
Efficient Sampling-based Motion Planning with
Asymptotic Near-Optimality Guarantees for Systems with Dynamics

Zakary Littlefield, Yanbo Li, Kostas E. Bekris

Abstract— Recent motion planners, such as RRT∗, that
achieve asymptotic optimality require a local planner, which
connects two states with a trajectory. For systems with dy-
namics, the local planner corresponds to a two-point boundary
value problem (BVP) solver, which is not always available.
Furthermore, asymptotically optimal solutions tend to increase
computational costs relative to alternatives, such as RRT, that
focus on feasibility. This paper describes a sampling-based
solution with the following desirable properties: a) it does not
require a BVP solver but only uses a forward propagation
model, b) it employs a single propagation per iteration similar
to RRT, making it very efficient, c) it is asymptotically near-
optimal, and d) provides a sparse data structure for answering
path queries, which further improves computational perfor-
mance. Simulations on prototypical dynamical systems show
the method is able to improve the quality of feasible solutions
over time and that it is computationally efficient.

I. INTRODUCTION

Traditionally, sampling-based methods are practical so-
lutions for complex, high-dimensional planning problems,
which quickly provide solutions [1], [2]. Tree-based algo-
rithms, such as the Rapidly-exploring Random Tree (RRT)
[3], are also effective under dynamics as they only require a
forward propagation model and do not need a local planner,
unlike roadmap methods. A local planner connects two states
with a trajectory and corresponds to a solution to a two-
point boundary value problem (BVP), which is not always
available.

While very efficient in terms of state-space exploration,
the RRT converges to a suboptimal solution [4], [5]. Recent
progress, however, led to the development of RRT∗ that pro-
vides asymptotic optimality [5]. While a major breakthrough,
RRT∗ still reasons over an underlying roadmap and requires
a local planner. This limits the capability of providing path
quality guarantees for interesting robots with dynamics.

Another issue relates to the computational efficiency of
the corresponding methods. While asymptotically RRT∗ has
the same computational overhead as RRT in practice it is
more expensive as it tries to connect to multiple neighbors
per iteration instead of once. Furthermore, existing methods
include every state space sample in the corresponding data
structure and is not obvious when to stop sampling, resulting
in increased space requirements. It is desirable to have
solutions that provide both path quality guarantees and a
return a sparse data structure that can be queried efficiently.

Work by the authors has been supported by NSF CNS 0932423. Any
conclusions expressed here are of the authors and do not reflect the views
of the sponsors. The authors are with the Computer Science Department,
Rutgers University, 110 Frelinghuysen Road, 08854, Piscataway, NJ, USA,
email: kostas.bekris at cs.rutgers.edu.

With the above properties in mind, this paper describes
two modifications to the RRT. A previously proposed modi-
fication [6], called here RRT with BestNearest, is shown
to have beneficial path quality properties. It chooses a low
cost node within a predefined radius of a random sample to
expand from. This allows low cost paths to be propagated
forward. The approach is efficient as it needs only a single
propagation per iteration but employs a more complex query
from the auxiliary nearest-neighbor data structure.

The other modification, RRT with Drain, applies pruning
so that only the node connected with the best path to the
root is maintained within a predefined radius. This allows
the improvement of paths with good quality. This variant
significantly reduces the computational cost of performing
nearest neighbor queries - the asymptotically dominant factor
in these methods - as it works with a small number of nodes,
which quickly converges to an equilibrium.

The overall new algorithm, called SPARSE-RRT, com-
bines these two modifications and provides a simple and
computationally efficient way to provide continual trajec-
tory improvement over time for systems with dynamics.
Experimental results suggest that better quality solutions can
be reached than an existing heuristic variant of RRT∗ for
systems with dynamics [7] with the computational efficiency
of RRT. Figure 1 provides a comparison of RRT with the
discussed variants in the case of an inverted pendulum where
no local planner is employed.

II. BACKGROUND

Sampling-based tree planners, such as RRT [8] and Expan-
sive Spaces [9], can be seen as extensions of search-based,
kinodynamic planning [10]. They aim to evenly explore a
state space X by expanding a tree where nodes are states
and edges are trajectories. Given a good metric, which
is not always easy to define, the RRT exhibits a Voronoi
bias, where larger unexplored sections of X have higher
probability of being explored first. Some methods aim to
decrease the dependence on the metric by reducing the rate
of failed node expansions [11]. Others guide the tree using
local reachability information [12] or linearizing locally the
dynamics to compute a metric [13]. Recent work focuses
on applying such planners to challenging problems, such
as under-actuated systems, manipulation and grasping [12],
[14], [15]. Bidirectional versions improve performance but
require a local planner. For certain robots, such as systems
with symmetries, it is possible to address this issue [16], [17].
Some variants of RRT have employed heuristics to improve
path quality but do not argue optimality [6], [18].

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1779

Fig. 1. Phase plots that show best path cost at each point in the one-link pendulum state space for each of the proposed modifications. x-axis: pendulum
angle, y-axis: velocity. Blue corresponds to unexplored regions of the state space. The circle is state {0, 0}, a horizontal placement of the pendulum, the
star is state {π

2
, 0}, an upward configuration. Colors are computed by dividing the best path cost to a state in a pixel by a predefined value (20.0 for RRT

and 10.0 for the other methods) and then mapping the result to the range [0,255]. All algorithms were executed for the same amount of time (5 min). For
the last two methods that provide a sparse representation, each state is coloring a 3x3 local neighborhood. The best path cost for each pixel is displayed.

While RRT is effective in returning a solution quickly, it
converges to a sub-optimal solution [5], [4]. The recently
proposed RRT∗ [5] provides asymptotic optimality. Anytime
[19] and lazy [20] variants of RRT∗have been proposed.
There are also approaches that provide asymptotic near-
optimality [21]. All of the above methods require a BVP
solver. A variation of RRT∗ utilizes a “shooting” approach
to improve solutions over time without a local planner [7].
When a propagation from node α to node β gets to state β′

within a small distance of β, a tree connection between α
and β is made. This results in a re-propagation of the subtree
of β from β′ to maintain the validity of each subsequent
state, which may result in node pruning if collisions occur.
This method does not provably achieve asymptotic optimality
but can behave well together with numerical methods for
decreasing the gap between β and β′ [7]. This paper employs
only random propagation and compares the performance of
the proposed approaches and this existing RRT∗ variant.

Recent work provides local planners for systems that have
linear dynamics or dynamics that can be linearly approxi-
mated [22]. This allows the use of RRT∗ for a wider set
of systems. The proposed algorithms are applicable beyond
systems with linear dynamics but could also be combined
with this existing approach to provide more efficient asymp-
totically optimal solvers for systems with linear dynamics. A
conservative estimate of the reachable region of a system can
be constructed given results from sub-Riemannian geometry
and using the Lie algebra of the dynamical system [23].
This reachable region helps to define appropriate metrics
under dynamics, and can also be used in conjunction with
the algorithms described in this paper.

Selective pruning has been used in the past to help recover
regions of the state space that RRT claims early in execution
[24]. It is claimed that this approach improves path quality,
but no justification is provided. Another work stores a
volume at each node of a tree instead of states [25]. These
volumes represent claimed free regions in the space being
searched and help focus search toward unexplored regions.
Inspiration for the current method is drawn from approaches
that reduce the size of the planning structure to achieve
sparse representations and provide near-optimality [21].

III. PROBLEM SETUP

Consider a robot whose motion is governed by the differen-
tial equations: ẋ = f(x, u), g(x, ẋ) ≤ 0 (1)
where f, g are smooth; x ∈ X is a state and u ∈ U is a
control. The set of collision-free states is Xf ⊂ X. The robot
is in an initial state x0 and must reach a goal region XG

defined by a ball of radius δ around a goal state B(xgoal, δ).
Definition 1: [Trajectory] A trajectory of duration T is a

function π : [0, T] → Xf of bounded variation corresponds
to piecewise-constant controls u ∈ U and satisfies Eq. 1.

The set Π is the set of all trajectories in Xf .
Definition 2: [Kinodynamic Motion Planning] Given the

tuple (Xf , U, x0, XG), find a trajectory π ∈ Π that is a
solution, i.e., π(0) = x0 and π(T) ∈ XG and satisfies Eq. 1.

The cost c(π) of a trajectory is the cost to move from
π(0) to π(T). The cost c(x) of a node x on a tree structure
is the cost of the trajectory from the root x0 to x. This work
considers an additive cost function, such as time to traverse
a trajectory. This cost function is used to evaluate solution
paths and what the algorithm is optimizing over.

It is not easy to define the cost from x0 to x1 without
a trajectory connecting them. Sampling-based algorithms,
however, depend on a function that evaluates the proximity
of states. This is typically defined in the task space and
will be denoted as the metric m(x0, x1). The best value
for m(x0, x1) is the optimum cost-to-go from x0 to x1 in
the absence of obstacles but this is not available without
solving optimally a motion planning problem. The function
m(x0, x1) may even be a symmetric function, even though
the cost function is typically not for systems with dynamics.
Thus, it is important to provide methods that are robust in
the discrepancy between the metric and the cost function.

The objective is to provide methods with this property:
Definition 3: [Asymptotic Near-Optimality] An algorithm

ALG is asymptotically near-optimal for a kinodynamic mo-
tion planning problem (Xf , U, x0, XG) and a cost function c:
Π → R≥0 that admit a robustly optimal solution with finite
cost c∗, when the probability that ALG will find a solution
of cost c < tc∗ for some factor t ≥ 1 converges to 1 as the
number of iterations approaches infinity.

Robustly optimal solutions are the optimal paths that have
a certain minimum clearance from obstacles.

1780

IV. METHODOLOGY

This section provides two modifications to the RRT al-
gorithm that improve the quality of paths returned without
requiring a local planner and using a single propagation per
iteration. The proposed solution, called SPARSE-RRTand
outlined in Algorithm 1, provides the benefits of both mod-
ifications, called BestNearest and Drain.

Algorithm 1: SPARSE-RRT(Xf ,U,x0,XG,N ,∆drain,∆near)

1 Vactive ← {x0},Vinactive ← ∅, E← ∅, i← 0;
2 V = Vactive + Vinactive;G = {V,E};
3 while i < N do
4 xrand ← Sample(X);
5 xnearest ← BestNearest(Vactive, xrand,∆near);
6 xnew ← Propagate(xnearest, U, Xf);
7 Vactive ← Vactive ∪ {xnew};
8 E← E ∪ {(xnearest, xnew)};
9 Drain(∆drain, xnew, G);

10 i← i+ 1;

SPARSE-RRT resembles RRT in that a random state
is sampled, a node is found in its proximity, a forward
propagation step is executed, and an edge is added. The
effects of the new input parameters ∆drain and ∆near will be
clarified below. Typically, ∆drain is in the order or smaller
than the goal radius δ, while ∆near is greater than ∆drain.
Special cases of the algorithm arise for different values
of ∆drain and ∆near. When both are 0, SPARSE-RRT
becomes equivalent to the basic RRT. When either of the
values are zero, only one of the modifications is used.

BestNearest: This function checks additional criteria when
compared to a simple nearest neighbor search. This modi-
fication was originally proposed in [6] and this work will
analyze the effects it has in returning solutions.

Algorithm 2: BestNearest(Vactive,xrand,∆near)

1 Xnear ←Near(Vactive, xrand,∆near);
2 if Xnear = ∅ then
3 return Nearest(Vactive, xrand);

4 else
5 return argminx∈Xnear

c(x);

Fig. 2. The selection of the
best neighbor in BestNearest.
The best path cost node in
B(xrand,∆near) is selected.

An illustration of this oper-
ation can be seen in Figure 2.
All nodes x within a ∆near

radius according to the task
space distance m(x, xrand)
are checked to find which
node has the best path cost
c(x) from the start. The best
node is propagated in Al-
gorithm 1 since it has the
best chance for providing a
good quality path. In the event
that the ∆near radius con-
tains no nodes, the closest
node to xrand according to

m(x, xrand) is returned as in the regular RRT framework.
Only nodes in Vactive are used to determine the closest
nodes. The interaction of Vactive and Vinactive are explained
in regards to Drain.

Fig. 3. Illustration of the tree before and after Drain. When a new node
is created, the surrounding ∆drain region is checked to see if any other
nodes with better cost exist. If none exist, the new node is added and other
nodes are moved to Vinactive and possibly deleted.

Drain: This algorithm performs a local check to determine
if the newly propagated node xnew has any neighbors x in
the ∆drain ball according to m(x, xnew) that can provide a
better path cost from the start to that local region. If another
node exists in B(xnew,∆drain) with a better path cost, the
new node xnew is removed.

Algorithm 3: Drain(∆drain, xnew, G)

1 Xnear ←Near(Vactive, xnear,∆drain);
2 if c(xnew) ≥ argminx∈Xnear\xnew

c(x) then
3 Velite ← Velite \ {xnew};
4 else
5 for xi ∈ Xnear \ xnew do
6 Vactive ← Vactive \ {xi};
7 Vinactive ← Vinactive ∪ {xi};
8 xdel ← xi;
9 while IsLeaf(xdel) and xdel ∈ Vinactive do

10 xnext ←Parent(xdel);
11 Vbridge ← Vbridge \ {xdel};
12 E← E \ {(xnext, xdel)};
13 xdel ← xnext;

In practice, this can be implemented by not adding the
node in the first place until these conditions have been
checked. If the new node provides a better path cost than all
other nodes within ∆drain, then all other nodes are removed
from Vactive. If the removed nodes are not ancestors to any
other paths in the Vactive set, then they are deleted from
the tree completely as shown in Figure 3. The removal of
nodes from the nearest neighbor selection process allows for
nodes with better quality paths to be selected frequently for
propagation, increasing the chance that a better path can be
found. Furthermore, it results in a sparse data structure that
quickly converges to a constant number of nodes in bounded
spaces, which depends on the ∆drain radius.

1781

Propagate: This procedure randomly selects a sequence of
controls and a duration of propagation. This random duration
must be sufficient in order to make reasonable progress away
from xnearest. This is especially important when the Drain
function is used and nodes are pruned. In this case the
propagation must generate a state at least ∆drain away from
the propagating state according to the metric function. If
the resulting trajectory leads to a collision, a new random
sample is drawn. A number of attempts are executed until
a collision-free node can reach outside the ∆drain region of
the propagating node.

The cost from the start is stored on each node to make cost
comparisons between neighboring nodes quick. Similarly
each node is aware whether it is in the Vactive or Vinactive

set. To facilitate quick solution gathering, the parent of each
node is stored in order to construct the path in the tree that
leads from the start to the goal.

V. PROPERTIES

This section aims to provide high-level explanations for
the good experimental performance of the BestNearest
variant and briefly discusses aspects of the Drain function.

BestNearest: Consider the version of SPARSE-RRT that
does not employ the Drain function (i.e. ∆drain = 0). The
reasoning in this section employs the following assumption:

Assumption 1: For any optimum trajectory
π∗(xstart, xtarget), there are values ε, δ ∈ R, so that
a random shooting process with piecewise constant controls
is able to eventually generate a trajectory π from state
x′start ∈ B(xstart, ε) to state x′target ∈ B(xtarget, ε) so that:

c(π(x′start, x
′
target)) ≤ c(π∗(xstart, xtarget)) + δ

Fig. 4. Assumption: it is possible to sample a δ-optimal trajectory that
starts and ends within ε distance of xstart and xtarget respectively.

It will also be useful to define a reachability region:
Definition 4: The reachability region R(x, t1 : t2) ⊂ Xf

is the set of all possible states in Xf that can be reached with
a trajectory of duration between t1 and t2 from x, given all
possible controls that can be executed at x.

Consider the maximum duration of propagation τ em-
ployed by the algorithm. Then the reachability region
R(x0, 0 : τ) of the initial state x0 can be defined. Given the
BestNearest function, state x0 is guaranteed to be visited
infinitely often, as every sample in the ∆near neighborhood
of x0 results in the selection of x0. This implies that as the
number of iterations N of the algorithm goes to infinity, the
number of attempts to propagate controls from x0 also goes
to infinity. This fact, together with the assumption leads to
the following lemma:

Lemma 1: [Asymp. near-optimality of x0 neighborhood]
For each state x ∈ R(x0, 0 : T), RRT with BestNearest
will eventually generate a trajectory to a node x′ ∈ B(x, ε)
so as: c(π(x0, x)) ≤ c(π∗(x0, x)) + δ.

The question arises of what happens with states beyond
R(x0, 0 : T) that are not going to be directly connected to
x0. Consider x2 ∈ R(x0, τ : 2τ), which can be reached in
time t2 from the root given the optimum path as in Figure
5. Moreover, consider states Xopt along π∗(x0, x2) that can
be reached from x0 in the interval [t2 − τ, τ]. Consider the
balls B(xopt, ε) for all xopt ∈ Xopt. Construct the set U1 as⋃

xopt∈Xopt
B(xopt, ε).

Fig. 5. The reachability regions of
x0 with respect to time. The orange
region is defined by the union of
B(x, ε) for all x on the optimum
trajectory π∗ between time t2 −
τ and T . This region has a posi-
tive probability of being selected to
propagate toward x2.

As iterations go to infin-
ity, the algorithm will gen-
erate trajectories from x0 to
neighboring states of xopt ∈
U1, which are within δ of
the corresponding optimum
path π∗. Furthermore, the al-
gorithm will select infinitely
often states from the set U1

and propagate them forward
up to time T . Notice that
there are states in U1, which
can reach an ε ball around
x2. Given Assumption 1,
random shooting can gener-
ate near-optimal versions of
such trajectories, i.e., trajec-
tories from states in U1 to
B(x2, ε) that are within δ
cost differential of optimum
from states along π∗(x0, x2) to x2. Thus, the algorithm
converges to overall cost from x0 to B(x2, ε) within 2δ of
c∗ with a positive probability. This can then be extended
to each subsequent state in the tree. This implies that when
a solution is found, its cost can be bounded based on the
number of edges between the start node and the end node:

Lemma 2: [Asymp. near-optimality of RRT with
BestNearest] For each state x reachable with an
optimum path between the time interval [kt, k(T + 1)]
from x0, RRT with BestNearest will eventually
generate a trajectory to a node x′ ∈ B(x, ε) so that:
c(π(x0, x)) ≤ c(π∗(x0, x)) + k · δ.

Drain: As the algorithm progresses, there will be many
balls B(xc,∆drain), one for each node in the tree. Let Xc

denote the set of all such center states.
Lemma 3: [Uniqueness in Each Ball] For each center

state xc ∈ Xc, there does not exist another state in the
B(xc, Rp) in Vactive.

The Drain function guarantees that the above lemma
holds. The algorithm does not allow two states in one ball
region to exist for propagation purposes.

Lemma 4: [Finite Number of Balls] For a bounded Xf

region, the number of states in the set Xc is finite. Let
N(∆drain, Xfree) denote this maximum number.

1782

With Lemma 3, Lemma 4 is immediate. The search space
can only hold a maximum number of balls at any time if
is is bounded. The authors believe that the Drain function
operates similarly to the BestNearest one and provides
near-optimality guarantees, where the bounds become worse
as the optimum cost increases. This is also indicated by the
experimental performance provided in the following section.
Future research will aim to show this property, as well as
the near-optimality properties of the integrated algorithm.

Fig. 6. When ∆drain is chosen to be
large, narrow passages may become
difficult to explore.

The proposed algorithm
will not necessarily pro-
duce a trajectory to reach
any state. Figure 6 illus-
trates a situation where
SPARSE-RRT has diffi-
culties. There is a nar-
row passage and the cho-
sen ∆drain is larger than
the entrance of the narrow
passage. The part of the space that is inside the narrow
passage is hard to reach. A possible solution is to switch
between RRT and SPARSE-RRT. The explorative properties
of RRT will be able to compensate for this deficiency.

The complexity of this approach is dominated practically
by the two nearest neighbor queries, one for BestNearest
and one for Drain. SPARSE-RRT maintains a sparse data
structure, so the amount of work to perform these queries
is much smaller than other methods. Asymptotically, the
complexity is equivalent to that of RRT∗ and its derivatives.

VI. EVALUATION

Setup: Experiments with systems that were modeled through
numerical integration of dynamics equations were used to
evaluate the proposed algorithm in the following setups:
• A second-order car moving among obstacles. This is

a 5-dim state space (Cartesian coordinates, orientation,
velocity and steering angle) and a 2-dim control space
(acceleration and rate of change of steering angle). The
task space metric m is the time to move between each
(x, y) location with the average velocity between the two
states.
• A one-link pendulum with undamped motion. The state

space of the system is 2-dim (one angle and its velocity).
The control space is 1-dim (torque). Manhattan distance
is used for m.
• A 1-dim double integrator. The state space of this system

is 2-dim (position and velocity) and the control space is 1-
dim (force). m is the traditional Euclidean distance using
both the position and velocity elements of the state.
• A two-link Acrobot (passive “shoulder”, active “elbow”).

The state space of the system is 4-dim (two angles and
their velocities). The control space is 1-dim (torque on
the second joint). m is defined by the angle and velocity
of the end-effector as if it was a one link pendulum (the
angle formed by the end effector and the distance from
the passive joint).

While there are alternatives to planning for some of
these systems, they are standard benchmarks for non-linear
dynamics and under-actuation. They can be used to evaluate
the performance of these modifications under a regime
where no BVP solver is employed. All combinations of the
two modifications have been tested on these systems. The
approach used in [7] is employed as a comparison point.
The algorithms were compared in terms of the number of
nodes in each tree and the cost of the solution after a fixed
amount of time (10 minutes for these experiments).

To perform nearest neighbor queries, a structure based on
PRM∗ [5] is used. Internally, a node keeps track of a number
of neighbors based on the metric function required in order to
asymptotically provide the shortest path between two states,
a result from percolation theory. This graph can then be
traversed to determine nearest neighbors within a radius as
required by all the algorithms being evaluated. This metric
imposes a larger cost on addition of nodes, while making
removal and queries very fast.
Experiments: Table I shows the solution lengths returned by
the algorithms averaged over all experiments. For the car-like
system, the goal was to reach a certain location in a simple
maze-like environment. For the Acrobot and pendulum, the
goal was to swing up toward its unstable fixed point. The goal
for the double integrator is to move to the origin position.

System Algorithm Iterations Nodes Length
(s)

Double Int.

RRT 299749 299750 7.86
Drain 511137 35979 6.67
BestNearest 269244 269245 6.87
SPARSE-RRT 508187 35495 6.6675
RRT∗ w/ Shooting 66438 66439 7.76

Pendulum

RRT 521528 521529 4.785
Drain 761252 39215 2.5275
BestNearest 160856 160857 2.6825
SPARSE-RRT 668167 38699.5 2.385
RRT∗ w/ Shooting 310289 310290 6.3825

Acrobot

RRT 191081 154482 8.775
Drain 301122 24451 5.22
BestNearest 184367 148824 5.8475
SPARSE-RRT 295923 23862 4.245
RRT∗ w/ Shooting 313806 313807 6.67

2nd-order Car

RRT 114200 83981 76.22
Drain 129721 3672.5 32.995
BestNearest 119090 76062 38.175
SPARSE-RRT 135741.5 2967 35.655
RRT∗ w/ Shooting N/A N/A N/A

TABLE I
SOLUTION LENGTH ACHIEVED BY DIFFERENT ALGORITHMS FOR THE

SAME PROBLEM AVERAGED OVER ALL EXPERIMENTS.

The results in Table I compare the relative size of the
data structure for each algorithm after a set amount of time.
RRT will not generally improve its solution over time, so
the number of nodes reported is the amount of nodes that
are able to be added in the time noted. The second-order
car experiments for RRT∗ with Shooting provided some
difficulty in providing results that improved upon RRT. For
this reason, the numbers are omitted from this table.
RRT converges to a random suboptimal value in terms

of path length. The overall result is that Drain provides
a much sparser data structure with some improvement of

1783

Fig. 7. An example of the solution returned. The system shown is a two-
link Acrobot, where the objective is to reach the stable fixed point where
the system is balanced , without hitting the two obstacles. The path of the
end-effector is shown. The region at the top is considered the goal region.

path quality. BestNearest provides similar amount of
iterations as RRT while focusing on improving path costs.
Also, all combinations of these methods allow for more
iterations than RRT∗ with Shooting.

Figure 8 illustrates the rate of improvement for all ver-
sions of the algorithm. Regardless of the initial position,
all of the algorithms show improvement of solutions over
time. SPARSE-RRT is able to provide similar convergence
properties as RRT∗ with Shooting while being much simpler
to implement and requiring a much smaller data structure.

Figure 9 shows the rate of improvement for each algorithm
throughout the entire tree. Due to RRT not improving any
path costs over time, the average cost for all nodes will only
increase. If the algorithm quickly finds a solution, then it
can return a shorter one. For SPARSE-RRT and its other
versions, the improvement over time is apparent, both due
to removal of high cost nodes and generation of better nodes.
Remarks: The relationship between ∆drain and ∆near

requires further exploration. During experimentation, sev-
eral of these parameters were tested and depending on the
underlying system, resulted in interesting behavior. Some
combinations would make the algorithm able to quickly find
good initial solutions. These experiments were executed with
manually selected parameters.

VII. DISCUSSION

This work introduces an extension of RRT that can im-
prove path quality over time for kinodynamic problems
where a BVP solver is unavailable. Restricting the nodes that
can be added to the tree to only those that can help improve
path cost helps to focus the search to parts of the space where
improvements need to be made. Also, by allowing nodes to
stake claim to a region surrounding itself, SPARSE-RRT
only needs to maintain a small data structure, and therefore
can run more efficiently than its alternatives.

For future work, a more rigorous analysis of the approach
will be conducted. This analysis needs to provide a definite
bound on the solution quality that can be returned by both
of these methods. The necessity of the assumptions will
also be evaluated in an attempt to find the weakest set
of requirements in order to argue about asymptotic near-
optimality.

Fig. 8. Comparison of Improvement Rates for Acrobot and second order
car. The plots display the relative path cost over time. The path costs are
relative to the best path found.

1784

Fig. 9. Comparison of average path cost of all nodes over time. RRT
node costs will continue to increase since no effort to improve path costs
is made and new nodes continue to be added with worse path costs. The
combination of Drain and BestNearest in SPARSE-RRT provide a
large improvement in path cost over time.

The benefit of integrating with other works, which provide
improved supporting structures, such as local planners and
nearest neighbor structures [22], [23], is also a promising
direction to pursue. These additions should provide a means
of improving the results of this method to provide faster
convergence.

Another possible direction is anytime planning or replan-
ning. The sparse nature of the resulting data structure appears
to be appropriate to provide such primitives.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion. The MIT Press,
2005.

[2] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[3] S. LaValle and J. Kuffner. Rapidly exploring random trees: Progress
and prospects. In WAFR, pages 293–308, 2001.

[4] O. Nechushtan, B. Raveh, and D. Halperin. Sampling-Diagrams
Automata : a Tool for Analyzing Path Quality in Tree Planners. In
WAFR, 2010.

[5] S. Karaman and E. Frazzoli. Sampling-based Algorithms for Optimal
Motion Planning. IJRR, 30(7):846–894, June 2011.

[6] C. Urmson and R. Simmons. Approaches for Heuristically Biasing
RRT Growth. In IEEE/RSJ IROS, pages 1178–1183, 2003.

[7] J.-H. Jeon, S. Karaman, and E. Frazzoli. Anytime Computation of
Time-Optimal Vehicle Maneuvers using the RRT*. In CDC, 2011.

[8] S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Planning.
IJRR, 20(5):378–400, May 2001.

[9] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomized Kinody-
namic Motion Planning with Moving Obstacles. IJRR, 21(3):233–255,
March 2002.

[10] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic Motion
Planning. Journal of the ACM, 40(5):1048–1066, 1993.

[11] P. Cheng and S. M. LaValle. Reducing Metric Sensitivity in Random-
ized Trajectory Design. In IEEE/RSJ IROS, pages 43–48, 2001.

[12] A. Shkolnik, M. Walter, and R. Tedrake. Reachability Sampling for
Planning under Differential Constraints. In IEEE ICRA, 2009.

[13] E. Glassman and R. Tedrake. A Quadratic Regulator-based Heuristic
for Rapidly Exploring State Space. In IEEE ICRA, 2010.

[14] W. V. Weghe, D. Ferguson, and S. Srinivasa. Randomized Path
Planning for Redundant Manipulators without Inverse Kinematics. In
IEEE Int. Conf. on Humanoid Robots, 2007.

[15] M. Stilman. Task Constrained Motion Planning in Robot Joint Space.
In IEEE/RSJ IROS, pages 3074–3081, 2007.

[16] P. Cheng, E. Frazzoli, and S. M. LaValle. Improving the Performance
of Sampling-based Planners by using a Symmetry-Exploiting Gap
Reduction Algorithm. In IEEE ICRA, 2004.

[17] F. Lamiraux, E. Ferre, and E. Vallee. Kinodynamic Motion Planning:
Connecting Exploration Trees using Trajectory Optimization Methods.
In IEEE ICRA, pages 3987–3992, 2004.

[18] D. Ferguson and A. Stentz. Anytime RRTs. In IEEE/RSJ IROS, pages
5369–5375, October 2006.

[19] S. Karaman, M.R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime
Motion Planning using the RRT. In IEEE ICRA, May 2011.

[20] R. Alterovitz, S. Patil, and A. Derbakova. Rapidly-Exploring
Roadmaps: Weighing Exploration vs. Refinement in Optimal Motion
Planning. In IEEE ICRA, 2011.

[21] J. D. Marble and K. E. Bekris. Asymptotically Near-Optimal is Good
Enough for Motion Planning. In ISRR, 2011.

[22] D. Webb and J. van Den Berg. Kinodynamic RRT*: Asymptotically
Optimal Motion Planning for Robots with Linear Differential Con-
tstraints. In IEEE ICRA, 2013.

[23] S. Karaman and E. Frazzoli. Sampling-Based Optimal Motion Plan-
ning for Non-holonomic Dynamical Systems. In IEEE ICRA, 2013.

[24] Y. Abbasi-Yadkori, J. Modayil, and C. Szepesvari. Extending Rapidly-
exploring Random Trees for Asymptotically Optimal Anytime Motion
Planning. In IEEE/RSJ IROS, 2010.

[25] A. Shkolnik and R. Tedrake. Sample-Based Planning with Volumes
in Configuration Space. arxiv:1109.3145v1, MIT, 2011.

1785

