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Abstract— Analyzing affordances has its root in socio-
cognitive development of primates. Knowing what the envi-
ronment, including other agents, can offer in terms of action
capabilities is important for our day-to-day interaction and
cooperation. In this paper, we will merge two complementary
aspects of affordances: from agent-object perspective, what
an agent afford to do with an object, and from agent-agent
perspective, what an agent can afford to do for other agent, and
present a unified notion of Affordance Graph. The graph will
encode affordances for a variety of tasks: take, give, pick, put
on, put into, show, hide, make accessible, etc. Another novelty
will be to incorporate the aspects of effort and perspective-
taking in constructing such graph. Hence, the Affordance
Graph will tell about the action-capabilities of manipulating the
objects among the agents and across the places, along with the
information about the required level of efforts and the potential
places. We will also demonstrate some interesting applications.

I. INTRODUCTION

Ability to analyze affordance is one of the essential aspects
of developing complex and flexible socio-cognitive behaviors
among primates, including human. In fact, affordance -
what something or someone can offer or afford to do - is
an important aspect in our day-to-day interaction with the
environment and with others.

The pioneer work of Gibson [1], in cognitive psychology,
refers affordance as what an object offers, as all action possi-
bilities, independent of the agent’s ability to recognize them.
Whereas, in Human Computer Interaction (HCI) domain,
Norman [2] tightly couples affordances with past knowledge
and experience and sees affordance as perceived and actual
properties of the things. Affordance could be learnt [3], even
through vision based data [4], and by manipulation trials
[5], as well as could be used to learn action selection [6].
Moreover, research on action-specific perception proposes
that people perceive the environment in terms of their abil-
ities to act on it, which in fact help the perceivers to plan
future actions, [7]. This equally holds from the perspective
of Human-Robot Interaction (HRI), mere existence of an
affordance (in its typical notion of action-possibilities) is
not sufficient, more important is that the agent should be
able to perceive and ground it with their abilities. In [8], the
idea to integrate robots and smart environments along with
the Gibson’s notion of affordances has been presented. The
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Fig. 1: In a typical human-robot interaction scenario, various
types of affordances exist, e.g. some objects offer to be
picked, some to put-on something, whereas some agents can
afford to give or to show something to someone. External
sensors such as Kinect mounted on the ceiling are not shown.

aim is to provide mechanisms by which such system, which
the authors term as Peis-Ecology (Ecology of Physically
Embedded Intelligent Systems, such as one shown in fig.
1) may gain awareness of the opportunities, which are
available in it, and use this awareness to self-configure and
to interact with a human user. In this paper, we will extend
this idea from the perspective of day-to-day human-robot
interactive tasks, by incorporating the notions of perspective
taking and effort, to make the robot agent and effort based
affordance-aware. We are essentially interested in the aspect
of computing different types of affordances and integrating
them in a unified framework.

In robotics, affordance has been viewed from different
perspectives: agent, observer and environment, [9], studied
with respect to object (e.g. for tool use [10]) and location
(e.g. for traversability [11]). In [12], linguistic instruction
from the human has been grounded based on the affordances
of the objects, i.e. the services they provide. In [13], the
robot learns self affordance, i.e. action-effect relation of its
movement on its own body. In [14], the proposed inter-
personal maps relate the information about the robot’s own
body with that of other robot, and serve for imitating other’s
sensory-motor affordances. In, [15], we enriched the notion
of affordances by Agent-Agent Affordance for HRI tasks,
based on the reasoning about what an agent affords to do
for another agent (give, show, hide, make accessible, ...),
with which effort level and where.

On the other hand, perspective taking- what others see,
reach, do - is an important aspect of social interaction, [16],
[17], [18], [19], [20]. Hence, perceiving the self-centered
affordances are not sufficient, the robot should also be able to
perceive the affordances from the other agents’ perspectives.
Further, in [21], we have argued that perspective taking
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TABLE I: Effort Classes for Visuo-Spatial Abilities

Effort to Reach Effort to See 
No_Effort No_Effort 

Arm_Effort Head_Effort 
Arm_Torso_Effort Head_Torso_Effort 

Whole_Body_Effort Whole_Body_Effort 
Displacement_Effort Displacement_Effort 

No_Possible_Known_Effort No_Possible_Known_Effort 
 

Effort Level 
Minimum: 0 
 

Maximum: 5 
 

Effort to Reach Effort to See 
No_Effort No_Effort 

Arm_Effort Head_Effort 
Arm_Torso_Effort Head_Torso_Effort 

Whole_Body_Effort Whole_Body_Effort 
Displacement_Effort Displacement_Effort 

No_Possible_Known_Effort No_Possible_Known_Effort 
 

Effort Level 
Minimum: 0 
 

Maximum: 5 
 

from the current state of the agent is not sufficient. In
fact analyzing effort plays an important role in cooperation.
Hence, in [21], we have developed the notion of perspective
taking from a set of states attainable by putting a set of
efforts [15], e.g. turn, lean, etc. In this paper, it will serve to
incorporate the notion of effort in affordance analysis.

Novelty: The novelty of the paper is to geometrically
ground and merge the two complementary aspects of affor-
dance: Agent-Object and Agent-Agent, further by incorporat-
ing the notions of perspective taking and effort analysis. We
will present a unified framework as the concept of Affordance
Graph. This will elevate the robot’s awareness about not only
the capabilities of itself but also the action potentialities of
other agents for a set of basic human robot interactive tasks:
give, take, pick, hide, show, make accessible, put on, put into,
etc. The graph encodes ’what’ and ’where’ aspects for all
the agents, which are identified as important components for
joint-task, [22]. Hence, the Affordance Graph will facilitate
an affordance-aware human robot interaction, with various
potential applications in day-to-day life: achieving joint-
task, cooperation, grounding interaction and changes, playing
human-interactive games, etc.

In the next section, for continuity, we will briefly present
our earlier works on human-aware effort hierarchy and
agent-agent affordances (Taskability Graph). In sec. III-A,
we introduce the novel concept of Manipulability Graph,
which encodes agent-object affordances. Taskability Graph
together with Manipulability Graph will be used to derive
the novel notion of Affordance Graph in sec. III-B. Sec. IV
presents the experimental result and analysis on constructing
and updating such graphs. In sec. V, we will discuss a couple
of implemented potential applications of Affordance Graph.

II. BACKGROUND WORK

A. Human-Aware Effort Analysis: Qualifying Effort

For a robot to interact and cooperate with us in complete
harmony, it should be able to reason on efforts at the human-
understandable level of abstraction. In [21] we have argued
that perspective taking analysis only from the current state of
the agents is not sufficient. Following this, in [15], we have
conceptualized qualitative effort classes, as shown in table I.
We have also proposed comparative effort levels, which of
course can differ depending upon the requirement and con-
text. In fact these are based on the body parts involved and
motivated from human movement and behavioral psychology
studies on reach taxonomy, [23], [24], see fig. 2.

Fig. 2: Taxonomy of reach actions: (a) arm-shoulder reach,
(b) arm-torso reach, (c) standing reach.

Fig. 3: Constructed Taskability Graphs (see [15]), for differ-
ent tasks, for the actual scenario of fig. 1. Given the criterion
of mutual-effort balancing and restricting desired maximum
individual effort level to Arm Torso Effort. Point clouds show
potential places and sphere size shows required effort level.

B. Taskability Graph: Encoding Agent-Agent Affordances

As mentioned earlier, in [15] we have introduced the
notion of agent-agent affordance and present the concept of
Taskability Graph. The construction of Taskability Graph is
based on the Mightability Maps, [21]. Mightability stands
for “Might be Able to...”. In short, Mightability Analysis is
visuo-spatial perspective taking, not only from the current
state but also from a set of different states achievable by the
agent. This enables the robot to find effort-based potential
places to perform a task between two agents. By using
this, Taskability Graph is constructed by finding agent-agent
affordances among all the agents, [15]. Taskability Graph
encodes what all agents in the environment might be able to
do for all other agents, with which levels of mutual efforts
and at which places. Taskability Graph corresponding to the
actual scenario of fig. 1 is shown in fig. 3. Currently 4 basic
tasks are encoded: Make Accessible, Show, Give and Hide,
as shown by the 4 layers of edges, in bottom up order. Please
see [15] for the details.

We represent a Taskability Graph for a task as a directed
graph TGtask:

TGtask = (V (TG) , E (TG)) (1)

V (TG) is set of agent vertices in the environment:

V (TG) = {v (TG) |v (TG) ∈ AG} (2)

where AG is the set of agents in the environment. E (TG)
is set of edges between an ordered pair of agents:

E (TG) = {e (TG) |e (TG) = 〈vi (TG) ,

vj (TG) , eprop〉 ∧ vi (TG) 6= vj (TG)}
(3)
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eprop is property of an edge:

eTG
prop =

(
CS,ECTG = 〈ECag

ab |∀ag ∈ {source (e) ,
target (e)} ∧ ∀ab ∈ RelAbag〉)

(4)

where CS is candidate space where potentially the task could
be performed. ECTG is a list of enabling condition. In
the current implementation each enabling condition ECag

ab

corresponds to the required effort for an ability ab ∈ RelAb,
for an agent ag. Currently, we focus on two basic abilities,
to see and to reach, hence, RelAb = {see, reach}.

Hence, currently an edge of a Taskability Graph encodes:

eTG
prop =

(
places,

〈
effort target agent

see , effort target agent
reach

effortperforming agent
see , effortperforming agent

reach

〉) (5)

III. METHODOLOGY

A. Manipulability Graph: Encoding Effort based Agent-
Object Affordances

In this section we will introduce the first contribution of
this paper: Manipulability Graph. This will encode what an
agent might be able to do with an object, and with which
effort level.

Complementary to the Taskability Graph, which encodes
agent-agent affordances, Manipulability Graph represents
agent-object affordances. Currently, we have implemented
four such affordances: Touch, Pick, PutOnto and PutInto.
We have chosen them because they are the most used basic
action primitives within our domain of day-to-day pick-
point-and-place type tasks. We regard Pick as the ability
to See ∧ Reach ∧ Grasp, whereas Touch as the ability to
just See ∧ Reach, PutOnto as the ability to See ∧ Reach
the places on horizontal surface, PutInto as the ability to put
something into some container object, i.e. to See ∧ Reach
the places belonging to horizontal open side of an object.

We are using a dedicated grasp planner, built in-house
[25], to compute a set of grasps for 3D objects, using the
robot’s gripper and an anthropomorphic hand. The robot
computes and stores the set of such grasps for each new
object it encounters. Then based on the environment, the
grasps in collision are filtered out. An agent can show
reaching behavior to touch, grasp, push, hit, point, take out
or put into, etc., hence, the precise definition of reachability
of an object depends upon the purpose. So, at first level of
finding reachability, we chose to have a rough estimate based
on the assumption that if at least one cell belonging to the
object is reachable, then that object is said to be Reachable.
See [21] for our approach to find the reachability of a cell
in the workspace. Similar is done for finding visibility of
an object. However, using [26] such reachability is further
tested for execution if required, based on IK and feasibility of
a collision free trajectory. Similarly, a pixel based visibility
score is computed, if required, by using [20].

Similar to Taskability Graph we represent a Manipulability
Graph for a task as a directed graph MGtask:

MGtask = (V (MG) , E (MG)) (6)

V (MG) is set of vertices representing entities ET = AG∪
OBJ (OBJ is set of objects in the environment):

V (MG) = {v (MG) |v (MG) ∈ AG ∨ v (MG) ∈ OBJ} (7)

E (MG) is set of edges between an ordered pair of agent
and object:

E (MG) = {e (MG) |e (MG) = 〈vi (MG) , vj (MG) ,

eMG
prop

〉
∧ vi (MG) ∈ AG ∧ vj (MG) ∈ OBJ}

(8)

eMG
prop is property of an edge of the Manipulability Graph:

eMG
prop =

(
CS,ECMG = 〈ECag

ab |ag = source (e)

∧ ∀ab ∈ RelAbag〉)
(9)

Note that each edge in Manipulability Graph contains the
list of enabling condition for a single agent (see eq. 10),
belonging to the source vertex, because the target vertex
belongs to an object. Whereas, each edge of Taskability
Graph has enabling conditions for two agents (see eq. 5). CS
is the candidate search space in which the feasible solution
will fall. Depending upon the type of the task, it could be the
set of collision free grasp configurations for Pick, or it could
be the visible and reachable places belonging to a plane for
PutOnto, to an open side of the container for PutInto or
to an object’s surface for Touch. Hence,

eMG
prop = (CS ∈ {grasp configurations, places}〈
effortperforming agent

see , effortperforming agent
reach

〉) (10)

In the current implementation, if there exist at least one
collision free grasp, and the object is reachable and visible
with a particular effort level of the agent, then it is said that
the agent can afford to pick the object with that effort level.

We have equipped the robot with the capability to au-
tonomously find horizontal supporting facet and horizontal
open side, if exist, of any object. For this, it extracts
horizontal planes by finding the facet having vertical normal
vector, based on the convex hull of the corresponding 3D
model of the object. Then such planes are uniformly sampled
into cells and a virtual small cube (currently of dimension
(5cm x 5cm x 5cm)) is placed at each cell. As the cell already
belongs to a horizontal surface and is inside the convex hull
of the object, therefore, if the placed cube collides with the
object, it is assumed to be a cell of support plane. Otherwise,
the cell belongs to an open side of the object, from where
something could be put inside. With this method the robot
could find, which object offers to put something onto it
and which offers to put something inside it and which are
the places to do these. This avoids explicitly indicating the
planner about the supporting objects, such as table, box-top,
and the container objects, such as trashbin.

Fig. 4a shows the automatically extracted places where
the human in the middle can put something onto with
Arm Effort . Note that the robot not only found the table
as the support plane, but also the top of the box. Similarly
in fig. 4b, the robot autonomously identified the pink trashbin
as a container objects having horizontal open facet. And it
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(a) Affordance for PutOnto (b) Affordance for PutInto

Fig. 4: Agent-Object Affordances

also found the places from where the human on the right can
put something inside it.

Manipulability Graph for an agent-object affordance type
is constructed by finding least feasible effort for each agent,
satisfying the task criteria. Again, the Mightability Analysis
serves to find the least feasible effort, as it performs visuo-
spatial perspective taking from multiple states of the agents.

Fig. 5a shows Manipulability Graphs, for Pick and PutInto
affordances. For clarity, we do not superimpose Touch and
PutOnto affordances. Each edge of Manipulability Graph
shows the agent’s least feasible effort to see and reach the ob-
jects, fig. 5b. Different maximum desired effort levels can be
assigned for different affordances and agents for constructing
the graph. To show this, we provided the maximum allowed
effort for Human1 as Displacement Effort , whereas for
PR2 robot and Human2, it was Torso Effort . Hence, the
resulted graph shows that Human1 and Human2 both can
pick Obj2, with different effort level. For Human1, the
planner is able to compute collision free placement positions
and configurations around the object, fig. 5c, from where
he can reach, see and grasp it. However, the graph shows
that Human1 can put something into the trashbin on his
right, whereas Human2 cannot, because of his more restricted
maximum effort level. An interesting side note, relatively
smaller green sphere on Human1-Obj2 edge encodes that
Human1 can see Obj2 directly, hence more easily than
Human2, who needs to turn head i.e. to put Head Effort.

Note that there is no edge from PR2 to Obj1. Actually
PR2 can reach and see, i.e. touch Obj1, however, there exist
no collision free grasp configuration for its gripper to pick
it, because of the object placement and its gripper size.
However, we will see in section IV, that changing Obj1
position facilitates the Pick affordance of PR2 for this object.

B. Affordance Graph

By combining a set of Taskability Graphs TGr and a set
of Manipulability Graphs MGr for a set of affordances,
we have developed the concept of Affordance Graph (AfG).
Hence, the Affordance Graph will tell the action-possibilities
of manipulating the objects among the agents and across the
places, along with the information about the required level
of efforts and the potential spaces.

Affordance Graph (AfG) is obtained as:

AfG =
⊎

∀tg∈TGr

TGtg ]
⊎

∀mg∈MGr

MGmg (11)

(a) Manipulability Graph for Pick and PutInto affor-
dances from the perspective of different agents

(b) Single edge description (c) Human1 affordance to pick Obj2,
requires Displacement Effort .

Fig. 5: Manipulability Graph, taking into account different
maximum allowed effort levels for different agents

] is the operator, which depending upon the affordance
type, appropriately merges a Taskability or Manipulability
Graph in Affordance Graph. As will be explained below it
will create some virtual edges to ensure one of the desired
properties to be maintained, that is between any pair of
vertices of the Affordance Graph, there should be at most
one edge. Further, it also assigns proper labels, weights and
directions to the edges, which will become evident from the
discussion below.

Figure 6 shows the Affordance graph of the current
scenario. The ] operator uses following set of rules for
constructing Affordance Graph:

(i) Create unique vertices for each agent and each object
in the environment.

(ii) For each edge Et of Taskability Graph from the per-
forming agent PA to the target agent TA, introduce an
intermediate virtual vertex Vt and split Et into two
edges, E1, connecting PA and Vt; and E2, connecting
Vt and TA.

(iii) The direction of E1 and E2 depends upon the task:
(a) If the task is to Give or Make-Accessible, E1 will

be directed inward to Vt and E2 will be directed
outward from Vt towards TA.

(b) If the task is to Hide or Show, E2 will also be
directed towards Vt from TA. This is to incorporate
the intention behind such tasks, i.e. the object is
not expected to be transported to TA, and E2 is for
the purpose of grounding Vt to corresponding TA.

(iv) Assign meaningful symbolic labels to each of the new
edges E1 and E2. For example, if Et belongs to Give
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Fig. 6: Constructed Affordance Graph of the real world
scenario of fig. 1. It encodes effort-based, agent-object and
agent-agent affordances for a set of basic HRI tasks.

task, then label E1 as To Give and label E2 as To Take;
if Et belongs to Make-Accessible task, then label E1 as
To Place and label E2 as To Pick and so on.

(v) For each edge Emt of Manipulability Graph to Pick an
object, an edge is introduced in the Affordance Graph
directing from the object to the PA.

(vi) For each edge Emp of Manipulability Graph for PutInto
and PutOnto affordances, an edge is introduced in the
Affordance Graph from PA to the objects.

Rule (iii) encodes potential flow of an object between two
agents whereas rules (v) and (vi) encode the possible flow of
an object to an agent, hence sometime we refer Affordance
Graph also as Object Flow Graph.

Each edge has a weight depending upon the efforts en-
coded in the corresponding edge of the parent Taskability
or Manipulability Graph. There could be various criteria to
assign such weights. We will discuss below one such choice.

The weights shown by Blue spheres in the Affordance
Graph of figure 6 have been selected based on the maximum
effort of the relevant abilities to see and/or reach. For
example, if the edge corresponds to the Give task, the highest
effort between reach and see, encoded in the Taskability
Graph will be assigned for both the edges: performing agent,
PA-Vt (V t is the virtual vertex as discussed above) and target
agent, Vt-TA. But, if the task is to Show, then for the edge PA-
Vt still the highest between the reach and see effort will be
assigned, however, for the edge Vt-TA, the weight is assigned
as effort to see. This is because TA is not required to reach the
object. In fact, the relevant abilities for a task are provided
to the system a priori, which could also be learnt for basic
HRI tasks as we begin to show in [27].

The novel aspects of Affordance Graph are: (i) Incor-
porates Perspective Taking and Effort with Affordances in
an unified concept. (ii) Provides a graph based framework
to query about affordances by simply using existing graph
search algorithms. (iii) Allows playing with edges, vertices,
weights, to guide the graph search. Hence, facilitates in-
corporating a range of social constraints, desires, prefer-

(a) Human’s new affordance edge (b) PR2’s new affordance edge

(c) Need whole body effort (d) Actual verification

Fig. 7: Changes in the environment and its effect successfully
encoded in the updated Manipulability Graph.

ences, effort criteria, in finding desirable/suitable affordance
potentialities. (iv) Supports in a range of HRI problems,
such as grounding interaction and changes, generating shared
cooperative plans, etc., as will be demonstrated in section V.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We have tested our system on real robot PR2.The robot
uses Move3D [28], an integrated planning and visualization
platform. The robot, through various sensors, maintains and
updates the 3D world state in real time. For object identi-
fication and localization, tags based stereovision system is
used. For localizing humans and tracking the whole body,
data from Kinect (Microsoft) sensor is used.

Fig. 7 shows effect of the environmental changes on the
Manipulability Graph. We have displaced Obj1 of fig. 5a
behind the box, as shown in fig. 7c. There exists a new
edge in the updated corresponding Manipulability Graph,
as shown in fig. 7a. Earlier there was no edge in the
Manipulability Graph of fig. 5a because of non-existence of
collision free placement of Human1 around Obj1, even with
Displacement Effort . In the changed situation, the robot
finds a feasible Human1 - Obj1 Pick affordance. Thanks to
the Mightability Analysis, it finds the least feasible effort
to pick Obj1 as Whole Body Effort , fig. 7c, and that the
agent will be required to stand up and lean forward, which
has been also verified by the actual agent, fig. 7d.

Next, we placed Obj1 at the edge of the table, which
facilitated collision free grasp by the PR2 gripper. The
updated corresponding Manipulability Graph automatically
contains a new edge for PR2 - Obj1 Pick affordance, fig. 7b.

Table II shows the computation time for different compo-
nents to obtain the Affordance Graph of fig. 1. Note that it is
for the first time creation of the graphs, which is acceptable
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TABLE II: Computation Time in s

3D grid size: 60 x 60 x 60 cells, each of dimension 5 cm x 5 cm x 5 cm

3D grid creation and Initialization (one time process) 1.6

Computation of Mightability Analysis (provided 3D grid
initialization is done) 0.446

Computation of Taskability Graph (provided Mightability
Analysis is done)

1.06

Computation of Manipulability Graph (provided Mightability
Analysis is done

0.14

Computation of Affordance Graph (provided Taskability and
Manipulabity graphs are calculated) 0.002

To obtain the shared plan to clean the table (see fig. 8a
(provided Affordance Graph has been created) 0.01

for a typical human-robot interaction scenario. As during
the course of interaction or some action, generally a part of
the environment changes, hence selectively updating these
graphs will be even faster. However, we are aware about
the exponential complexity of the system, with significantly
increased number of affordances, agents and objects. There-
fore, the future work is to interface it with our supervisor
system [29], which will decide which part, and how much
of these graphs will be updated depending upon the changes,
situation and requirements.

V. POTENTIAL APPLICATIONS

A. Generation of cooperative shared plans

As long as the robot reasons only on the current states
of the agents, the complexity as well as the flexibility of
cooperative task planning is bounded. If the agent cannot
reach an object from the current state, it means to the planner
that the agent cannot manipulate that object. But thanks to
the Affordance Graph, our robot is equipped with agents’ rich
effort-based multi-state reasoning of action potentialities. It
facilitates incorporating effort in cooperative task planning
and allows the planner to reason beyond the current state of
the agent. Moreover, while querying the graph, by altering
the nodes, weights and edges, different types of constraints
can be incorporated, such as, agent busy, tired, bored, back
pain, neck pain, cannot move, equally supporting, etc.

For example, consider the task of cleaning the table by
putting all the manipulable objects of fig. 1 into the trashbin.
To solve this, the Affordance Graph has been used to find
the shortest path between each object’s node and the node
which corresponds to the trashbin. We assume that the agents
are tired and don’t want to stand up or move. This can
be directly incorporated by restricting the agents’ maximum
desired effort as Arm Torso Effort . To reflect this, the
edges having higher weights than Arm Torso Effort have
been assigned an infinite weight, hence avoiding any path
through them. The resulted object-wise clean the table shared
cooperative plan has been shown in fig. 8a, restricting the
individual efforts to Arm Torso Effort . Last row of table
II shows that once we have the Affordance Graph, finding
the solution for such tasks is very quick, 0.01s to obtain the
plan of fig. 8a.

(a)

(b)

Fig. 8: Generated shared plan for clean the table.
(a) With maximum effort level of all the agents as
Arm Torso Effort . (b) Modified plan for small tape in case
Human1 is allowed to put upto Whole Body Effort .

Next, we have tried the framework by increasing Human1
willingness to put Whole Body Effort . Then the sub-plan
to trash the small tape was changed as shown in fig. 8b.

Note that these examples demonstrate that various require-
ments could be easily incorporate in the presented graph
based framework. In principle a higher level robot supervisor
system, such as SHARY [29], or the high-level task planner,
such as HATP [30], will take such decisions on preferences
based on the requirements and adjust the parameters.

B. Grounding Changes, Analyzing Effects and Guessing
Potential Actions, Cooperation and Efforts

Based on Affordance graph, a set of hypotheses could be
generated about potential agents and actions, which might
be responsible for some changes in the environment in the
absence of the robot. Consider at a particular instance of
time the state of the environment observed by the robot
was s0, as shown in fig. 9a. The robot went away for a
moment, meanwhile the humans made some changes in the
environment. Now the robot is back and observes the new

(a) (b)

Fig. 9: (a) Initial environment state, s0. (b) The changed
state, s1. During the course of changes the PR2 robot was
absent. Now, from PR2’s perspective, Obj3 is lost, whereas
the positions of Obj2 and Obj1 have been changed. The robot
will try to guess the lost object’s position as well as to ground
the changes in terms of agents and actions.
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Fig. 10: Modified Affordance Graph to ground the changes
of fig. 9. For the lost objects, the reasoner also guesses one
feasible placement and orientation (in this scenario, vertex
v4), which might be making the object invisible to the robot.

state of the environment as s1, fig. 9b. The problem of
grounding the changes is: given 〈s0, s1〉, find 〈C,E,A〉,
where C is the physical changes, E is the effect of C on
abilities and affordances and A is the potential sequence of
actions behind such C.

To analyze E on the agents abilities, the reasoner com-
pares the computed Manipulability Graphs corresponding to
the states s0 and s1, and generates a set of comparative
and qualifying facts, such as effort increased to see an
object by an agent and so on. However, we will discuss
the more interesting aspects: guessing lost objects’ positions,
and grounding changes to potential agents and actions. Lost
objects are those, which are no more visible in state s1 form
the robot’s current perspective, such as Obj3 of figure 9a.

First of all, the reasoner adds state s0’s positions of those
objects, which are now displaced in state s1, in a list of
dummy object vertices, DV . Then, to guess a position of
lost object, it uses the Taskability Graph for hide affordance
and finds the agents who might potentially hide the object
from the robots as well as the corresponding potential places.
Currently, it is explicitly provided to the reasoner that the
object could be lying on wooden furniture (table, shelf, in
our current scenario). Hence, for the current example, it
guessed a possible placement and orientation of the lost
object Obj3 behind the white box, as indicated in figure
10. This guessed position is also inserted in the list of
dummy object vertices DV . Then, DV is inserted into
the set of vertices belonging to agents (AG) and objects
(OBJ), to get GV = {AG ∪ OBJ ∪ DV }. Finally, using
GV , Manipulability Graph Taskability Graph and Affordance
Graph (AfG1) are obtained. Hence, this graph merges both
the states, s0 and s1 as well as the guessed positions (if any)
in a single hypothetical state.

As the robot was not responsible for the changes, the
reasoner removes the outgoing edges from the robot vertex
in (AfG1). Then for each displaced object Objd, a pair of
vertices 〈vs, vg〉 is found from (AfG1), where vs ∈ DV

and vg correspond to the positions of Objd in s0 and s1.
Now, simply finding a shortest path (AfG1) for 〈vs, vg〉,
the reasoner can guess about the agent, the action and the
effort behind the change for Objd position.

In the current example, the set of dummy vertices found
by the reasoner is DV = {v1, v2, v3, v4}, as encircled
in red in figure 10. To get possible explanations be-
hind the changes, the set of vertices pairs obtained are
{〈v1, Obj1〉, 〈v2, Obj2〉, 〈v3, v4〉}. Note that, 〈v3, v4〉 cor-
responds to the lost object, Obj3. Below we show the
partial output of the explanations produced by the rea-
soner. (Names mapping: Obj1 : GREY TAPE, Obj2 :
WALLE TAPE, Obj3 : LOTR TAPE).

== POSSIBLE EXPLANATIONS == bb interpretation cc
• LOTR TAPE Moved:

LOTR TAPE GRASP PICK by HUMAN2, GIVE
at a place, TAKE by HUMAN1, PUT ONTO at a place
bb Human2 picked the object and gave it to Human1,
then Human1 placed it at its new position, which in fact
was guessed by the robot, as it is a lost object. cc

• WALLE TAPE Moved:
WALLE TAPE GRASP PICK by HUMAN2, GIVE
at a place, TAKE by HUMAN1 PUT ONTO at a place
bb Human2 picked the object and gave it to Human1 and
then Human1 placed it at its new perceived position cc

• GREY TAPE Moved:
GREY TAPE GRASP PICK by HUMAN1, PUT ONTO
at a place
bb Human1 picked and placed it at its new position cc

Above result shows the capability of the system to infer the
potential cause of changes with a possible explanation. This
is based on different assumptions about the agents and their
willingness cooperate and put efforts, hence not necessarily
be guessing the actual course of actions. Depending upon
various factors, such as the criteria on effort used for com-
puting Taskability and Manipulability Graphs, the criteria for
assigning weight to the edges of Affordance Graph, and the
criteria to find the path in the Affordance Graph, the resultant
path in the graph could be different and could imply different
assumption for guessing the actions. In the current example,
as the criteria was effort balancing and the resultant shortest
path was minimizing overall effort, hence the explanation
in some sense assumes that whenever possible and feasible,
agents will cooperate to achieve the changes. However, that
is how we also guess, based on some assumptions about the
agents, their states and behaviors.

A remark on planning complexity: It is important to
discuss about the complexity of such task planning. Such
graphs are meant for a given environment state si, aiming to
provide rich information about various types of affordances
in the given situation. Therefore, while finding cooperative
shared plan, transition from one vertex to another will make
some changes in the environment state and result into a new
state sn. Hence, the graphs computed in si might no longer
be representing the actual affordances in sn, and a partial
or full re-computation might be needed, before searching for
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the next segment of the plan. This might lead to exponential
complexity. In our example scenarios, we assume that as
the agents’ relative positions are not changing significantly,
and the objects’ are not large enough to significantly affect
the Taskability Graphs from one state to another. Hence, we
relaxed the need of updating these graphs and relying on the
plan entirely produced by searching in the single graphs. As
such graphs are fast to compute, and updating them will be
even faster. It is interesting research challenge to design and
develop algorithm, which intelligently updates such graphs
(completely or partially), when they are used for planning.

C. Supporting Higher level symbolic task planners

Even with the limiting assumption discussed above, such
graphs could provide the high-level task planners, such as
[30], with the flexibility to choose from different feasible
sub-actions and the associated cost, at different stages of
planning. Our research is moving in this direction [31].

D. Grounding interaction, enhancing human robot interac-
tion, proactivity and action recognition

The graph can be used for querying during various human
robot verbal communication, grounding referred objects,
synthesizing proactive behaviors, etc. Moreover, knowing
the affordances possibilities can help in predicting where
and what part of other’s action to efficiently or proactively
involve in joint-task or cooperation, [22]. We are working in
these research directions as well.

VI. CONCLUSION

We have geometrically grounded agent-object affordances
from the HRI perspective, and introduced the notion of
Manipulability Graph. By merging this with the Taskability
Graph, introduced in our earlier work to encode agent-agent
affordances, we presented a new kind of graph, Affordance
Graph, which introduces the aspects of Perspective Taking
and Effort in Affordance Analysis. This encodes the action
potentialities of the agents for a set of basic human-robot
interactive object manipulation tasks. In fact, it elevates the
robot’s knowledge about effort-based affordances for agents,
objects and tasks and will serve as the basis for developing
more complex socio-cognitive behaviors. Fast updating and
quick querying of the graph, make it feasible for almost real-
time human-robot interaction. We have shown its use for
generating shared cooperative plans and grounding changes
and discussed other applications and pointers of future work.
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