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Abstract— This paper shows improvement of stability and
efficiency for mobility using locomotion selection strategy. First
strategy is the selection of a gait relying on locomotion rewards.
The locomotion reward has been proposed as an indicator
for selection algorithm based on Falling Risk and the moving
speed. This strategy has achieved a capability of large changes
of uncertainties, such as a steep slope. Second strategy is
adjustment of moving speed by the extended locomotion reward
that explicitly shows the relationship between the moving speed
and Falling Risk. The robot aims at the maximum moving speed
without a falling, and removes small changes of uncertainties
as a result. We performed an experiment in order to confirm
effects of two strategies in an environment that includes a
rough terrain as a small uncertainty and two steps as a large
uncertainty. The robot improved the moving speed about 37.5%
from the case of only using the gait selection strategy.

I. INTRODUCTION

Robots aimed at working in our living space have been
developed, such as entertainment robots and home robots.
High mobility is required for these robots in order to adapt
to various terrains in human living environment such as stairs
and slopes. In this research, mobility is defined in terms of
efficiency and stability. While many criteria to characterize
efficiency can be raised from viewpoints of energy, loco-
motion distance, task complexity etc., we consider moving
speed as efficiency. In general, high-speed walking would
weaken the stability due to the influence of modeling errors
and tracking delay of the robot. On the other hand, low-
speed walking has better stability since the walking model
is close to static walking. That is, these two factors are in a
trade-off relation under the same body. The robot is required
to balance between stability and efficiency while walking.
Then, how to balance is essential to improve total mobility.

We have dealt with such a trade-off problem throw Multi-
Locomotion Robot (MLR) [1]. MLR achieves high mobility
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Fig. 1. Concept of Multi-Locomotion Robot

by selecting the most appropriate gait depending on its
surrounding as shown in Fig. 1. We have realized the
multiple gaits, such as bipedal walking with high efficiency,
quadruped walking having high stability, and transition
motion between the gaits. Our remaining challenge is an
autonomous selection of the gait.

In previous research on the selection algorithm, two
approaches have been studied. First approach is based on
external environment where the robot goes through a narrow
space by controlling upper body posture [2]. It is however
difficult to deal with dynamic environment and internal error.

Second one used internal error information. Using pre-
dictive value in the future of the ZMP error, Ogata et
al. achieved the selection of shock absorbing behavior and
falling avoidance behavior when the robot was pushed in up-
right [3]. Toda et al. proposed a sensor-based gait generation
method [4]. To estimate the road surface from the angular
momentum and ZMP, the robot selects the static gait with
high stability or the inverted pendulum model gait with high
efficiency depending on the estimated road surface. Renner et
al. realized stabilization by stopping when the robot received
the disturbance during walking, depending on the degree of
instability caused by the error of angle and angular velocity
of the robot posture [5]. A drawback in these methods is
difficulty in coping with rough terrain like a steep slope.

Considering these problems of previous work, we have
proposed novel locomotion selection algorithm by Falling
Risk and moving efficiency [6], [7]. Falling Risk is defined
as an indicator of uncertainties using Bayesian Network in
order to evaluate the state of the robot easily. The robot
determines locomotion reward based on Falling Risk and
moving speed against each gait, and selects the gait with
the maximum locomotion reward. As a result, the robot can
move in the environment that is difficult to travel by single
locomotion, maintaining the maximum efficiency.

However, several issues remain to be solved. Relatively
small changes of the state may bring frequent transitions
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of gait, and it will result in a loss of moving efficiency.
As a solution for the selection of two factors under such
a small uncertainty, adjustment of moving speed is valid.
The researches to control moving speed of walking have
been done for a long time. These researches show that
the robot cannot determine speed explicitly since speed is
determined by the interaction with the environment such as
CPG walking [8], [9]. Other researches do not take into
account the determination of the optimal speed, only stated
a method of control to the target speed [10].

In this study, we propose two strategies using selection
algorithm and pursuit the maximum moving efficiency with-
out falling. First strategy is the selection of a gait we have
already proposed [7]. Second one is the adjustment of the
moving speed. When the state is stable, moving speed is
increased in order that the robot should have priority over
the moving efficiency. During unstable state such as on a
rough terrain, the robot is expected to stabilize by reducing
the moving speed to improve a tracking accuracy of the
COG. In addition, we want to integrate two strategies based
on the same locomotion reward. We aim to determine the
optimal speed consciously and autonomously, extending the
locomotion selection algorithm in order to deal as a selection
problem. By this extending, both strategies are based on
the same locomotion reward although each strategy works
on a degree of uncertainties suitable for each capability.
For validation of proposed two strategies, we perform an
experiment in an environment that includes a rough terrain
as a small uncertainty and two steps as a large uncertainty.
As an experimental result, the robot traveled the complex
environment where the robot cannot go through only using
biped walking. The moving speed improved about 37.5%
against the case that the robot travels only using first strategy.

II. MULTI-LOCOMOTION ROBOT

A. Gorilla Robot III

MLR is a new bio-mimetic robot that can perform in stand-
alone several kinds of locomotion such as biped walking,
quadruped walking, and brachiation [1]. We developed Go-
rilla Robot III as a prototype of MLR: its height is about
1.0 [m] and weight is about 24.0 [kg]. An overview and the
link structure of Gorilla Robot III are shown in Fig. 2. The
mechanical structure is designed as follows: 6 DOF for legs,
5 DOF for arms, and 2 DOF for lumbar, and each joint
is actuated by AC servomotor. This robot has four force
sensors in each end of limb. As a sensor for recognition
of environment, a laser range finder (LRF) is mounted
perpendicular to the ground on neck of the robot. Its angular
resolution is 0.36 [deg], minimum accuracy measurement is
10 [mm], and scan angular range is 240 [deg].

B. Type of Locomotion

In biped walking, the dynamics of robot is modeled as
a 3D inverted pendulum as shown in Fig. 3(a), following
the work in [11]. The supporting point of the pendulum is
assumed to be point-contact. Then, only the heeling force
and the gravity act on Center of Gravity (COG). To realize

Fig. 2. Gorilla Robot III

Mg

(a) Robot modeled as 3D pendulum

(b) Intermittent Crawl Gait
Fig. 3. Type of locomotion

adjustment of moving speed, trajectory of COG is calculated
sequentially according to the speed. For the quadruped
walking, an intermittent crawl gait is employed [12]. In this
mode, the robot moves by the following phase: 1) left rear
leg, 2) left front leg, 3) COG, 4) right rear leg, 5) right front
leg, 6) COG, (see Fig. 3(b)). Although this gait is stable,
fast movement cannot be realized since the robot move the
COG and each leg separately. The transition between biped
and quadruped walking is made keeping the static balance.

III. EVALUATING FALLING RISK

We utilize “Falling Risk” using Bayesian Network (BN)
as a novel indicator of uncertainties and the robot evaluates
Falling Risk [7]. Fig. 4 shows the BN model. Nodes X show
measured information, Y are direct falling factors, and Z
means whether the robot will fall or not. This tree structure
is obtained by offline learning via simulations. All nodes of
the model take either TRUE = 1 or FALSE = 0.

Nodes X correspond to the measured information x;
x1 ∼ x4 are error information that are assumed to be
Gaussian noise, and x5, x6 are environmental information for
which the higher values are expected in the lower probability.

Fig. 4. Bayesian Network for Falling Risk
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Hence, x is defined by the following normal distribution.

f(xi) =
1√

2πσi

exp
(
−x2

i

2σ2
i

)
. (1)

Nodes X are considered as existence probability of x.
Probability of Xi = 1 is given by

Pr(Xi = 1) =
∫ xi

−xi

f(x)dx = erf

(
xi√
2σ2

i

)
. (2)

The parameters σi in eq.(2) is defined by the fact that
probability of including xi in the range [−2σi, 2σi] is equal
to 95.45%, and the assumption that xi exists 95.45% within
maximum permissible value ±ximax.

σi :=
ximax

2
, (3)

where ximax is defined according to each gait:
x1max, x2max, x4max are determined by the locomotion
design, such as the size of the support polygon, and
x3max, x5max, x6max are decided by limits of the locomotion,
such as the slope angle.

Falling Risk S is defined as probability of Z = 1.

S(k, a) :=
∑
Y

Pr(Z = 1|Y , a)
3∏

i=1

Pr(Yi), (4)

Pr(Yi) =
∑
XYi

Pr(Yi|XYi , aI)
∏
XYi

Pr(X), (5)

where XYi denotes the parent nodes of Yi, a is one of the
available gaits, and aI is the selected gait at walk-cycle
I . Marginal probability of Yi is assumed to be the same
regardless of the selected gait since any locomotion has
the same links between Y and X , and the similar CPT of
Pr(Yi|XYi , a). According to eq.(4), the robot can evaluate
Falling Risk for each gait.

IV. STRATEGY I. LOCOMOTION SELECTION
We have proposed a selection algorithm of gait based on

Falling Risk as an indicator of uncertainties and moving
speed. As a prerequisite, we define an environmental model
for the state of Falling Risk and the gait as Semi-Markov
Decision Process (SMDP) [13]. Unlike normal Markov
Decision Process (MDP) [14], SMDP has the peculiarity
in that timing of decision-making is limited. Actually, the
robot can select a gait only during double support phase.
In SMDP, evaluation functions are commonly accumulated.
Considering such a peculiarity, as an indicator of selection,
we define locomotion reward as follows:

R(k, a) := γRR(k − 1, a) + R0(a)

+
1 − γS

1 − γN+1
S

N∑
n=0

γn
SV0(S(k + n), R0(a)). (6)

Where, each term is given as follows:

R0(a) :=
{

CRv(a) (a = aI)
γT CRv(a) (a 6= aI)

, (7)

V0(S, R0(a)) := − R0(a)
1 + er(1/2−S)

. (8)

Equation (7) is the basic reward that indicates the value
for efficiency that a gait has using moving speed v(a), and
eq.(8) is the state penalty for Falling Risk S. r is decided as
V0(S = 0) ' 0. γR, γS , γT are introduced to determine how
to select; γR is the weight of the past, γS is the weight of the
future, and γT is the degree of influence by transition. N is
the maximum future time step for the prediction of Falling
Risk. CR is a coefficient for avoiding rounding errors.

The sum of R0 and V0 satisfies 0 < R0 +
∑

V0 < R0.
Therefore, the state penalty is dominant if locomotion reward
is close to 0 and basic reward is dominant if locomotion
reward is close to basic reward. This method guarantees that
every gait can be selected since all of the possible range of
R(a) always partially overlap by aligning the lower limit.

Using greedy algorithm [15], the robot selects the gait de-
pending on the maximum locomotion reward a∗ as follows:

a∗ := arg max
a

R(ksel, a). (9)

Where, ksel is the time step when the robot selects a gait.
After the selection, the robot initializes all locomotion reward
in order to eliminate the effects of past state.

V. STRATEGY II. SPEED ADJUSTMENT
A. Extension of locomotion reward

We extend the locomotion selection algorithm to adjust
moving speed for low-level uncertainties that can conform
without locomotion selection. Since adjusting moving speed
can be done even in one leg-supporting phase, the robot
can select the speed periodically. That is, the environment is
modeled by MDP not SMDP [13], [14]. It is expected that
Falling Risk may change with varying speed in movement.
However, we cannot predict the behavior of the Falling Risk
unless the node of moving speed is added in BN. Then, we
assume that true Falling Risk S∗ given by considering the
moving speed is represented by a linear approximation.

S∗ ' S + Cv
dv

vb
. (10)

Where, Cv is the degree of influence on moving speed for the
state. vb is basis speed, dv is difference between the current
speed and basis speed. By eq.(10), we can predict Falling
Risk against the change of speed with small calculation cost.

Equation (8) is modified as follows:

V0(S,R0) := − R0

1 + exp r
{

D −
(
S + Cv

dv
vb

)} , (11)

= − R0

1 + exp r {D∗ − S}
. (12)

Where, D is the parameter for the demand of stability (in
this study, D = 1/2). Here, we divided the area of D into
the following three cases.
(i) D < 1/2: The robot tries to move securely.

(ii) D = 1/2: The robot wants to pursue the maximum
efficiency without a falling.

(iii) D > 1/2: The robot has no problem even if a falling
starts since the robot can avoid the falling.
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As another interpretation of eq.(11), eq.(12) shows the
relationship between the speed and the demand of stability,
where D∗ := D−Cv

dv
vb

. If the robot increases the speed, D∗

will correspond to the case (i) and the robot aims at secure
movement. Also, decreasing the speed updates D∗ such that
it corresponds to the case (iii), which allows the robot to
avoid a falling.

B. Adjustment of moving speed

The robot can predict changes of locomotion reward by
adding/subtracting minimal speed δv to/from the current
speed vn under the assumption that Falling Risk S is not
fluctuated by changing speed. Using greedy algorithm [15],
the robot selects the maximum locomotion reward obtained
at that time to update moving speed.

d∗ := arg max
i

R(k, a, vn + iδv) (i = −1, 0, 1),(13)

vn ⇐ vn + d∗δv. (14)

As for basis speed vb, if we keep vb from the beginning of
the movement, adjustment of moving speed will be restricted
only in a very narrow range, and a sufficient effect cannot
be expected. We considered that improvement of mobility
by second strategy was more effective by updating the basis
speed in a constant cycle (when the locomotion selection).
Therefore, we use Exponential Moving Average (EMA)
defined as eq.(15) to update.

EMA(k) = γvδv(k) + (1 − γv)EMA(k − 1), (15)

vb ⇐ vb + EMA(ksel). (16)

Where, γv ∈ [0, 1] is the discount rate from the basis speed.

C. Analysis of adjusting moving speed

We analyze behavior of adjusting moving speed depending
on Falling Risk and the speed. For simplicity, we set the
parameters as γR = 0, N = 0. Locomotion reward eq.(6)
consists of simply the current component R0+V0(S(k), R0).
Differentiating R with respect to v, we consider that dR

dv is
a function for dv and Falling Risk S. However, it is difficult
to determine the relationship between S and dv since dR

dv is
a complex non-linear equation.

Then, we confirm the qualitative property for dR
dv . Fig. 5

shows the graph of dR
dv with respect to Falling Risk and the

speed. We divided the graph into the following three regions.
(i) State of Robot is Stable:

The moving speed is expected to increase since dR
dv is

positive regardless of the speed. That is why Falling
Risk is hardly affected by a change of moving speed.

(ii) State of Robot is Uncertain:
dR
dv tends to be negative particularly when dv is high
value. That is, the speed decreases in such cases where
current speed is large for the basis speed. Even if the
speed is lower than the basis speed, further slow down
is expected by relatively high Falling Risk.

(iii) State of Robot is Unstable:
At any moving speed, the robot will maintain the current
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Fig. 5. Analysis of the behavior of adjusting moving speed

TABLE I
PARAMETERS FOR SIMULATION AND EXPERIMENT

Symbol Meaning Value
CR Coefficient for avoidance of rounding error 1000
γR Discount rate for impact of past 0.3
γS Discount rate for reliability of estimation 0.7
γT Discount rate for ease of transit 0.8
N Maximum estimated time step 16
Cv Coefficient for influence of Falling Risk vb

γv Discount rate for basis speed 0.5
Ttrans The time for transition 12.0 [s]
vb0(b) Initial moving speed of biped walking 0.080 [m/s]
vb0(q) Initial moving speed of quadruped walking 0.025 [m/s]

vn Actual moving speed [ 1
2 vb0, 3

2 vb0]

speed since dR
dv is almost zero and variation of R by

δv is zero because of rounding errors. In this case, the
robot will stabilize by the locomotion selection. This
behavior can be interpreted as that the robot selects
the locomotion selection strategy due to exceeding the
support level by adjusting the speed.

From the above analysis, speed adjustment by extended
locomotion selection algorithm deals with uncertainties at the
level when it is difficult to determine whether executing lo-
comotion selection. In addition, the robot speeds up as much
as possible when uncertainties are small. It is suggested that
second strategy does not react to the level of uncertainties
that is dealt with locomotion selection. The robot can execute
locomotion selection as soon as possible, avoiding a slow
down of moving speed against large Falling Risk.

D. Simulation

1) Simulation Conditions: We use a dynamics simulator
OpenHRP3. Table I shows the parameters of two strategies
that are moving speed, transition time, and range of moving
speed. Cv is set as the basis speed vb, so eq.(10) becomes
simply S + dv. In this simulation, we aim to confirm the
behavior fits the analysis result; the robot increases the
speed while the stable state or decreases the speed while
the uncertain state. Two bumps are set on walking space as
small uncertainties: height 10 [mm] and 500 [mm] diameter.

2) Simulation Result: Fig. 6 and Fig. 7 show the simula-
tion results. The robot started walking from 5 [s].

From 10 [s] to 15 [s] and from 17 [s] to 20 [s], the
robot walked on a rough terrain. When the robot was on
the rough terrain, Pr(Y1 = 1) indicating the internal model
error increased, and accordingly Falling Risk became higher.
As a result, the robot decreased the speed in order to reduce
the inertia and improve tracking the COG trajectory, since
the state of the robot was in the region (ii) of Fig. 5.

On the other hand, the robot walked on flat during other
times. When the robot was on flat even if small flat like
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Fig. 6. Simulation results

Fig. 7. Snapshots of simulation

from 15 [s] to 17 [s], Falling Risk was relatively small and
did not reach allowable Falling Risk. As a result, the robot
prioritized moving efficiency by speed up, since the state of
the robot was in the region (i) of Fig. 5.

From these two types of behavior, we considered that the
simulation results matched the analysis results. That is, the
robot obtained the maximum moving efficiency and stability
in the range locomotion had by selecting moving speed so
as to maximize locomotion reward at that time.

VI. EXPERIMENT USING PHYSICAL HARDWARE

A. Experimental Condition

We verify that the two proposed strategies can work on a
degree of uncertainties and improve total mobility. Available
gaits are biped / quadruped walking and we use the Gorilla
Robot III as described in Section II. Experimental parameters
are the same as simulation shown in Table I.

The robot scans the ground surface with LRF before
walking as shown in Fig. 8. Here, target distance is 2.5
[m]. Cushions are paved and two steps are placed on the
experimental course in order to make partial rough terrain.
Cushions (∼ 10 [mm] height) cannot be scanned since the
resolution of LRF is 10 [mm]. We can expect that the robot
removes by speed adjustment since uncertainties by rough
terrain are small. If the robot did not use speed adjustment,
we confirmed falling. The presence of two steps on the path
was recognized by the scanned data from the LRF (about 50
[mm] height). The robot is hard to go through the two steps in

-20
0
20
40
60
80
100
120

0 500 1000 1500 2000 2500

z
[m
m
]

x [mm]

Cushions ~10[mm]

Fig. 8. Scanned ground surface by LRF

biped walking; thus the transition from biped to quadrupled
walking will be activated to cope with the situation.

B. Experimental Results

Fig. 9 shows the snapshots of the experiment. Fig. 10
shows experimental data: Probabilities of Y = 1, Falling
Risk S(a), locomotion reward R(a), and moving speed
vn, vb. The plots of R(a) vs. t are shown the locomotion
reward when the robot selects gait. If the maximum locomo-
tion reward changes, the robot changes gait. During transition
motion, the robot does not estimate these parameters.

1) Before steps: The robot started walking at 5 [s]; then
the robot immediately increased the walking speed since the
initial basis speed was low and the state was stable enough.
After 8 [s], the robot stepped into the rough terrain area.
Change in Falling Risk was hardly seen, although probability
of Internal model factor Y1 increased. That is the result that
the robot increased the stability by suppressing the increase
of moving speed by second strategy. The robot walked over
the rough terrain in 13 [s], and increased walking speed
slightly. However, the robot kept moving speed based on
rising of Falling Risk and decreasing of locomotion reward
since two steps are at hand. The robot selected quadruped
walking in order not to fall in front of the two steps.

2) While steps: Moving speed rose to the limit shown in
Table I since two steps are small uncertainties for quadruped
walking. At about 48 [s], two steps finished as environmental
factor Y3, and actually the other factors Y1, Y2 were not large,
the robot selected biped walking in favor efficiency.

3) After steps: After 68 [s], we could confirm that the
robot increased walking speed on flat terrain because of small
uncertainties. However, stagger of the robot was occurred
since moving speed was too high in 74 [s]; and then
probability of Y1 = 1 was increased. Accompanying it, the
robot decreased walking speed in order to stabilize and kept
move without falling.

4) Efficiency comparison: In previous work [7], the robot
can use only first strategy and will select quadruped walking
when the robot enters the rough terrain, and traveling time
will take about 110 [s] (the case A). In this experimental
result, traveling time took 80.6 [s] with two strategies (the
case B). In comparing the case A and B, second strategy
improved moving speed about 37.5%.

These results verified that the robot achieved the high
mobility using two strategies; each strategy enhances adapt-
ability against the changes of uncertainties suitable for it.
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Fig. 9. Snapshots of experiment; cushions during 8 [s] ∼ 13 [s], two steps during 35 [s] ∼ 48 [s], transition in 68 [s], stumbling in 74 [s] but recovered
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Fig. 10. Experimental results: Pr(Y = 1), Falling Risk S(a), locomotion
reward R(a), and moving speed vn, vb. The plots of R(a) vs. t are
R(ksel, a). During transition section, these parameters are not estimated.

VII. CONCLUSIONS AND FUTURE WORKS

We proposed two strategies for improvement of walking
mobility using the selection algorithm. First strategy is loco-
motion selection; the robot selects gait that has the maximum
locomotion reward. Second strategy is adjustment of moving
speed based on extended locomotion selection algorithm.
We aimed to determine the optimal speed consciously and
autonomously, extending our proposed algorithm to selection
of moving speed. This extension is realized by the assump-
tion that the state penalty depends on not only Falling Risk
but also the moving speed. We verified that the behavior of
second strategy is as aimed by the analysis and simulation for
second strategy. We confirmed by the physical experiment
that two strategies removed uncertainties suitable for each
strategy level without competing, and improved moving
speed about 37.5% from the case of only using gait selection
strategy. Furthermore, This realization by the extension of
proposed locomotion selection algorithm verified not only
improving mobility, but also confirmation of the usefulness
and extensibility of proposed method.

Thus, we will generalize proposed selection algorithm
such that that algorithm can be apply to other decision-
making problem. In addition, the objectivity of evaluating
Falling Risk is very important factor in proposed selection
algorithm. We will make the robot learn Conditional Proba-
bility Table of Bayesian Network in real time.
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