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Abstract— In this paper, we describe a novel approach in
fusing optical flow with inertial cues (3D acceleration and 3D
angular velocities) in order to navigate a Micro Aerial Vehicle
(MAV) drift free in 4DoF and metric velocity. Our approach
only requires two consecutive images with a minimum of three
feature matches. It does not require any (point) map nor any
type of feature history. Thus it is an inherently failsafe approach
that is immune to map and feature-track failures. With these
minimal requirements we show in real experiments that the
system is able to navigate drift free in all angles including
yaw, in one metric position axis, and in 3D metric velocity.
Furthermore, it is a power-on-and-go system able to online self-
calibrate the inertial biases, the visual scale and the full 6DoF
extrinsic transformation parameters between camera and IMU.

I. INTRODUCTION AND RELATED WORK

Micro Aerial Vehicles (MAVs) have seen an increased
popularity in recent years due to a wide range of new applica-
tions in reconnaissance, surveillance, search and rescue, and
environmental monitoring. In particular, multicopter systems
(e.g. quadrotors) have a distinct advantage in their hovering
capabilities and agility to counteract strong winds. This
agility, however, comes at a cost: quadrotors are inherently
unstable in flight and require good state estimation and con-
trol to maintain a position or to perform defined maneuvers.
Navigating such a system is particularly challenging since
there is no “hold” function as compared to ground vehicles
that can be entered as a safety regime (e.g. holding all
actuators will not result in zero velocity but in a crash).
Therefor, multi-rotor MAV require constant and accurate
state estimation and control. Furthermore, a misalignment
to gravity not only results in a velocity vector but in an
acceleration. Similarly, simply integrating IMU accelerations
for position hold will result in a crash due to noise and bias
terms on the accelerometers. A minimal requirement to keep
a quadrotor airborne is to have a continuous metric velocity1

and a precise gravity aligned attitude estimate. The MAV
may still drift in position and yaw, however, given an obstacle
free area, the vehicle remains airborne.

There is a large body of work for indoor MAV control
using motion tracking systems [1], [2], [3] and for outdoor
operations using GPS signals [4], [5]. In contrast to these
approaches that depend on external positioning information,
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1if the velocity estimate is not metric, the controller cannot tell if the
vehicle drifts with 1m

s
or λ∗1m

s
. This results in oscillation and instability.

this paper focuses on MAV control in environments where
an external tracking setup is infeasible (e.g. large outdoor
areas) and GPS signals may be corrupted or unavailable (e.g.
in cities, caves etc.).

A. Control and Navigation Based on Maps

A popular approach is to control and navigate MAVs based
on maps without the need of a motion capturing system or
GPS. This is often done using known markers, pre-built maps
or maps built on the fly using SLAM or keyframe based
visual odometry (VO) techniques. Such approaches usually
control the vehicle in its 6DoF pose (position and attitude).
The drift in position and yaw is either very low or even
eliminated by using known, world-fix structures. Sensors that
are commonly used for map generation are laser scanners
[6], [7] or cameras incorporating known markers [8], [9]
or SLAM/VO techniques [10], [11]. Since laser scanners
are still too heavy and power hungry for small quadrotor
systems, our work focuses on vision based approaches.
Common to all approaches using a map for motion estimation
is, that the map can get corrupted or lost. In such a case
recovery is difficult if not impossible and the vehicle is prone
to crash.

B. Control and Navigation Without Maps and Feature His-
tory

In order to avoid the issue of a map loss, we follow
the approach of not having any type of feature history
except the feature matches between two consecutive images:
i.e. optical flow (OF). A history free approach augments
the algorithms robustness due to the independence on past
readings. OF approaches without including 6D inertial mea-
surements are presented in [12], [13]. While already showing
the capabilities of OF for MAV navigation, these approaches
act on a reactive manner to keep the vehicle away from
ground or from obstacles. Reactive control to position-keep
or trajectory-navigate a micro air vehicle is not sufficient
since the unavailability of metric information can result in
instability of these inherently unstable systems.

More recent work includes 6D inertial reading and suc-
cessfully estimates not only the metric velocity [14], [15] but
also inertial biases inter-sensor transformations and a gravity
aligned attitude of the MAV [16] - the minimal requirements
in order to keep a MAV airborne.
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C. Full Information Acquisition for Complete State Estima-
tion

Our work is a continuation of previous work in [16]
with the novelty that we use the full information provided
by OF and inertial readings to achieve a complete vehicle
state estimation not discarding any information. The main
contribution of this work is to show in real-world tests that:

• we can estimate the metric distance to the over-flown
terrain using only OF (i.e. only two consecutive images)
and inertial readings. This directly leads to robust,
metric terrain-following capabilities.

• with OF and inertial readings only, it is additionally pos-
sible to estimate the terrain inclination towards gravity.
This leads to the elimination of the global yaw drift and
enables the MAV to navigate in 3D terrain.

• a concise analysis for the visual scale propagation in
the Extended Kalman Filter (EKF) framework leads to
improved results compared to our previous.

Compared to commercial products, our approach does not
require an active sensor (e.g. ultra sonic altimeter). This
reduces the weight and power consumption of the overall
sensor suite. More important, our approach does not require
a gravity aligned ground plane for theoretically correct
functioning. In fact, our approach gains on performance in
inclined terrain as explained later.

The remainder of the paper is organized as follows. In
Section II we briefly describe the computation of the optical
measurements used later in the EKF framework. These
measurements are the arbitrarily scaled 3D camera velocity
vector and the terrain plane-parameters in the camera frame.
Section III describes our EKF framework showing the ca-
pability of additionally estimating the terrain inclination and
metric terrain distance to the MAV. We also discuss here
the novel approach for the visual scale propagation within
the EKF. Section IV presents the real world results to show
the functioning of the proposed approach. We conclude the
paper in Section V.

II. COMPUTATION OF OPTICAL MEASUREMENTS

This section is dedicated to the theoretical background
on how to compute the scaled visual 3D velocity vector,
the terrain inclination as perceived in the camera frame
and the scaled distance from the camera to the terrain.
These measurements will be used in the next section as an
update step of the EKF framework estimating all states of
the system and the terrain. As in our previous work [16]
we make use of the continuous epipolar constraint and the
additional information of the angular velocities measured by
the Inertial Measurement Unit (IMU) to compute the optical
measurements.

A. 3D Velocity Computation up to Unified Scale

As described in [17], the continuous motion of a feature
with respect to the camera is

Ẋ(t) = b~ω(t)cX(t) + ~V (t) (1)

With X being the 3D feature position, ~V the camera ve-
locity, and b~ω(t)c the skew symmetric matrix of the camera
angular velocities. The feature scale factor λ represents the
optical flow of a feature point with X = λ~x, where ~x is
the unit length feature direction vector. Together with its
derivative, we get the continuous epipolar constraint [17]:

~̇xT b~v(t)c~x+ ~xT b~ω(t)cb~v(t)c~x = 0 (2)

Similar to the feature scale factor λ we apply a velocity
scale factor η with ~V = η~v in the above equation. Un-
rotating the optical flow with the angular velocities from
the IMU eliminates the second term in (2) and reduces the
problem to

(b~̇x(t)c~x)T~v = 0 (3)

This equation can be solved for ~v using N features and
SVD. Note, that the complexity of the SVD is only of
dimension three (for the 3D velocity vector ~v). Since any
scaled version of the vector ~v solves (3), we can chose it to
be of unit length without loss of generality.

As suggested in [17] and from (1) with ~ω = 0 using the
IMU any (un-rotated) feature i used in (3) needs to fulfill its
motion equation

λ̇i(t)~xi(t) + λi(t)~̇xi(t) = η~v(t) (4)

Whereas the scale factor λi is different for every feature
(reflecting the 3D structure of the terrain), the velocity scale
factor η is the same for all features.

When stacking all λi, λ̇i, and η into the vector

~λ = [λ1, . . . , λn, λ̇1, . . . , λ̇n, η] (5)

(4) can be rephrased as the SVD problem

M(~x, ~̇x,~v)~λ = 0 (6)

The solution ~λ unifies all scale factors in a consistent
way up to one common scale factor Λ. This is essentially
a continuous triangulation of feature positions since we can
reconstruct the 3D scene up to common scale Λ with

XimetricΛ = λi~xi (7)

We note at this point, that the scene can be of any 3D
structure and that the algorithm is not bound to planar terrain.

Similar to (3) the solution of the SVD in (6) can be
arbitrarily scaled. We first introduce the notion of the terrain-
plane and the computation of its parameters. Then we
propose a specific normalization of the above velocity scale
factor such that we are able to define analytically the dynam-
ics of the common scale Λ later in the EKF framework. Such
an analytic description improves the scale state estimate in
the EKF prediction step.
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B. Terrain-plane Parameter-Computation

The described scene reconstruction with Xi = λi~xi yields
a 3D point cloud representing the 3D structure of the scene
in the camera frame.

We define the term terrain-plane as the plane fitted to this
point cloud by the regression

[~nTtp, dtp][λi ~xi
T , 1]T = 0 (8)

with the normal vector ~ntp and the distance to the origin
(i.e. camera center) dtp.

Furthermore, we denote a terrain as locally reasonably flat
if the regression model of the terrain-plane is locally constant
in a fixed world frame (Fig. 1). Single outlier objects (e.g. a
single tree) can easily be accounted for using robust outlier
rejection methods during the plane fitting process. Features
on such objects, however, are still used for the above velocity
computation. Note, that the terrain is assumed to be locally
flat with respect to the vehicle dynamics. For agile MAVs,
this assumption holds for a large variety of outdoor terrains.

Fig. 1. A shows a locally reasonable flat terrain. That is, when the camera
(black triangle) moves and observes a different part of the terrain (black
line), the plane parameters in the world frame based on the regression of
the triangulated features (red dots) still remain constant. The terrain-plane is
depicted as dashed cyan lines. In B, the plane parameters change when the
camera moves, which violates the assumption of a constant terrain-plane in
the world frame.

Fig. 2 visualizes the different values computed using only
the continuous epipolar constraint and optical flow of two
consecutive images.

Fig. 2. We summarize that the features on the terrain can be reconstructed
in 3D using their specific scale factor and their direction vector λ~x up to a
metric scale factor Λ. A planar regression of these features yields the terrain
plane which is characterized with its normal vector ~ntp and its (scaled)
distance to the camera dtp. On the right, the computation of the optical
flow ~̇x using two consecutive camera frames is illustrated.

C. Scene Depth Normalization

From (6) we know that the body-velocity and terrain plane
distance computation are only correct up to a common scale
factor Λ. For the later estimation of Λ in an EKF framework
with added inertial cues, it is highly desirable to have Λ

constant or to know its continuous motion model. In [16]
we assumed a hovering MAV with a camera always pointing
strictly down and normalized the solution vector ~λ of (6) with
respect to all feature scale factors λi. In practice, the MAV
rolls and pitches with respect to the terrain-plane and never
is exactly hovering.

Using optical flow cues for computing the terrain-plane
parameters, has the advantage of providing the distance dtp
between the camera and the terrain-plane. This distance can
be used as a normalization factor to keep the common scale
factor Λ constant even if the camera attitude with respect to
the terrain-plane changes. With this normalization, we can
calculate the exact motion model for the common scale Λ in
the EKF propagation step.

The normalization

~λn =
~λ

dtp
(9)

renders the change of the common scale Λ inverse pro-
portional to the change of the distance between the camera
and the terrain-plane. As we will see in the next section, this
distance can be computed by only using state variables of
the EKF state vector. This makes it possible to have an exact
propagation model of Λ in the EKF propagation phase.

III. EXTENDED KALMAN FILTER

In the previous section, we showed how to compute the
following visual cues which have an arbitrary but common
scale factor Λ to metric values:

• 3D camera velocity vector (same as in [16])
• terrain plane parameters: normal vector and distance of

the camera to the plane (novel contribution)
We used a novel normalization approach such that we will
be able to express the dynamics of Λ in the propagation
step of an EKF framework using the state vector and inertial
system inputs. The computed visual cues are then used as
measurements in the EKF update step. We focus on our
contributions of the terrain plane representation and the
propagation of Λ and summarize the remaining EKF parts
as standard approaches.

We assume that the IMU inputs have the following model
with bias b and zero mean white Gaussian noise n. We denote
the accelerometer model with subscript a and the gyroscope
model with subscript ω:

ω = ωm − bω − nω , a = am − ba − na (10)
˙bω = nbω , ḃa = nba (11)

The state vector

χ = {piw viw qiw bω ba Λ pci q
c
i α} (12)

contains the IMU-centered MAV position piw, velocity
viw and attitude qiw with respect to the world frame. It
also contains the IMU biases on gyroscopes bω and ac-
celerometers ba, the common visual scale factor Λ and
the 6D transformation between the IMU and the camera
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in translation pci and rotation qci . Thus, we provide a self-
calibrating and so-called power-on-and-go system.

A plane – the terrain plane in this case – is represented
using three parameters: two for the unit normal vector (eleva-
tion α and azimuth β) and one for the distance of the plane to
the origin. Intuition and a thorough non-linear observability
analysis using differential geometry as proposed in [18]
reveal that the azimuth β and the distance of the plane to
the origin are unobservable states. Intuitively, only having a
visual body velocity and the plane parameters in the floating
camera frame as measurements does not anchor the system
to a fix world frame in position and yaw (gravity included in
the IMU readings anchor the system in global roll and pitch).
Hence, the distance of the terrain plane to the world origin
and the system’s position piw are only jointly observable. So
are the systems yaw in qiw and the terrain plane’s azimuth. If
two states are jointly observable it is sufficient to provide a
measurement for one of them to render the other observable.
In our case, we assume that we operate in locally reasonably
flat terrain which keeps the terrain plane locally constant in
the world frame. Hence, without loss of generality, we can
anchor the world frame in the terrain plane such that its
distance to the origin and azimuth vanishes. This directly
renders the system’s global yaw and the system’s position-
dimension perpendicular to the terrain plane observable.
Fig. 3 depicts the setup and frame alignment.

Fig. 3. Frame setup and state definition for the EKF framework. Without
loss of generality, we can lock the gravity aligned world y-axis along the
terrain plane. The terrain plane normal vector can then be described as
nwtp = [cos(α) 0 sin(α)]T in the world frame. The red values are states
estimated in the EKF framework, whereas the blue values are the scaled
visual measurements normalized with our proposed approach aid of the
terrain-plane.

As a result, the MAV can not only keep its metric distance
to the terrain but also keep its full attitude aligned in roll
and pitch with gravity and in yaw with respect to the terrain
plane. This allows advanced terrain following missions in
large environments. We note at this point that we still use
optical flow measurements (i.e. two consecutive images) and
the corresponding IMU readings only. We do not use any
temporal history of features or states. The MAV, of course,
will drift in the position-dimensions parallel to the terrain
plane.

A. System Dynamics

The following differential equations govern the state χ:

ṗiw = viw (13)
v̇iw = CT

(qiw)(am − ba − na)− g (14)

q̇iw =
1

2
Ω(ωm − bω − nω)qiw (15)

ḃω = nbω , ḃa = nba , ṗci = 0, ṗci = 0, α̇ = 0, (16)

where C(q) is the rotational matrix corresponding to the
quaternion q, g is the gravity vector in the world frame,
and Ω(ω) is the quaternion multiplication matrix of ω. The
transformation between camera and IMU (piw, qiw) and the
terrain-plane-vector elevation α are assumed not to change.
We design the filter in its error state for minimal represen-
tation and better handling of the quaternions [19].

Rather than detailing the standard procedure for the error
representation, we focus on the dynamics of the common
scale factor Λ. We could assume a random walk of Λ since
it changes on every optical flow reading. However, due to
our specific normalization in the previous section, we can
express the dynamics of Λ analytically, yielding improved
results compared to the random walk assumption.

We recall that the normalization factor used in the previous
section was the distance dtp from the camera to the terrain
plane (9). We can express the metric representation of dtp
using the states of the system by first expressing the camera
position in the world frame and then projecting this position
along the plane normal vector nwtp

in the world frame in
order to get the metric distance dwtp

dwtp = (piw + CT
(qiw)p

c
i )

Tnwtp (17)

The camera position in the world frame is the IMU
position in the world frame piw plus the IMU-attitude (qiw)
dependent translation between camera and IMU pci expressed
in the IMU frame. Since nwtp

is a unit vector and the
world frame is anchored in the terrain plane up to an
elevation angle and arbitrary azimuth, we can write nwtp

=
[cos(α) 0 sin(α)]T .
dtp being the normalization vector, the visual distance

measurement between camera and terrain plane will always
be dntp =

dtp

dtp
= 1. Furthermore, we defined in (7) the

common scale as pvision = Λpmetric Thus, the further away
the camera moves from the plane the smaller becomes the
common scale factor Λ. More precisely, if the MAV doubles
its distance, Λ will be cut in half. In other words, the change
in percent of the common scale is inversely proportional to
the change in percent of the distance of the camera to the
terrain plane.

The change of the metric distance dwtp is

ḋwtp = (ṗiw)Tnwtp + (piw)T ṅ(α)wtp α̇

+ ˙(pci )
TC(qiw)nwtp

+ (pci )
T Ċ(qiw)nwtp

+(pci )
TC(qiw)ṅwtp α̇

= (viw)Tnwtp + (pci )
T Ċ(qiw)nwtp (18)
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The change in percent is then

dpwtp
=

ḋwtp

dwtp

(19)

Inverting this change leads to the change of the common
scale factor per time-step

Λt+dt =
Λt

1 +
∫ t+dt

t
dpwtp

(20)

Fig. 4 shows the correlation between the scale change
in percent and the inverted camera-to-terrain-plane distance
change in percent.
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Fig. 4. Correlation between the scale change in percent and the inverted
camera-to-terrain-plane distance change in percent. Thanks to our novel
approach in computing the terrain plane parameters aid of optical flow,
we can normalize the optical flow based body velocity readings with
respect to the plane distance. This allows to have a visual scale change
inverse proportional to the plane distance - and in turn this distance can be
represented by the systems state allowing a precise scale prediction step.
The graph is computed based on noisy simulation data.

We compare the ability to correctly propagate the visual
scale factor versus the assumption of the scale factor being
a random walk as done in [16]. Naturally, the scale-change
depends on the camera position with respect to the scene
and never reflects an arbitrary random walk. Fig. 5(a) shows
the EKF-estimated versus true scale factor Λ by applying a
random walk as dynamic model of the scale. We note that for
this result, we hand-tuned the noise parameter of the random
walk to obtain the best result possible. In a different run this
noise parameter would change due to the false assumption
of the scale being a random walk. Fig. 5(b) shows the
same simulation run but using our dynamic model for the
scale propagation in the EKF. Even though the performance
only marginally improves (below 1%) we note that in this
case, there are no hand-tunable parameters for the scale
propagation and the model is valid for any different motion.
It is interesting that in both cases we have constantly an
under-estimation of about 5% with respect to the true scale.
This is subject to further investigation.

B. EKF Measurements
The EKF system has three different measurements: the

scaled camera body velocity zv = η~v, the terrain-plane
normal vector in the camera frame zn = ~ntp and the distance
from the camera center to the terrain plane zd = dntp

= 1.
The measurement equations are:

ẑv = (C(qci )
C(qiw)v

i
w + C(qci )

(bωcpci ))Λ + nzv (21)
ẑn = C(qci )

C(qiw)nwtp
(α) + nzn (22)

ẑd = (piw + CT
(qiw) ∗ p

c
i )

Tnwtp
(α)Λ + nzd (23)
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Fig. 5. a) Performance of the EKF estimate for the visual scale factor
Λ when assuming a random walk as a motion model and b) when using
our proposed motion model. The noise of the random walk is hand-tuned
to obtain the best possible result. The value of this parameter is not valid
anymore for a different simulation run since the motion will be different.
Conversely, our proposed model is valid for all motions. Note the step-wise
behavior in a) versus the smooth, more accurate propagation in b).

where C(qiw) and C(qci )
is the attitude of the IMU and the

rotation between the IMU and camera respectively. All these
measurements are results of the optical measurements based
on solutions of SVD problems. We can use the approach of
the mean squared error (MSE) in statistics to determine the
accuracy of the SVD solution. Thus, the covariance of the
noise vector ~nz = [nzv nzn nzd ] can be computed along
with the optical measurements in Section II.

The above measurement equations can be linearized with
respect to the state vector χ and stacked to the measurement
vector z = [zv zn zd]T which yields ẑ = Hχ. Then, the
standard EKF procedure can be applied

1) compute the residual r = z − ẑ
2) compute the innovation S = HPHT +R
3) compute the Kalman gain K = PHTS−1

4) compute the correction χ̂ = Kr
5) update the covariance matrix

Pk+1|k+1 = (Id −KH)Pk+1|k(Id −KH)T +KRKT .

With this EKF framework we achieved the following:
• fully continuous self-calibrating platform including

IMU biases, visual scale and inter-sensor transformation
between IMU and camera

• terrain plane aligned observable global yaw and metric
distance to this plane effectively eliminating drift in the
position-dimension vertical to the plane

• precise visual scale propagation such that the system
can track even fast scale-changing motions of the MAV

While the first point was already fulfilled in related work,
the second and third points only became possible with our
contribution of computing the terrain plane parameters using
the optical flow cues. First, locking the world frame onto this
terrain plane rendered global yaw and metric distance with
respect to the terrain observable. Second, the scaled visual
distance measurement to the plane allowed to normalize the
visual readings such that the change of the common scale
factor Λ can be recovered using system states.

IV. PERFORMANCE EVALUATION

This section discusses the performance of the proposed
system in a real-world scenario. We implemented our
approach on-board an AscTec Pelican quadrotor that is
equipped with an Intel Atom 1.6GHz processing board and
a global shutter WVGA camera (Fig. 6) using ROS for inter
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process communication. Even though our approach would
run at 50Hz on this platform, for the following experiments,
we ran the camera at 30Hz and the IMU at 1kHz to provide
a safety margin. The excitation of the system has an RMS
value of 0.5m/s2 in acceleration and 0.25rad/s in angular
velocities.

Fig. 6. AscTec pelican equipped with a 1.6GHz Intel Atom single core
processor-board and a WVGA global shutter camera.

While the evaluation of the self-calibration and the metric
velocity estimation was provided in [16], we focus on the
novel contribution of estimating the terrain parameters and
absolute yaw. Fig. 7 shows schematically the setup. For
our experiments we used textured styrofoam plates mounted
rigidly at hand measured angles of 40 and 60 degrees
respectively. The MAV moves at a distance of 1m to 1.5m
above these planes.

Fig. 7. Test setup to evaluate our approach. We use two differently inclined
terrain planes: textured styrofoam plates, 40 and 60 degrees inclination,
manually measured. The MAV was moved across the two planes to show
the different behaviors for different plane inclinations.

We first show the capability of the real system to main-
tain global yaw. The normal vector of an inclined terrain-
plane computed in the camera frame (Section II) contains
a component perpendicular to the gravity vector, which is
in fact the information that renders global yaw observable
in our proposed system. In Fig. 8 we show the evolution
of the estimate in global yaw during 80 seconds where the
MAV’s camera is observing a terrain with an inclination of
60 degrees. Fig. 9 shows the estimated elevation angle of the
plane normal vector. The ground truth for yaw was obtained
from the MAV magnetometer with initial alignment.

In Fig. 10 we compare the quality of this estimate for
two different setups, one in which the terrain has an incli-
nation of about 60 degrees and one with an inclination of
about 40 degrees. In both graphs we see that the system
converges to the correct yaw, however, the terrain which
is inclined by 40 degrees provides much less directional
information perpendicular to gravity. Hence, global yaw is
less constrained. A front looking camera looking at vertical
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Fig. 8. Global yaw estimated by our proposed approach. The observed
terrain has an inclination of 60 degrees. After a wrong initialization, the
filter quickly converges to the correct yaw and remains there without drift.
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Fig. 9. After a wrong initialization, our proposed approach converges to the
true elevation angle of the normal vector of the observed terrain. Note that
the framework estimates the elevation angle of the plane normal vector, not
the plane inclination. Hence the correct 30deg for a 60deg inclined plane.

walls would yield best results. In addition to the yaw, roll
and pitch are also observable (c.f. our previous work in [16]).
Hence our approach is able to estimate the full 3DoF attitude
of the MAV without drift.

Next, we show that we can maintain the distance to the
terrain. By rotating the estimated position from our proposed
EKF framework to the terrain frame using the estimated
inclination angle α, we expect drift in both directions x
and y, whereas z remains constant. In the terrain frame, the
z axis represents the direction of distance vector between
between the MAV and the terrain. The estimated z-position
can directly be used for terrain-following controllers.

Fig. 11 shows the expected results over a terrain with
an inclination of 60 degrees. Note that thanks to the visual
scale estimation in the EKF framework, the vehicle keeps a
constant metric distance to the terrain.

In Section II we stated that our approach for estimating
the terrain parameters requires locally reasonably flat terrain.
Fig. 12 shows that our approach can quickly adapt to

Fig. 10. The quality of the yaw estimation depends on the inclination
of the terrain. The steeper the terrain is, the more is its normal vector
perpendicular to gravity and the better can global yaw be estimated. The
graphs show the yaw estimation over terrains with an inclination of 60 and
40 degrees respectively. The initial large error in the top graph is due to an
offset to the true value in the initialization. The yaw remains unobservable
on flat terrain and is best observable with a front looking camera looking
at walls. This is a well desired aspect for example in inspection tasks.
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changing scenes, even when this requirement is not met.
Quadrotors usually have sufficient motion to make the terrain
parameters quickly converge to the new situation. In our
experiment, the vehicle first observes a terrain with an incli-
nation of 60 degrees (this corresponds to an elevation angle
of 30 degrees), then the terrain changes to an inclination of
40 degrees (elevation angle is 50 degrees).
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Fig. 11. We rotate the estimated global position into the terrain frame with
z being in the direction of the terrain normal vector. Since we compute this
scaled value and estimate the scale in the EKF framework the MAV is able
to maintain this metric distance constant. This is crucial for terrain following
tasks. x and y direction drift, as expected.
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Fig. 12. Even though our approach requires locally reasonably flat terrain,
this plot shows that our approach can quickly adapt to terrains with different
inclinations. In this case, the terrain switched from a 60 degree to a 40
degree inclination after 10 seconds of flight. The plane normal vectors have
an elevation of 30 and 50 degrees respectively.

V. CONCLUSION

In this work, we present an inertial-optical flow approach
which significantly advances the state-of-the-art with respect
to drift free MAV navigation and terrain following.

Based on the ability to estimate metric body velocities
with optical flow and inertial readings, our approach uses the
definition of the continuous epipolar constraint to compute
the terrain parameters and the metric distance between the
vehicle and the terrain. We motivate to use the latter as visual
normalization factor in order to express the dynamics of the
visual scale analytically during the EKF prediction step.

Estimating the metric distance to the terrain plane also
provides the key-information for a controller performing
terrain following. Even though we make the assumption of
navigating in locally reasonable flat areas, we show in real
experiments that the system can quickly adapt to new terrain
parameters and is thus capable of robustly follow different
terrain.

Locking the world frame to the terrain and estimating the
terrain inclination to gravity made global yaw of the system
observable. Also, the metric distance to the plane eliminates
the system’s position drift in one dimension. In addition, the
results show that the drift in the other two position axes
is minimal. We demonstrate in real experiments that the
quality of the yaw is dependent on the terrain inclination.
This reflects the influence of the perpendicular component
to gravity on the estimation quality. Our proposed approach

yields a state estimation that is drift free in 4DoF (position
drifts only parallel to the terrain plane) while only using
inertial readings and two consecutive images (i.e. optical
flow) without any map or feature history.
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