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Abstract— This paper deals with a new iterative learning 
dynamic identification and control method of robot. The robot 
is closed-loop controlled with a Computed Torque Control 
(CTC). The parameters of the Inverse Dynamic Model (IDM), 
which calculates the CTC are calculated to minimize the 
quadratic error between the actual joint force/torque and a 
joint force/torque calculated with the Inverse Dynamic 
Identification Model (IDIM), linear in relation to the 
parameters. Usually the parameters are off-line linear least 
squares estimated ((IDIM-LS) where the IDIM is calculated 
with the joint position and its noisy derivatives, which cannot 
take into account variations of the parameters. The new 
method called IDIM-ILIC (IDIM with Iterative Learning 
Identification and Control) overcomes these 2 drawbacks. The 
parameters are periodically calculated over a moving time 
window to update the IDM of the CTC, and the IDIM is 
calculated with the noise-free data of the trajectory generator, 
which avoids using the noisy derivatives of the actual joint 
position. A study of convergence of the method is performed in 
simulation and an experimental setup with stationary 
parameters and with a variation of the payload on a prismatic 
joint validates the procedure. 

I. INTRODUCTION 

The best tracking performances for robots use feed-
forward inverse dynamic model-based controller. It requires 
accurate knowledge of the robot parameters. In the case of 
stationary parameters, the usual off-line method based on the 
Inverse Dynamic Identification Model and linear Least 
Squares estimation (IDIM-LS) have given good results [1].  

In the case of non-stationary parameters (friction) or 
variation of the payload, an online procedure updating the 
parameters, is required. Most of online estimation methods 
minimize the trajectory tracking error to estimate the 
parameters and are related to adaptive and reconfigurable 
control [2-8]. The optimal values of the parameters are 
calculated using non-linear programming algorithms to solve 
a non-linear least-squares problem. Difficulties arise from 
the choice of initial conditions and loss of persistent 
excitation, resulting in loss of stability. In [9] the authors 
propose a combination of model-based and iterative learning 
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but their method requires the error on velocity to estimate 
the parameters. Online identification methods proposed in 
[10] and [11] are interesting because they avoid the use of 
joint accelerations and velocities however the measurement 
of joint position  is still necessary.  

This paper presents a new iterative learning dynamic 
identification method, which avoids the drawbacks of the 
usual online estimation methods. The robot is closed-loop 
controlled with a CTC law [12][13] that linearizes and 
decouples the non-linear and coupled dynamics of the robot. 
The actual optimal parameters of the Inverse Dynamic 
Model (IDM) of the controller are periodically calculated to 
minimize the quadratic error between the actual joint 
force/torque and a joint force/torque calculated with the 
Inverse Dynamic Identification Model (IDIM), over a 
moving time window. The regressor matrix of IDIM is 
calculated with noise-free data of the trajectory generator, 
which avoids using the noisy derivatives of the actual joint 
position. The updating of the dynamic parameters of IDM in 
the CTC law allows taking into account the variation of non-
stationary parameters as friction parameters or payload 
parameters. The estimated parameters are optimal with 
respect both to the Least Squares (LS) identification 
(minimize the quadratic error on joint force/torque) and to 
the CTC law (decrease the tracking error).  

This paper is divided into 7 sections. Section II describes 
the dynamic modeling. Section III presents the usual offline 
IDIM-LS method for dynamic identification of robots. 
Section IV presents the CTC law. Section V presents the 
proposed Iterative Learning Identification and Control 
method called IDIM-ILIC.  Section VI is devoted to the 
study of convergence of the method in simulation and on 
experimental identification of one prismatic joint 
manipulator without and with stationary parameters and with 
a variation of payload. The values identified with IDIM-ILIC 
are compared with those identified with the usual IDIM-LS 
method. Finally, section VII gives the conclusion.  

II. MODELING 

The IDM of a rigid robot calculates the motor 
force/torque idm  as a function the joint positions, velocities 

and accelerations of the n  moving links. It can be obtained 
from the Newton-Euler equations [14] as following:  

   ,idm M q q N q q     (1) 

Where q , q  and q  are respectively the  x 1n  vectors 

of joint positions, velocities and accelerations;  M q  is the 
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  x nn  robot inertia matrix;  ,N q q  is the  x 1n vector 

of centrifugal and frictions force/torque.  
The choice of the Modified Denavit and Hartenberg 

(MDH) frames attached to each link allows to calculate a 
dynamic model that is linear in relation to a set of standard 
dynamic parameters st [15]: 

  1 2, ,  with 
TT T T

idm st st st st st stnIDM q q q χ χ χ χ χ          (2) 

 Where  , ,stIDM q q q   is the    n x Ns Jacobian matrix 

of idm , with respect to the    1Ns x vector stχ  of the 

standard parameters. stjχ  is composed of standard dynamic 

parameters of axis j : 

           

stj j j j j j j

T

j j j j j j j joff

χ XX XY XZ YY YZ ZZ

MX MY MZ M Ia Fv Fc 

 



 (3) 

Where: ,  ,  ,  ,  ,  j j j j j jXX XY XZ YY YZ ZZ  are the six 

components of the inertia matrix of link j ; 

,  M ,  Mj j jMX Y Z  are the components of the first moments 

of link j ; jM  is the mass of link j ; jIa  is a total inertia 

moment for rotor of actuator and gear of joint j ; jFv  and 

jFc  are the viscous and Coulomb friction parameters of 

joint j ; joff  is an offset parameter which takes into account 

the dissymmetry of Coulomb friction of joint j  and the 

motor current amplifier offset of joint j ; 14 x Ns n  is the 

number of standard parameters.  

III. IDIM-LS: INVERSE DYNAMIC IDENTIFICATION MODEL 

WITH LEAST SQUARES METHOD 

Because of perturbations due to noise measurement and 
modeling errors, the actual force/torque   differs from τidm  

by an error e , such that: 

 , ,idm st ste IDM q q q χ e        (4) 

The vector χ̂ st  is the least squares (LS) solution of an 

over determined system built from the sampling of (4), while 
the robot is tracking exciting trajectories [16]: 

 Y = W , , χ +ρst stq q q    (5) 

Where: Y  is the ( x1)r measurement vector, stW  the 

( x )str n  observation matrix, and   is the ( x1)r vector of 

errors. The number of rows is * er n n , where the number 

of recorded samples is en . When stW  is not a full rank 

matrix, the LS solution is not unique. The system (5) is 
rewritten: 

 Y = W , , χ +ρq q q    (6) 

Where a subset W  of b  independent columns of stW  is 

calculated, which defines the vector χ  of b  base parameters   

[15][17]. Standard deviations ˆi
 , are estimated assuming 

that W  is a deterministic matrix and  , is a zero-mean 

additive independent Gaussian noise, with a covariance 
matrix [18]: 

T 2(ρρ )  rC E I    (7) 

Where E is the expectation operator and Ir, the ( )r r  

identity matrix.  An unbiased estimation of the standard 
deviation   is the following: 

22 ˆˆ - ( )Y W r b     (8) 

The covariance matrix of the estimation error is given 
by: 

T 2 T 1
ˆ ˆ ˆ ˆ ˆ[(χ χ)(χ χ) ] (W W)C E 

      (9) 

The relative standard deviation ˆ%
ri  is given by: 

ˆ ˆ ˆ ˆ% 100 , for 0
ri i i i        (10) 

Where 2
ˆ ˆ ˆ ( , )

i
C i i   is the ith diagonal coefficient of ˆ ˆC . 

Calculating the LS solution of (6) from perturbated data in 
W  and Y  may lead to bias if W  is correlated to  . Then, 

it is essential to filter data in Y  and W  before computing 
the LS solution. Velocities and accelerations are estimated 
by means of a band-pass filtering of the positions. To 
eliminate high frequency noises and force/torque ripples, a 
parallel decimation is performed on Y  and on each column 
of W . More details about data filtering can be found in [18] 
and [19]. 

IV. COMPUTED TORQUE CONTROL – TRACKING CONTROL  

To improve performance of the control, it is necessary to 
take into account the dynamic interaction force/torque. 
Linearizing and decoupling control is based on feed-forward 
compensation of the nonlinearities in the robot dynamics 
[12-14]. It is called CTC because it uses the IDM, which 
computes the force/torque control input. The input control 


 
is defined such that:  

     
 

1

1

ˆ ˆ , with  

                                         and 

T

r r r r rr

T

r rr

n

n

M q w N q q q q q

q q q

   



 

  
 (11) 

Where  ˆ
rM q and  ˆ ,r rN q q  are the estimations of the 

actual  rM q and  ,r rN q q matrices of the robot 

respectively, rq  and rq  are the reference position and 

velocity. Ideally without error modeling and no error in 
actual joint data, after substituting (11) in (1), the problem 
reduces to the linear closed-loop control of n  decoupled 
double integrators: 

 1 with 
T

nq w q q q      (12) 

Where w is a new input control, like Proportionnal-
Derivative control: 

 with  and p q v q r q r q rw K e K e q e q q e q q            (13) 

Where et p vK K  are ( x )n n  positive diagonal matrices of 

proportional and derivative gains. 
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From (11), the closed-loop system response is 
determined by the following decoupled linear error 
equation : 

0 with  p q v q q q rK e K e e e q q          (14) 

The solution  qe t  is the free response of a second order 

system. The jth gains of pK  and vK  are tuned to give 2 stable 

and fast poles for joint j  given by the damping coefficient 

j  and a natural frequency j  :  

2 ,  2pj j vj j jK K     (15) 

The control input force/torque includes three 
components; the first compensates the Coriolis, centrifugal, 
gravity and friction effects; the second is a proportional and 

derivative control with variables gains  ˆ
r pM q K

 
and 

 ˆ
r vM q K

 
respectively and the third provides a predictive 

action of the desired acceleration forces/torques  ˆ
r rM q q .  

The force/torque  can be rewritten in linear relation the 

estimation of   at iteration k , ˆ k : 

   ˆ ˆ, ,k k
r rIDM q q w  

 (16) 

Equation  (16) is the IDM (2) where q  is replaced by the 

input control noted w . q  and q are replaced by rq and rq . 

The columns of  , ,IDM q q w  corresponding to the 

coulomb frictions contain the non linear ( )jsign q  function. 

To avoid discontinuities on the force/torque  ˆ k  during 

the crossing 0 velocity jq , the non linear ( )jsign q  function 

is replaced by the continuous (2 )arctan(  )j jq   function in 

(4). j  is a ratio of the maximum joint velocity maxjq . 

V. IDIM-ILIC METHOD 

A. Theoretical approach 

The proposed method is a new iterative learning dynamic 
identification method with control procedure. The 
identification process does not need the joint position 
measurement or velocity and acceleration estimation. At 
each iteration, the parameters of the CTC are updated with 
the last identified parameters. In the presence of modeling 
errors, the error equation (14) becomes from (11) and (1): 

          1ˆ ˆ,  ,ˆ
r r r r

p q v q q

q q q q

K e K e e

M M q N qM q N q q 

 

  

 

  
 (17) 

Without modeling error nor error on the parameter 
values, the error equation (17) becomes the free second 
order differential equation (14), where   0qe t   with 

dynamics depending on the gains pK  and vK . Usually, in 

robotics, these gains are high enough to get fast dynamics 
and good robustness to error modeling. Unfortunately, the 
perfect model hypothesis is implausible in practice. Indeed, 
the values of parameters are not perfectly known and there 

are always small errors in the model. So, in this case, 

  0qe t   may not hold because of the right member of 

(17). 
For strong nonlinear systems such as robots, it is 

impossible to analyze the effects of such errors. However, 
with practical considerations, we can make some well 
founded approximations. First, in recent papers, [20], we 
have shown that the crucial component is 

 ˆMq M M q     because the vectors of centrifugal and 

frictions force/torque N  and N̂ can be considered as a 

perturbation. Second, in order to show that  qe t  is 

bounded, we consider one degree of freedom (dof) robot 
with only one parameter M in (17), which reduces to: 

  ˆ1  with p q v q qK e K e e q M M         (18) 

Finally, with r qq q e    , we have: 

 1p q v q q rK e K e e q        (19) 

Thus, with   close to 1, with appropriate gains and 

because rq  is a bounded trajectory,  qe t  is also bounded. 

Then if  q  remains close to rq , (17) becomes:  

 
      1 , , , ,ˆ rob

p q v q q

r
ot

r r r rq IDM q q q ID

K e K e e

M qM q q 

 



 

 



 
 (20) 

Where robot contains the "real" parameters of the robot. 

In accordance with a learning process where ˆ k   in (16)

at iteration  k ,  (20) becomes: 

      
         

 

1

ˆ ˆ ˆ

ˆ ˆ ˆ( , ,

                                        , )

ˆ

,

k k k

k k k robot
r

r r r

p q v q q

k

r

q

K e K e e

IDM q q q

IDM q qq

M

  

   





 





 



 



 (21) 

To satisfy (14), it is necessary to minimize the following 
error between the actual joint torque of the robot and its 
IDIM model:  

        ˆ ˆ ˆ, , , ,k k k robot
r r r rIDM q q q IDM q q q          (22) 

It can be rewritten introducing an error e : 

   ˆ , ,k

rr r rIDM q q eq      (23) 

Thus the vector 1χ̂ k  at iteration 1k   is the least squares 

(LS) solution of an over determined system built from the 
sampling and filtering of (23): 

   

   
2

1 ˆ

ˆ , ,

with arg min Y ,ˆ ,k

k

r r

r r

r

k
r

r

r

Y qW q q

q q qW








 

 

 

 








 (24) 

Where:  ˆ kY  is a vector obtained by filtering and 

down-sampling the actual sampled force/torque ˆ( )
ky   at 

iteration k ,  , ,r r r rW q q q  is the observation matrix, and   

is the vector of errors. It should be noted that  , ,r r r rW q q q  
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is calculated with the IDM (2) where the actual noisy 
position, velocity and acceleration are replaced by the noise 
free data of the reference trajectory.  

B. Bias in the estimation of parameters 

In practice, the velocity is estimated by backward 
difference of the measured position. In (19) qe  must be 

replaced by ˆ ˆ
q re q q    , with: 

 1 1ˆ( ) ( ) 1  with e
e

s
fq z q z z f z e 


    (25) 

Where ef  
is the sampling frequency of the controller, 

( )q z   is the z  transform of q , 1z  is the delay operator. So 

the z  transform of  (19) becomes: 

   ˆ 1p q v r q rK e K q q e q          (26) 

In order to compare (19) and (26) with the same left side 
expression, (26) is rewritten as: 

   ˆ1p q v q q r dK e K e e q K q q            (27) 

The error  ˆdK q q   on velocity estimation introduces a 

small bias in the estimation of parameters which decreases 
with increasing the frequency ef . In practice, a simulation 

study shows that the bias is less than 10-4 with 500(Hz)ef   

and that it does not increase the tracking error. 

C. Scheme of the IDIM-ILIC procedure 

The structure of the online identification scheme is 
shown in 1. The identification is performed with a moving 
time window of size obsT  (s) and the parameters are updated 

with frequency  if  (Hz). If  1/ 1/i obs cyclef T T  , the 

parameters are updated at each cycle time cycleT  of the 

trajectory [9]. 

Sampling  fm  

Lowpass filtering 
Downsampling 

Linear Least Square 
1 2ˆ min || ||k Y W


     

   ˆ , , ,k
r r rY W q q q    

 

1ˆ k 
 

 

rq  
+ 

- 
pK  

rq  + - vK  

+ + 
+ 

rq  

Robot 
 

 q    Inverse Dynamic Model 

               ˆ, ,r
k

rq qID wM   

wqe  

ˆ
qe

  Inverse Dynamic Model 

           , ,r r rIDM q q q   

obsT  

rq  rq  

 Backward 
 difference 

q̂

 
Figure 1. IDIM-ILIC scheme 

D. Initialization 

The algorithm is sensitive to the initial conditions 
because the bandwidth of the closed-loop should be large 
enough to get fast dynamics and good robustness to error 
modeling. Thus the initial values of inertia parameters need 

to be close to the actual ones for M̂ to be close enough to 
the good inertia matrix. Consequently the initial parameters 
are chosen as:  

0ˆ 0 except   for 1, .ap
j jIa Ia j n     (28) 

ap
jIa  can be well estimated with the rotor inertia of the 

motor given by the manufacturer of the robot. 

E. Update of identified parameters in the IDIM of controller 

In case of loss of persistent exciting trajectories, all 
parameters may not be excited during tracking trajectory at 
iteration k . It is necessary to avoid loss of performances of 
the controller between the iterations k and +1k by updating 
bad identified parameters.  Only the essential parameters are 
updated. They are calculated with respect to their relative 
standard deviation. If the relative standard deviation 

ˆ%
ri of parameter 1ˆ k

i
  is greater than a value % MAX ,the 

parameters 1ˆ k
i
  is not essential and not updated in the 

controller (16). % MAX can be chosen between 10 and 30.  

If the reference trajectory does not excite all parameters, 
this allows keeping the best possible control law without 
increasing the computing time significantly at each iteration.  

F. Discussion  

For usual IDIM-LS method, the observation matrix 
depends on the estimation of actual positions, velocities and 

accelerations  ˆ ˆ, ,q q q  . But the computation of velocities and 

accelerations needs a well-tuned filter. If the filter is not 
well-tuned, the LS estimation is biased.  

In the proposed iterative learning identification method 
with control procedure the observation matrix depends on 
the noise-free reference positions, velocities and 
accelerations  , ,r r rq q q  . The measurement of position and 

the estimation of velocity are only necessary to compute the 
new input control w , the bias in identified parameters is 
very small after convergence and does not increase the 
tracking error.   

Other interests of the method are the following: 
-the actual force/torque at iteration k is used at each 

iteration of the algorithm. It allows identifying the non-
stationary parameters of robot, especially for friction 
coefficients and for the actual inertia/mass value if the 
payload changes during the task cycle of the robot. 

-only the IDM is needed for the CTC (16) law and for the 
identification to compute the matrix rW , 

-only the well identified parameters (essential 
parameters) are updated in the controller (see section V-E) 
compared to usual online estimation methods. It avoids the 
loss of stability in the case of loss of excitation, 

-the estimated parameters are optimal both with respect 
to the LS identification and to the CTC law, by decreasing 
the tracking error and minimizing the quadratic error on 
joint force/torque. 

VI. EXPERIMENTAL VALIDATION 

A. Presentation of the prismatic joint robot 

The EMPS is a high-precision linear Electro-Mechanical 
Positioning System (see figure 2). Its main components are a 
Maxon DC motor equipped with an incremental encoder, a 
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Star high-precision low-friction ball screw drive positioning 
unit (with negligible backlash ) and a carriage which moves 
in translation. A payload (10(Kg)) can be added on the 
carriage. 

q
 

 

v  

DC motor 

Encoder  

Gravity vector 

carriage on 
prismatic link 

payload (10(Kg)) 

 
Figure 2. EMPS components 

All variables and parameters are given in SI units on the 
load side. The motor force (unit on load side) is proportional 
to the motor torque (unit on motor side) with factor equal to 
the gear ratio of the ball screw. 

B. Inverse Dynamic Model of the prismatic joint robot 

The robot is a rigid structure: 

τ ( )idm v cMq F q F sign q      (29) 

Where: M  (kg) is the total mass (rotor of motor, screw, 
nut and carriage), vF  (N/(m/s)) and cF  (N) are the viscous 

and Coulomb friction parameters respectively. 

The motor force of the rigid robot τidm  
can be written in 

a linear relation to the dynamic parameters as follows: 

    
 χ

with: ,χ

idm st st

T

st st v c

IDM

IDM q q sign q M F F

 

   
 (30) 

There are 3stn   parameters to be identified. 

C. Control of the prismatic joint robot 

From equations (16) and (30), the control law  ˆ k    is 

noted in relation to estimation of EMPS parameters
 

at 
iteration k:  

    
 

1 1

1 1 1

2arctan

ˆ ˆ ˆwi

ˆ

ˆth: 
T

k k k
v c

k k

k

w q q

M F F

  



 



  
 (31) 

D. Data acquisition  

Motor position is measured by means of high precision 
encoder working in quadrature count mode (accuracy of 
12500 counts per revolution). The sample acquisition 
frequency for joint position and current reference (drive 
force) is 1 (KHz). We calculate the motor force using the 
relation: 

ap g v            (32) 

where v  is the current reference of the amplifier current 

loop, and ap g  is a priori value of the gain of the joint drive 

chain, which is taken as a constant value in the frequency 
range of the robot (less than 30Hz) because of the large 
bandwidth of the current loop (700 Hz). In practice, (31) is 
divided by ap g  to compute the input current 

reference  ˆ kv  . Exciting tracking trajectory consists to a 

concatenation of trapezoidal velocity signals with different 
amplitudes and times obsT = cycleT =6.2(s). The  value is 

fixed at 1000. The damping coefficient   is 2 / 2 and the 

control bandwidth   is 20Hz. The cut-off frequency low 
pass filter and the frequency of down sampling are fixed at 
5Hz (FIR decimate filter block function of Matlab). 

E. Study of convergence in simulation with stationary 
parameters 

The proposed identification algorithm is carried out in 
simulation to study the convergence and to study the bias 
described in section V-B.  

The parameters of the simulated robot are given by the 
following values:  

1 1 195 (kg); 200 (Ns/m); 20 (Ns/m)M Fv Fc    (33) 

0 ( )apM f Ia  is equal to 100(kg) and the other 

parameters are initialized with 0.  At each new identification 
with 1 /i obsf T , the previous identified parameters are 

updated with the new ones in the computed torque 
controller. Results are given in table I at iterations k =1 and k 
=2.  

TABLE I.  IDENTIFIED PARAMETERS WITH THE LEARNING 
IDENTIFICATION METHOD AND WITH IDIM-LS METHOD 

Parameter 1χ̂  1ˆ
(%)

r
  2χ̂  2ˆ

(%)
r

  

1
M (kg) 94.4 0.07 95 0.01 

1
Fv (Ns/m) 199 0.26 200 1 10-3 

1
Fc (N) 20.1 0.21 20 1 10-3 

 
As a reference, offline identification with IDIM-LS 

method is performed using the simulated position, velocity 
and acceleration. For the three iterations the parameters with 
IDIM-LS method are identified with an accuracy of 10-16. 
While the identified parameters with the learning 
identification method are identified with an accuracy of 10-4 

for k=3. The bias due to the estimation of velocity (25) the 
controller is very small in simulation.  

F. IDIM-ILIC method with stationary parameters 

The proposed iterative learning identification algorithm 
is carried out on the real robot. In this case, identification is 
performed at each cycle time cycleT  of trajectory with 

1 /i obsf T . The parameters are initialized to the same 

values of section VI-E. At each new identification, the 
previous identified parameters are updated with the new 
ones in the computed torque controller if ˆ%

ri  is smaller 

than a value % MAX equals to 15.   

Moreover, offline identification with IDIM-LS method is 
performed. Because IDIM-LS method uses the actual 
position, velocity and acceleration, the IDIM-LS identified 
parameters are considered as references for the study of the 
proposed IDIM-ILIC method. The numerical values of the 
identified parameters are given in Table I. 
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The proposed algorithm converges after only 2 iterations 
on the real robot, all parameters are well identified. The 
identified values with IDIM-ILIC method are close to IDIM-
LS identified values for =2k . However a bias is present, the 
relative error between both method is less 1.5%. 

TABLE II.  TABLE I. IDENTIFIED PARAMETERS WITH IDIM-ILIC 
METHOD AND WITH IDIM-LS METHOD 

IDIM-ILIC method IDIM-LS method 

Parameter 0
χ̂  

1
χ̂  1

ˆ
(%)

r


  2
χ̂  2

ˆ
(%)

r


  1
χ̂  1

ˆ
(%)

r


 2
χ̂  3

ˆ
(%)

r




M (Kg) 100 92.2 2.9 94.2 0.4 93.8 0.4 93.1 0.4 

Fv (Ns/m) 0 298 3.4 263 1.5 262 1.4 265 1.4 

Fc (N) 0 22.3 3.2 18.9 1.6 18.6 1.5 18.7 1.5 

/Y WX Y - 10.2% 4.6% 4.2% 4.3% 

/qe q q 9.0 10-4 1.1 10-4 7.0 10-5 7.2 10-5 7.2 10-5 

The decrease of the tracking error with IDIM-ILIC 
method is important and validates the proposed theoretical 
approach (see figure 3 and last line of Table I). 

The IDIM-LS identified values are well identified from 
the first iteration but in our case the filter is well tuned. If it 
is not the case, the parameters are biased  and the CTC law is 
not good and the tracking error increases. 

G. IDIM-ILIC method with variation of the payload 

After this experiment, the mass is changing with a 
payload of 10(kg) attached to the carriage at time 60(s) (see 

figure 4). After convergence, M̂ is 104(kg) with IDIM-ILIC 
method and 103Kg with IDIM-LS method. The payload 

M̂ is well identified (9.7(kg))). Thus the controller is 
adapted and optimized online according to the variation of 
the payload. 
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Figure 3. Position (Red: reference, 

Blue: measurement, Black :error –for 
position error is multiply by 100-) 
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Figure 4. Identified mass 

 (cross: IDIM-ILIC method, 
circle: IDIM-LS method)  

VII. CONCLUSION 

This paper has presented a new iterative learning 
identification method with control procedure using the 
force/torque data. It avoids using the noisy derivatives of the 
actual joint position by using the noise-free data of the 
trajectory generator to calculate the inverse dynamic model 
feedforward componenet in the CTC control law,  expect for 
the computation of the feedback component (new control 
input w). The proposed method converges faster, is robust to 
initial conditions and is very efficient for non-stationary 
parameters (specially the load and friction parameters) 
during the execution of the trajectory.  It allows keeping 
good CTC if the tracking trajectory does not excite all 
parameters. The application of this method on a simulation 

and on a real prismatic joint robot shows the effectiveness of 
our approach. Future works concern the use of the proposed 
method on a multi-dof rigid robot and the study of the 
moving time window size. 
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