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Abstract— Recent studies on underactuated manipulation
usually describe the system with a Kinematic Model (KM), which
is built by adding external constraints to the standard ma-
nipulation analysis method. However, such external constraints
are easily violated in a real-world dexterous manipulation task
which results in significant control errors. In this work, the
Enhanced Kinematic Model (E-KM), an integrated model of
the KM and the Sparse Online Gaussian Process (SOGP) is
proposed. The E-KM can compensate the shortfalls of the KM
by on-the-fly training the SOGP on the residual between the
prediction of the KM and the ground truth data. Based on
the E-KM, we further contribute an optimal controller for
underactuated manipulations. This optimal E-KM controller
is implemented and tested on the iCub, a humanoid robot with
two anthropomorphic underactuated hands. Two sets of real-
world experiments are carried out to verify our method. The
results demonstrate that the controller using E-KM statistically
can achieve higher control accuracy than using solely using the
KM for a wide range of objects.

I. INTRODUCTION

We address the problem of in-hand manipulation with
an underactuated robot hand in the real-world environment,
where a robot faces objects of different shapes and weights
[1]. One main challenge of this problem is the difficulty of
building kinematic model of the underactuated manipulation.

The underactuated hand, by definition, has fewer actuators
than joints. This feature enables it to adapt to a wide variety
of objects without a complex control structure [2]. However
it also makes the standard analysis method of manipulation,
such as [3], fail to describe the manipulation.

As discussed in [4], the standard analysis method of
manipulation determines the motion of the actuators for
realising a desired motion of the object by three constraint
matrices, a grasp matrix, a hand Jacobian and an actuator
Jacobian. But the actuator Jacobian of the underactuated
hand, which maps the actuator space to the joint space, is
usually rank-deficient and non-invertible since the number
of actuators are smaller than that of joints. Therefore the
motion of actuators to realise a desired motion of the
object is indeterminable by the standard analysis method,
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unless additional constraints can be introduced, for example,
forming a power grasp to gain more contact constraints.

Recent studies on underactuated manipulation usually use
additional constraints to build the full-rank actuation Jaco-
bian. For example, [4] uses the principle of elastic averaging,
[5] uses the assumption of minimal contact force. However,
applying these methods in the real-world environment faces
a bottleneck - the additional constraints are easily violated
due to the uncertainty of system, such as the change of the
mechanics, the disturbance from the environment and so on.
As a result, the errors of such kinematic model are often
significant.

To compensate for these errors, there are at least two
directions of research in robotics: 1) Use a learning technique
to replace the entire analysis model [6], [7]; 2) Model the
residual error of the analysis model [8], [9]. Although the
prior approach produced some successful examples, however,
its learning complexity scales drastically with the number of
joints involved.

On the other hand, to our knowledge, no literature uses
the latter approach to design a compensated model for
underactuated manipulation. A similar approach has been
applied on identifying the dynamic model of the autonomous
blimp [10]. However a main difference is that our system
continuously improves its internal model of familiar objects
and create models for new objects. This feature is core for
the underactuated manipulation, as the robot has to rapidly
adapt to new objects in a real-life environment.

To improve the accuracy of the underactuated manipula-
tion using the compensation approach, the selected model
should have an online feature so it can adapt to system
changes, such as replacing the driving tendons or adapting
to a new object. It should also be capable of modelling the
uncertainty of actuation errors which can be used as an input
parameter to the controller; the computational complexity
should be as minimal as possible so it can be used in a
real-time controller.

In this work, we propose a Enhanced Kinematics Model
(E-KM) for Underactuated Manipulation. To build the E-
KM, we use the Sparse Online Gaussian Process (SOGP) to
model the residual between the prediction of the Kinematic
Model (KM) and the ground truth data. The output of the
SOGP is used to compensate the KM on-the-fly.

To control the robot in real action, a controller has to
be constructed for action execution. Most reported under-
actuated manipulation controllers follow the plan-execution
control pattern, such as [4] and [11], which might not easily
adapt to the change of the system for real-world application.
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To overcome this shortage, we propose a dynamic image-
based look-and-move controller of underactuated manipula-
tion using the E-KM as the core model for action generation.

The rest of the paper is organised as follows: In Section
II we will present the details of the proposed E-KM. This
is followed by a description of the implemented controller
on the iCub humanoid robot in Section III. Two sets of
experiments are detailed in Section IV. The respective results
discussed in Section V before we conclude for future work
in Section VI.

II. THE ENHANCED KINEMATIC MODEL FOR
UNDERACTUATED MANIPULATION

In this section, we present the Enhanced Kinematics
Model for Underactuated Manipulation, an integrated model
to improve the dexterous manipulability of an underactuated
robot hand. This model compensates the shortfalls of the
kinematic analysis approach using a machine-learning tech-
nique.

A. Problem Formulation

We consider the general problem of improving a Kine-
matic Model for underactuated manipulation using a
machine-learning method. In this work, the following as-
sumptions are made: the objects have been pinch-grasped
before the manipulation; the manipulation follows all quasi-
static assumptions; the displacements of the joints and the
pose of the objects are fully observable; the pose of the
hand remains static during manipulation to avoid changes
in gravitational force; the actuators are driven by a position
controller which takes the input of the incremental position
signals.

Under the quasi-static assumptions, to fully describe the
system of an underactuated manipulation, the state vector

s = [qT pT ]T , (1)

consists of the vector of the angular displacements of the
joints q = [q1...qnq ] ∈ Rnq and the vector describing the
position and the orientation of the object p= [p1...pnp ]∈Rnp

with nq and np denoting the number of joints and the number
of degrees of freedom (DoFs) of the object.

In a KM, the prediction of differential increment of the
current state can be expressed as

δ ŝ0 = f (s,δa), (2)

where δ ŝ0 is the vector of the predicted increment of the
state, δa = [δa1...δana ]∈Rna is the vector of the differential
motions of the actuators with na denoting the number of
actuators.

As discussed in the introduction, the outputs of a KM
usually have significant errors, because it cannot modelled
the uncertainties. To tackle this problem, we propose com-
pensating the output of a KM using a machine learning
method

δ ŝ = f (s,δa)+g(s,δa), (3)

where δ ŝ is the compensated prediction of the increment of
the state, g(s,u) is the target function of a machine learning
method that predict the output error of a KM.

The underlying machine-learning technique in g(s,u)
should possess the following properties: it should have an
online feature so it can update when the system changes;
it should also be capable of modelling the uncertainty of
actuation errors; its computational complexity should be as
minimal as possible so it can be used in a real-time controller.

In the following sections, we will detail our proposed E-
KM which consists of two modules, the KM and the Sparse
Online Gaussian Process (SOGP).

B. The Kinematic Model of Underactuated Manipulation

We adopt the quasi-static kinematic analysis approach for
underactuated manipulation proposed by Odhner and Dollar
[4]. Its result has the form

δ ŝ0 = f (s,δa) = Jm δa, (4)

where Jm is the Manipulation Jacobian

Jm = RK−1RT
[

JT
a
0

](
[Ja 0]RK−1RT

[
JT

a
0

])−1

,

where R is the nullspace basis of the Manipulation Constraint
Matrix, Ja is the Actuation Jacobian, K is a matrix describing
the stiffness of the system

K = RT
[

Vqq +S 0
T Vpp

]
R,

where Vqq and Vpp are the second order partial derivatives
of the potential energy of the system of underactuation
manipulation. S and T are defined as

Si j = ∑
k

δJh,k j

δθ j
µk +∑

l

δJa,li

δθ j
λl ,

Ti j = ∑
k

δGik

δθ j
µk,

where Jh is the Hand Jacobian, G is the Grasp Matrix, µk
and λl are the elements of the contact force µ and actuator
force λ .

Several components are needed to solve (??), such as the
Manipulation Constraint Matrix, the Actuation Jacobian, the
Contact Force and the Actuation Force. The methods for
solving these components varies in literatures, but we adopt
the standard methods in this paper for the generalizability.

1) Contact Constraint: The contact constraint, which de-
scribes the relative differential motion of the joints of the
hand δq and the differential motion of the object δ p, can be
accounted using the standard manipulation analysis method
descried in [3]. It can be expressed as

[HJ̃h −HG̃T ]

[
δq
δ p

]
= 0, (5)

where H ∈Rnh×6nc is the matrix of contact constraints, G̃ ∈
Rnp×6nc is the Full Grasp Matrix, J̃h ∈ R6nc×nq is the Full
Hand Jacobian, with nc and nh denoting the number of the

2494



contact points and the number of contact constraints. (??) is
commonly denoted as

[Jh −GT ]

[
δq
δ p

]
= 0,

where the first term on the left is the Manipulation Constraint
Matrix, Jh = HJ̃h is the Hand Jacobian, G = G̃HT is the
Grasp matrix. It is practical to solve the Hand Jacobian Jh
and the Grasp Matrix G with grasping simulators such as the
GraspIt [12] and the Simox Grasp Studio [13].

2) Actuation Jacobian: The differential motion of joints
δq is related to the differential motion of the actuators δa
by

δa = Jaδq, (6)

where Ja ∈ Rna×nq is the Actuation Jacobian, with na de-
noting the number of actuators. The Actuation Jacobian
Ja is determined by the mechanical configuration of the
underactuated joints of the robotic hands.

3) Contact Force and Actuation Force: The contact force
µ ∈ Rnh and the actuation force λ ∈ Rna can be accounted
by solving the equation derived from the principle of virtual
works [

Vq
Vp

]
+

[
JT

h
G

]
µ +

[
JT

h
0

]
λ = 0, (7)

where Vq and Vp are the partial derivatives of the poten-
tial energy of the system. The contact force µ ∈ Rnh are
expressed in the contact frames consisting of at least the
normal pressure force of the contact points.

For our problem, the potential energy of the system V (q, p)
consists of the elastic and the gravitational potential energies

V (q, p) =
1
2

qT Ksq+mgpg(p), (8)

where Ks is the matrix of the spring stiffness, g is the
gravitational acceleration, m and pg(p) are the mass and the
centre of gravity of the object, which is a function of p.

Based on the minimal contact force principle presented in
[5], we solve the contact force µ and the actuation force
λ from (??) as an optimisation problem that minimises
the contact force u under three constraints: the principle of
virtual works, described in (??); the normal pressure force,
that is the normal pressure should be no less than zero; and
the maximum static friction, which limits the other elements
of the contact force u besides the normal pressure.

C. Learning the Error of the Kinematic Model

We propose to model the residual error of the KM as a
Gaussian Process (GP). For given elements x ∈ X, a GP is
specified by its mean function,

m(x) = E[g(x)],

and its covariance function

k(x,x′) = E[(g(x)−m(x))(g(x′)−m(x′))],

In contrast to other regression methods, GP regression
(GPR) provides predictive distributions (instead of point

Fig. 1: The proposed optimal controller for underactuated manipu-
lation using E-KM. The controller makes use of the dynamic image-
based look-and-move strategy. The dotted lines shows the learning
phasse.

predictions) and is able to learn the output noise from train-
ing data through maximum-likelihood maximisation. These
features make GPR attractive for compensating the error of
the kinematics analysis models [10].

Note that it is typical to the mean function of the GP
to be zero, m(x) = 0, yielding a Gaussian Process of the
form GP(0,k(x,x′)). Our approach of modelling the residuals
of the KM can be interpreted as incorporating a fixed
deterministic mean function m(x) = f (x) into the GP.

One key drawback of the full GP implementation is the
computational cost of the model (O(n3) for training). In this
work, we have used the Sparse Online Gaussian Process
(SOGP) [14]; an approximation of the full GP which has
a lower computational complexity, O(|B|) where B is the
basis vector set (the retained training samples). Note that the
maximum size of B can be constrained, effectively rendering
the SOGP a constant time algorithm. Readers desiring more
detail can find descriptions of the SOGP in [14], [15].

Here, we used the SOGP to learn and predict the residual
error of the incremental object movement between the actual
displacement and the KM output. The training data for our
model is therefore:

xt = [s,u]T = [qT , pT ,δaT ]T ,

yt = δ s− f (s,u) = δ s− Jmδa,
(9)

where xt is the input and yt is the output (or target).

III. UNDERACTUATED MANIPULATION CONTROLLER

In this section, we present an optimal controller for
underactuated manipulation using the E-KM model with an
optimal control algorithm.

A. Overview

Because of the limited workspace, most underactuated
manipulation controllers do not take into account of all the
possible DoFs of the objects [4], [11]. For this reason, we
use a subset of the DoFs of the object x ∈Rnx with nx ≤ np
to describe the pose of an object, called the focused pose.
The object pose p can be mapped to the focused pose x using
a matrix MC ∈ Rnx×np

x = MC p.
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The framework of an underactuated manipulation con-
troller generally follows the dynamic image-based look-and-
move structure, as shown in Fig.1. Given the input of the
desired pose of the object xr, the controller sends the control
signal, the differential movement of the actuators δa, to a
position controller of the robot hand.

In the control loop, the desired differential movement of
the object δxd is gained by applying a limiting function for
the control error

e = xr− x f ,

where x f is the current pose of the object obtained from the
vision system.

The optimal control algorithm, which will be described in
the Section III-B, takes the control step δxd , the displace-
ments of the joints q f and the object pose x f to account
for the control signal δa, using a forward kinematic model
to predict δxd . The forward kinematic model used in our
controller is the E-KM.

In the learning phase, the differential increment of the state
δ s is gained by

δ s(t−1) =
[

q f (t)−q f (t−1)
p f (t)− p f (t−1)

]
,

where t ≥ 1 is the index of the control loop, p f is the pose
of the object.

The differential increment of the state δ s(t−1) along with
the actual command δac(t − 1), the manipulation Jacobian
Jm(t− 1), the position of the joints q f (t− 1) and the pose
of the object p f (t−1) are substituted to (??) to generate the
training data for SOGP.

B. Optimal Control Algorithm

The aim of the optimal control algorithm is to solve δa,
by executing which the hand will move the object by δxd .
This is an inverse kinematics problem. However, since the
number of DoFs of an underactuated manipulation system
is usually greater than that of the focused ones, it can be
formalised in the form of constrained optimisation problem

argmin
δa

c(δa) (10)

subject to

amin ≤ a+δa≤ amax

xr− [0 Mc]δ s = 0

where δ s can be accounted by (??).
As determined by the definition of the differential motion,

the δa should be as minimal as possible. Therefore we define
the cost function c(δa) as

c(δa) = δaTWδa, (11)

which is minimum when the δa keeps the best of differential
motion best. The behaviour can be adjusted by the weight
matrix W ∈ Rna×na .

Fig. 2: The robot plantform iCub hand. A labelled picture of the
right hand of the iCub (a) and the corresponding schematics of
the hand (b), where the coupled joints are marked with the same
patterns.

C. The Implementation

This controller is implemented and tested on the iCub
humanoid robot developed by the RobotCub Consortium.
The iCub has two 7-DoF arms, each is attached with an an-
thropomorphic underactuated hand with 9 actuators (“iCub-
hand”, shown in Fig. 2a).

The iCub-hand has 20 joints, some of which are coupled
and underactuated including the distal joints of all fingers.
This design, shown in Fig. 2b, enables the phalanges of these
fingers to possess compliant characteristics. An onboard PID
position controller is provided to drive the actuators. All the
fingers are driven by tendons, which may not afford hundreds
of manipulations. The transmission dynamics of the fingers
change after each time a tendon is stretched or replaced.
This makes the iCub-hand a very suitable application of the
proposed controller with online learning capabilities.

1) E-KM: A manipulation simulator is built to generate
the contact information (i.e. contact points, normal vectors
of contact faces). The simulator takes the object pose and
the displacements of the joints to calculate the contact
information with the collision detection algorithm proposed
in [16]. The contact information is then used to calculate
the manipulation Jacobian (??). The compensation method
discussed in Section II-A is then applied.

2) Vision Tracking System: The poses of the hand and
the objects are estimated using the marker tracking method
presented in [17] with a VGA camera operating at 20Hz.
The markers are attached to the palm of iCub-hand and the
objects, as shown in Fig. 3b & 3e. Calibration of the camera
is carried out before experiments to reduce tracking error
along the principal axis of the camera.

3) Joints State Observation: The displacement of un-
deractuated joints could be estimated using the Hall-effect
sensors. We calibrate the sensor readings (ranged from 0 to
255) against the actual rotation angles (with the range of
0− 90 deg) using the parametric fitting method with cubic
polynomial regression.

4) Position Controller: All the grasping and manipula-
tions are executed using our previously developed controller
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Fig. 3: The experiment setup. (a) A VGA camera is positioned in
front of the iCub to obtain the pose of the objects and iCub-hand. (b)
A marker is attached to the palm of the iCub-hand for calibration
before the start of experiments. (c) shows the initial position of
the object after it is pinched grasped. (d) shows an instance of
the object after the manipulation. (e) shows the objects used in the
experiments: toothpaste tube, toy applier, rectangular box, box with
counter-weight, plastic bottle and can. The root coordinate system
of the iCub is indicated in (a) and (b) with the red, green and blue
axis correspond the x, y and z axis.

[18]. The controller sends position command to the interface
of the iCub position controller. The iCub position controller
drives the actuators with a control error of ±1 deg.

IV. EXPERIMENTS

Two different set of experiments are conducted to investi-
gate how the E-KM model improves the underactuated ma-
nipulation (Online Manipulation Investigation Experiment),
and evaluate the generalisability of the control method (Gen-
eralizability Investigation Experiment).

A. Experiment Setup

The experiment setup is shown in Fig. 3. Six different
objects are used in our experiments (Fig. 3e). We used the
previously implemented grasp controller [18] to execute a
pinch grasp of the object as illustrated in Fig. 3c. The pose
of the iCub-hand remains static throughout all experiments.

The in-hand manipulation is performed using our proposed
controller to adjust the object to the required pose (Fig. 3d).
Limited by the workspace of the iCub-hand, all manipula-
tions are rotations along the x-axis of the robot frame of
reference as shown in Fig. 3a.

TABLE I: The rotation manipulations for testing the controller
(unit: deg)

Trial Box Weighted box Can Bottle Applier
1(20%) 9 6 9 7 3
2(40%) 14 11 13 13 8
3(60%) 19 16 23 18 13
4(80%) 24 21 31 23 18
5(100%) 29 26 38 28 23

B. Online Manipulation Investigation Experiment

In this experiment, we carry out 45 rotation trials to
manipulate a toothpaste tube (Fig.3e) to investigate how
the SOGP can enhance the output of the KM in an online
fashion. The grasp points and rotation angles are randomly
chosen within the workspace.

C. Generalizability Investigation Experiment

To verify the generalisability of the E-KM model, we use
a further set of five daily objects to perform the rotation ma-
nipulations (Fig. 3e). These objects are selected to represent
the objects of different geometries and weight distributions.

In this experiment, all objects are pinch grasped at their
geometric centres. A set of rotation manipulations are carried
with the full controller. We then manually turn off the SOGP
update and perform another set of rotation manipulations to
benchmark the performance difference between KM and E-
KM. The set of rotation manipulations for benchmarking the
controller, tabulated in TABLE I, consists of the upper bound
of the workspace and 4 other positions randomly selected at
approximately 20%, 40%, 60% and 80% of the upper bound
with a variance of ±2 deg.

D. Performance Evaluation Metrics

We introduce three performance metrics to evaluate the
performance of the controller quantitatively.

1) Prediction Error: The prediction Error of the E-KM
eekm and the KM ekm can be measured using the difference
between their predictions and the actual pose of the objects

eekm(t) = x f (t +1)− Jm(t)δa(t),

ekm(t) = x f (t +1)− Jm(t)δa(t)−g(q(t), p(t),δa(t)),

where t and t +1 indicate the current and next time step.
2) Static Error: The static error of the controller is a

commonly used metric for controllers. In this paper, we
calculate the static error es by calculating the difference
between the desired pose and the actual pose after the control
terminates.

es = xr− x f ,

3) Hypothesis Testing: To statistically evaluate the hy-
pothesis that E-KM improves the performance of under-
actuated manipulation over KM, we applied the standard
two-sample t-test on the static error of the E-KM controller
against that of the KM controller.

Furthermore, to statistically investigate how SOGP tempo-
rally improves the performance of the controller, we apply
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Fig. 5: The results of the online manipulation investigation exper-
iment.

the t-test to the prediction errors of E-KM and KM

p(k) = pttest([eekm(1), ...eekm(k)], [egm(1), ...egm(k)]),

b(k) = bttest([eekm(1), ...eekm(k)], [egm(1), ...egm(k)]),

where p(k) and b(k) are the p-value and the upper boundary
of the confidence interval gained by applying t-test on the
data from 1 to k (k is smaller then the length of the data).
We take the Last Index of Negative Result as a suggestion of
the training time needed by the SOGP and the Last Upper
Boundary of the Confidence Interval as a suggestion of the
accuracy improvement of the E-KM over the KM.

V. RESULTS AND DISCUSSIONS

Fig. 4 shows an illustration of the iCub manipulating a toy
applier to its maximum workspace.

A. Online Manipulation Investigation Experiment

The prediction errors of the E-KM and the KM are shown
in Fig. 5a, which indicates the learning process of the E-
KM. Three immediate observations can be made from this
graph: 1) The general trend of E-KM is lower than that of
KM; 2) E-KM takes less than 10 trials to gain significant
performance; 3) Although the E-KM model accepted failed
training inputs (such as dislocations of the object at trials 20
and 44) along the sequence, it regained performance within
very few trials afterwards.

We further applied t-test described in Section IV-D on the
prediction error data, as shown in Fig. 5b. At 5% significance
level, the test result shows the Last Index of Negative Result
is 16 (out of 45), which indicates the prediction error of the
E-KM is consistently smaller than the KM after 16 times

TABLE II: The mean static errors of the E-KM and KM con-
trollers.

W-box Box Bottle Applier Can
KM(deg) 1.9 2.8 1.3 1.0 1.1

E-KM(deg) 0.6 0.8 0.5 0.7 0.6
E-KM:KM (%) 31.5 28.5 38.5 70.0 54.5

of learning; and the Last Upper Boundary of the Confidence
Interval is −0.57 deg, which indicates that the prediction
error of the E-KM is 0.57 deg smaller than the KM at the
confidence interval of 95%.

B. Generalisability Investigation Experiment

The static error of both E-KM and KM controllers manip-
ulating the different objects are shown in Fig. 6. We can see
that the E-KM controller outperformed the KM in nearly all
trials with different objects. The t-test indicates that the static
error of the E-KM controller is significantly smaller than that
of the KM controller with significance level of α = 0.05 (P-
value p = 3.8× 10−4). The only exception is the “Can” in
Trial 2. However, both KM and E-KM errors in this trial are
less than 0.5 deg, while the control error of iCub position
controller is ±1 deg. Thus, this falls into the category of
unavoidable error.

The mean static errors of the controllers are calculated
and shown in TABLE II. All the mean static errors of the
controller using the E-KM are less than the KM controller
for all objects.

The above statistics and observations suggest that the
E-KM is capable of generalising to a variety of object
shapes, friction coefficients, weight distributions and sizes
while maintaining the performance against the traditional
KM controller.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we contribute the Enhanced Kinematic
Model of underactuated manipulation (E-KM), an integrated
model of the Kinematic Model (KM) and the Sparse Online
Gaussian Process (SOGP). The E-KM can compensate the
shortfalls of the KM by on-the-fly training the SOGP on
the residual between the KM and the ground truth data.
Our experimental results show that the E-KM produces more
accurate predictions over the KM and improves the controller
performance. Another contribution is an underactuated ma-
nipulation controller which makes use of the dynamic image-
based look-and-move strategy. Our experimental results show
that the controller is capable to robustly manipulate the
objects in real-life environments.

Looking forward, we envision several improvements that
would increase the utility of our method. In this work, the
controller only predicts the state one step ahead, which does
not optimise the overall performance due to the static error,
the settling time and etc. We will investigate on an improved
controller which takes global optimisation into account. A
possible approach for achieving this goal could be replacing
the limiting function in Fig.1 with a reinforcement learning
method to translate target poses to overall goals. Further
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Fig. 4: Snapshots of the iCub rotating the toy applier from 0 to 28 deg.

Fig. 6: The static error of the KM and E-KM controllers.

experiments will be carried out to test the prediction validity
of the E-KM when visual input is switched off after the error
prediction stablises.
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