both cases the same ultrasound phantom is used. 

The general objective of the task is to scan the phantom 
and clearly identify all three letters which are embedded in it. 
During the demonstrations phase, the pose of the ultrasound 
probe is continuously tracked, along with the exerted force 
between the probe and the phantom. The recorded probe 
trajectories are then fed to the learning algorithm which is in 
charge of generating the learned demonstration. For the final 
part, the learned trajectories are mapped into robot 
trajectories and the ultrasound examination is autonomously 
carried out by the robot. The expert sonographer is also 
present during this last phase for providing the expert   
validation of the approach. It should be noted that although 
recorded, no force information is used with the learning 
algorithm at this stage. 

A. Expert demonstrations 

An expert demonstration starts with the handheld 
ultrasound probe positioned inside the homing base. The 
position of the probe is continuously recorder by means of 
the attached optical markers. The sonographer then moves 
the probe at the general location where each of the letter 
targets is located. By using visual feedback from the 
ultrasound screen the examination continues until the letter is 
clearly identifiable by the operator. Each target is acquired 
from roughly the same starting position which corresponds to 
the transducer touching the surface at the general area over 
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D. Validation 

A qualitative validation of the autonomous robotic 
execution of the learned tasks is based on visual observation 
by the expert operator. During robotic execution, the same 
operator that was used to obtain the demonstration 
trajectories, is employed and asked to observe the ultrasound 
screen. When each target scan is completed, the expert 
operator is asked to comment on the perceived success of the 
automated task execution. More quantitative measures of the 

learning success are also obtained by comparing the 
demonstration and the learned trajectories. 

IV. EXPERIMENTAL RESULTS 

Visual observation of the autonomous robotic execution 
task by the expert sonographer, has demonstrated the success 
of the proposed methodology. The series of photo snapshots 
shown at the bottom of Fig. 6 represent the ultrasound slices 
obtained during or at the end of the scanning evolution for 

 
(a) 

 
(b) 

 

 
 
                                (c) 

 

Manual ultrasound scan, demonstration phase 

    
 

Autonomous robotic scan, learned phase 
 

    
Fig. 6. (a) The GMM components referring to the spatial data used for modeling the set of demonstrated trajectories for letter D. (b) An illustration of the 

generated spatial trajectories from the GMR algorithm that encapsulate the variations between demonstrations. The shaded areas correspond to the task 

covariance. (c) The training (green and black lines) and generated (red line) 3D trajectories for letter D. At the bottom, the first row shows identified targets 

during the demonstration phase and the second row shows the respective targets identified during learned execution of the task by the robot alone. From left 

to right, the targets are letters C, D, upper part of letter A and lower part of letter A. The image quality difference between top and bottom rows is because 

of the different video acquisition medium used. The top row snapshots are acquired by the Zonare built-in video recorder, while the bottom row snapshots 

are from an external video camera. This is due to the maximum recording time restrictions imposed by the US machine and the long execution times of the 

learned trajectories by the robot. 
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each of the target letters. At the row on top are the images 
captured during the demonstration phase and at the row on 
the bottom are the respective captures during the 
autonomous robotic scan. In both cases, it is obvious that the 
targets are clearly identifiable. The last two snapshots on 
both rows correspond to parts of letter A, while the first to 
snapshots correspond to letter C and D respectively. The 
difference in image intensity between the top and bottom 
rows is because of the different video acquisition methods 
used due to the recording time restriction imposed by the US 
machine and the long execution times provided by the robot. 

The plots on the top of Fig. 6 provide a quantitative 

measure of the task success. 

V. DISCUSSION AND CONCLUSIONS 

The clinical translation of this study would be to 
automate the eFAST scan by creating a machine learning 
algorithm that would allow the robot to independently move 
to and scan fixed points on the torso as the radiologist does 
in the FAST scan. The images could then be relayed across 
to the radiologist who can remotely interpret them. The 
remote presence application of this robot would mean that it 
could be of significant use in pre-hospital care medicine, 
remote environments, space and military medicine.  

Although very promising, this is a preliminary study and 
future work will have to investigate a number of additions to 
the existing implementation. For this study no force 
information has been incorporated in the learning or 
execution phases. With ongoing work we are investigating 
probe and tissue interaction forces to further enhance 
autonomy and ensure safety. Learning manipulation-force 
patterns could improve ultrasound repeatability, allow the 
implementation of active safety constraints, carry out 
elastography-based examinations and even allow hemorrhage 
control. Another exciting extension would be the 
implementation of visual servoing by incorporating image 
semantics into the learning process. Ongoing work is also 
investigating real-time 3D model registration and fitting for 
automatic identification and localization of body areas. This, 
in combination with force sensing, will further improve 
autonomy and compliance to human body and environmental 
variability. 

To our knowledge this is the first study of this kind, 
implementing a learning-based controller to enable 
autonomous execution of the eFAST scanning by a 
lightweight robotic manipulator according to expert 
demonstrations. 
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