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Abstract— This paper presents a simple, data-driven tech-
nique for identifying models for the dynamics of legged robots.
Piecewise Affine (PWA) models are used to approximate the
observed nonlinear system dynamics of a hexapedal millirobot.
The high dimension of the state space (16) and very large
number of state observations (~100,000) motivated the use
of statistical clustering methods to automatically choose the
submodel regions. Comparisons of models with 1 to 50 PWA
regions are analyzed with respect to state derivative prediction
and forward simulation accuracy. Derivative prediction accu-
racy was shown to reduce average in-axis absolute error by
up to 52% compared to a null estimator. Simulation results
show tracking of state trajectories over one stride length, and
the degradation of simulation prediction is analyzed across
model complexity and time horizon. We describe metrics for
comparing the performance of different model complexities
across one-step and simulation predictions.

I. INTRODUCTION

Biologically inspired millirobots are inexpensive to pro-
duce, highly robust, and can exhibit remarkable dynamic
performance [6]. Due to their small size, it is important to
minimize the number of actuators and the required actua-
tor bandwidth. Therefore, these robots [2][8][6] have been
designed to be open-loop stable, allowing them to convert
feed-forward motor power into stable and robust locomotion.
The ability of these robots to run dynamically has allowed
us to observe a number of emergent dynamic maneuvers
such as rapid turns, reversals, jumps exceeding body height,
flips, and cartwheels. However, we currently have no mod-
eling approaches that are accurate enough to predict these
aggressive maneuvers on the time scales significant to our
robotic systems. The work presented here is taking the first
steps towards modeling techniques that will enable predictive
control to execute these actions on command.

Legged locomotion has been modeled using a diverse
array of reduced order templates [7]. By applying tradi-
tional analyses to these analytic models, predictions of gait
characteristics such as speed or stability can be produced.
System identification for legged systems has been based on
fitting parameters to some of these analytic models. Several
papers [1][11][10] fit Spring Loaded Inverted Pendulum
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Fig. 1: The VelociRoACH on a treadmill, equipped with tether.

(SLIP) model parameters to the stance phase of the RHex
family of robots. Bloesch et al. [3] developed a method to fit
kinematic parameters and sensor models to the StarlETH, a
legged robot. Recently, a parameter fitting approach has been
extended to hybrid dynamics by reducing the dimensionality
of the system around a periodic orbit [4].

Another technique has been to approximate the rhythmic
dynamics of a legged system with a data-driven Floquet
model [15]. This work was able to find periodic orbits
in a low-dimensional state space to which high frequency
disturbances converge. The Floquet models and parameter-fit
analytic models can make good predictions for steady-state
behavior, but they rely on an assumption of periodic dynam-
ics. They cannot describe transient maneuvers observed when
periodic gaits are not enforced. We believe that understanding
the full space of behaviors with non-periodic leg motion will
be necessary to make headway on useful predictive models
for under-actuated yet highly maneuverable legged robots.

To this end, we present a data-driven statistical approach
for general modeling of the dynamical behavior of nonlinear
systems. Our approach has the benefits of requiring no
knowledge of the underlying dynamics, and using compu-
tationally simple models to describe the behaviors observed.
This identification approach scales well with the dimension
of the dynamical state space and number of observations. It is
also easy to tune the granularity of the model approximation
to make the best use of available computational resources
for on-line predictions. The automatic identification of state-
space partitioning based on the statistics of the observations
can give initial insights into the behavior of a complex
dynamical system, which is useful for later analysis.

We assume the dynamics of our millirobots are locally
governed by linear dynamics (rigid body motion, kinetic
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friction, damped springs) with highly nonlinear shifts in
these dynamics (footfalls, four-bar linkage singularities). As
such, Piecewise Affine (PWA) systems are a reasonable first
approximation of these dynamics. PWA models describe a
system as a collection of affine submodels, and a partition
of the state-space where each model is applied. These models
are very fast to compute for forward prediction, a desirable
property for state estimation on low-power systems. Con-
cepts of stability, controllability, and observability have been
extended to PWA systems as approximations of nonlinear
systems [16], which will enable further analysis with the
models generated by this method. In addition, Tedrake et
al. [17] have shown that LQR controllers can piece together
these regions of state-space for control.

Automatic identification of PWA models is actively being
researched [5]. In general, this iterative identification process
grows in exponential time with the number of samples, and is
thus intractable to compute on very large datasets. Heuristic
methods can avoid incurring the computational cost, associ-
ated brute-force techniques, but are sensitive to initial region
partitioning and can converge to local optimums. As such,
we chose simple, statistically-driven clustering methods to
identify the partition.

In this paper, we describe current methods for empirically
deriving models of dynamical systems. Section II gives the
methods for collecting data on our dynamic millirobots and
fusing sensor data into a high-fidelity state trajectory. In
Section II-E we explain the type of models derived by
our method, and the way in which the collected data is
partitioned to learn these models. Finally, in Section III we
show how the collection of models learned with our method
was able to predict future states through simulation of the
identified dynamics and control.

II. METHODS

This work presents a processing pipeline that identifies
several models for a dynamic robotic system, as well as
methods for comparing the performance of those models.
First, sensor data are collected and fused into a high-fidelity
state trajectory (Sections II-A — II-D). Models are then fit
to this data, as described in Section II-E. Sec. II-F describes
how the models were forward simulated, and Sec. II-G gives
our validation method for the model accuracy and simulation.
Fig. 4 illustrates this process, and will be referred to in the
description of each step of the pipeline.

A. Robotic System

For this analysis, we observed the dynamics of the Ve-
lociRoACH [6] running on a treadmill. The VelociRoACH is
a hexapedal robot capable of stable running at 27 body-
lengths per second with an alternating tripod gait. At the
cost of some speed and stability, we did not enforce an
alternating tripod gait in order to allow differential drive
(diff-drive) steering. In this way, we used the robot as its
own disturbance and were able to observe the dynamics of
running in a larger region around a stable operating point.
It has one actuated degree of freedom per side, a coreless
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Fig. 2: (A) Change in leg angle, 1), with respect to motor crank
angle, «. Note regions of dead-band around multiples of o = 7.
(B) Robot leg configuration at o = 0, corresponding to touchdown
of the fore and aft legs. (C) Robot leg configuration at o = 37”,
mid-stance of the middle leg.
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Fig. 3: Experimental setup.

brushed DC motor driving a rotary crank, which drives a
set of kinematic linkages. These linkages are made with the
Smart Composite Microstructures process [9], and convert
rotary motion to leg abduction and adduction. See Haldane
et al. [6] for details on mechanical design and dynamic
performance. A key feature of this robot is that the leg
kinematics for each side are predetermined by the geometry
of the kinematic linkages, i.e. there is 1 degree of freedom
per side. As the motor crank rotates, the robot takes one step
with the fore and aft legs, followed by a step with the middle
leg, as shown in Fig. 2. We define one stride to be one full
rotation of the motor crank.

A lightweight electronics package', controls the Ve-
lociRoACH’s two motors and streams telemetry data from
its on-board sensors. These sensors include a six axis inertial
measurement unit (IMU) and 14-bit absolute encoders on the
output cranks of each side. The time series of robot sensor
information is referred to as Y g(¢).

B. Experimental Setup

To collect data on dynamic running, we designed a tread-
mill system with motion tracking and closed-loop position
control. The treadmill simulates constant velocity forward
running on flat ground, while the motion capture (mocap)

'Embedded board: https://github.com/biomimetics/imageproc_pcb

5601



© Model ID

“ Experiment

()

Simulation @ Validation

X,uX

Segmentation
{3}y = seg(X)

{43}i_ - Submodel Regions

System

Feedback Control

u(t) = h(Yy(t),v,(t))

u,Yy;, Y - Control,
Motion Capture/Robot Sensor

Regression
Sensor Fusion & Filtering fori—1tos:
X_g Ui=[X u 1] | %(X)=i
XX = SEKF(Y,,Yy) o, - X,

{(“,0)};_, - Model

X - Initial Condition
T,At - Duration, Time Step

h - Feedback Control

Input Error ‘

Simulation Error ‘

Prediction Error

e(t) = X(t) - O ¥ (1)

Forward Euler 7-X

Xsim(0) = Xo, t=0 I

while t < T: e - Error Vector
Wi (t) = h(Xgm(t)) Z -Reference Distribution
Xaim(t) = O wy¥(t) .
Xim(t+At) = Xaim(t) +AtXgim (t)
t=1t+ At

Mahalanobis Distance

Dyi(e.S;) = Ve'Xze

XX - State, State Derivative {©}}_; - Submodel Parameters

Xim - Simulated State Trajectory Dyi(e,Xy) - Error Score

Fig. 4: A block diagram of the method used to learn and test PWA models. Data flows from top to bottom and left to right.

system streams and records robot position information to a
real-time control system, which in turn provides motion com-
mands to the robot. High speed video footage was captured
from the front and side of the treadmill to observe ground-
leg interactions and verify the state trajectory information.
Fig. 3 shows the experimental setup.

For this experiment, the VelociRoACH was modified by
adding reflective markers and a lightweight tether. The mark-
ers enable mocap, and the tether provides power and serial
communication to the controller. The combined weight of
these modifications is less than 1g, with negligible effects
on the inertia of the robot. The tether did not generate any
measurable forces on the robot, and the robot was loaded
with a battery for mass. We therefore assume that data
collected on the treadmill will be valid for tether-free running
on a similar surface.

The treadmill area measures ~30cm x 50cm, allowing
5 robot body lengths of motion in each respective planar
axis. A canvas belt provides sufficient traction such that the
robot does not slip during nominal running. The belt is driven
by a motor with integrated speed controller, allowing the
belt to be commanded to speeds up to 5 m/s. Using the
motion capture system, we verified that the belt velocity was
a linear function of the commanded velocity with a maximum
standard deviation of o = 0.023 m/s.

The mocap system calculates the position and orientation
of the robot Yy = [z y 2 ¥ 6 ¢]" at 100Hz with
sub-millimeter resolution and average standard deviations
of 04y, = 0.027mm and oy9s = 0.0026rad, respectively.
These data are streamed to a real-time control system, which
calculates and streams a control signal to the robot. The
position control loop is executed at 100 Hz, using the most
recent available data from the mocap system to reduce
network latency and jitter. The max round-trip latency was
observed to be 30 ms, with an average latency of 10 ms.

To time synchronize the robot, mocap, and video data,
an infrared LED on the robot was driven by a square
wave originating from the real-time controller. This LED
was detected as a marker by the mocap system. The syn-
chronization signal, along with all robot sensor data, are
streamed to the real-time controller for logging at 1kHz.

The VelociRoACH has been shown to have significant oscil-
latory energy in frequencies up to 100 Hz during high speed
running [6], which necessitates this high sampling rate.

C. Feedback Control

To control the heading and velocity of the robot, a simple
planar differential-drive model was assumed, which had been
previously used for another legged millirobot [13]. This
clearly ignores much of the complexity of legged locomotion
dynamics, but we found it sufficient for keeping the robot
on the treadmill long enough to gather data. Our trials were
approximately two minutes in length.

Under this model we apply the proportional control in
Egn. (1) to find a desired robot velocity command. Fig. 4a
refers to this function as u = [ ¢)]T = h(Y s, v;) since it
operates directly on mocap sensor information and treadmill
velocity vy.

- v — kg o
T sy G W (1
Assuming positive v; and a bounded region of the con-
trolled state-space around x, = [z y T = [0 0 0]T,

positive gains k., can be found to guarantee stability
for the given region, treadmill velocity. This be shown by
considering Lyapunov function V' (x.) = ||x||3. In practice,
the control gains were manually tuned to keep the robot
stable at each treadmill velocity.

Low level PID control on the position and velocity of the
legs is executed at 1kHz on-board the robot. This control
translates a_desired robot longitudinal and yaw angular
velocity [a} ¢]T to nominal left and right leg crank angular
velocities [&l &T]T. Eqn. (2) shows this conversion for a
robot with width d and effective leg radius 7.

FIRE AT

D. Data Fusion and Filtering

In order to study leg function and body motion in dynamic
running and turning, we implemented an off-line sensor
fusion framework to estimate full robot state. Measurements
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of position and orientation were collected at 100 Hz using
an OptiTrack™ mocap system. Sensor noise models for the
mocap and IMU data were empirically derived by analyzing
1,000 seconds of telemetry data, which were streamed while
the robot was stationary. Independent Gaussian noise was
assumed on each measurement channel, and the variance for
each was subsequently calculated for the sensor measurement
model.

The incoming data was filtered for outliers. All observed
outliers occurred as mocap tracking errors wherein the state
measurement of the robot was miscalculated by several
orders of magnitude. These outliers were filtered by rejecting
any data point which was more than 4 standard deviations
away from the mean. On average, this filter caught 3-4
outliers per 2 minute run. The initial and final twenty strides
were clipped from the data set to rule out any transient effect
from treadmill start up and slow down. A virtual bound
was placed on the treadmill running surface to define a
conservative operational area for the robot. If at any time
the robot exited this area, a fault condition was set, and all
consequent data was discarded from the analysis.

There was a small amount of variance in the sampling
period for both the mocap and robot data. A bicubic spline
interpolation was used to time shift this irregularly sampled
data to the nearest 1 ms time step. The maximum interpola-
tion distance is bounded by one half of the sampling period.

To fuse the data, we used an Extended Kalman Filter
(EKF) [18] combined with a minimum-variance smoother
(S-EKF). The difference in sampling rates between the
robot and the mocap was accounted for by using a time
varying observability matrix which limited observations of
the mocap state to valid timestamps. We used the motion
model developed by Merwe et al. [12] to forward propagate
the state. The dynamics of the motion model were linearized
and used in the update equations for the EKF. To reduce the
variance of the filtered data we performed a backwards pass
using a Rauch-Tung-Striebel smoother [14]. The accuracy
of the smoothed data was confirmed by applying a known
motion profile to a dummy robot, and verified with high-
speed video.

The end result of this off-line data processing is a set of
high-fidelity state and state derivative trajectories X and X.
The 16-dimensional state vector X consists of the first-order
position variables q and their continuous-time derivatives g.
Shown in Eqn. 3, q contains the position and orientation of
the robot body, and the crank angles («,, ;) of each leg
mechanism. Robot position and orientation are recorded in
the world frame, while all other variables are considered in
robot-fixed axes. The highest order physical variables are
accelerations in the q portion of X.

a=[z y 2z ¢ 0 ¢ a al, 3)
9] v_ 1|4
X= LJ X = [q] @

E. Model Identification

The models identified in this work are time-invariant
piecewise affine state-space differential equations with ex-
ogenous inputs. Functionally this means a model maps a
state and input to a single estimated continuous-time state
derivative. For a fixed submodel, this map in classical linear
system terms is: a system matrix A, input matrix B, with
an affine forcing vector f. For convenience we concatenate
A,B, and f to a parameter matrix ©;, and the state, input,
and affine component to a regressor vector W(t). Equation 5

describes this map to state derivative prediction, X(t)

X(t)

;[ u@®)
1

X(t) = [AB f] =0, ¥(t) %)

Submodel parameters are indexed by ¢, which indicates
the submodel region Z; C R™ in which those dynamics
hold. The regions are disjoint (Vi # j, Z; N %Z; = 9),
and complete (|J, Z; = R™). A complete model consists of
the collection of tuples of submodel parameters and regions
{(©, Z);};_,, where s is the number of submodels. As
Fig. 4b illustrates, our model identification technique first
partitions the space via statistical segmentation methods, then
finds the submodel parameters using linear regression.

1) Segmentation: In a practical sense, we are interested
in a balance between the number of model partitions and
the overall accuracy of the estimation. To explore this
relationship, we evaluated three different methods of par-
titioning: “Average”, “z-score”, and “k-means”. To test the
null hypothesis of no linear dynamics, we also define a null
model [A B f]yun = [0 0 p], where p is the average value of
X;. We use this collection of automatic region identification
methods tests values of s = [0,1, 2,10, 50].

The Average method considers all observed data in one
region, and thus identifies one affine model for the entire
system. This approach is a base case for a dynamical system.

The z-score method divides the observations into two par-
titions based on the empirical likelihood of the observation.
First the data are z-score normalized, giving the distribution
of observations mean 0 and variance 1 in each axis. A
parameter o, is used to separate the data. Observations
within o, of the origin in z-score space are considered one
region, and the remaining data outside this ball are a second
region. This approach is primarily used to see if a submodel
fit to the most likely observations improves the overall model
fit. We tested the z-score model with o, = 1.5 (listed as Z-
1.5), which empirically improved the fit of the inner region
over the outer region by an average of 25% per axis.

To extend this method to more partitions, we used the
k-means clustering method. First, all data in X are z-
score normalized. Then, standard k-means is applied to the
normalized data to identify £k = s model partitions. We
evaluated this approach for s = 10 and s = 50 to define
the K-10 and K-50 models. Varying s allows tuning of the
model granularity; we chose a maximum of s=50 so that the
partition could be computed in a few minutes. Empirically
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we found that the number of observations in each region was
approximately uniform for each trial.

For convenience, we define the submodel selecting func-
tion x in Eqn. 6, which maps a state vector to the submodel
region index ¢ that the state portion of X resides in. We also
use the notation x(¥), which is understood to act only on
the X portion of ¥. Where relevant, the subscript M denotes
which model partition is used.

x: R = {1,...,s}

In practice the submodel regions can be defined explicitly
with polytopic separating planes, or implicitly by other
methods. In the case of z-score and k-means segmentation
algorithms, y can be more simply evaluated by storing the
parameters of the model and calculating the regions of a new
observation from those. For example, by storing the means
of the k-means segmentation method as {y;}?_,, the region
index can be calculated as:

Xk —s(X) = argmin ||X — u[2 @)
i€{l,...,s}

We use this approach due to simplify the representation
in the simulation results discussed below. In general any
method that reproduces the complete and disjoint mapping
will suffice.

2) Regression: Once the data are segmented, we estimate
the dynamics of each region of the observed data using least
squares. Given a collection of correlated observations, the
learned models are an estimator of X(t), given X(t) and
u(t). The estimation error e(t) for a particular observed X (t)
and model is therefore:

e(t) = X(t) = O (g ¥ (t) (8)

By collecting all observations in a region Z; as column
vectors in W;, we can calculate the submodel parameters
that minimize the region sum squared prediction error in e;
as Eqn. 9, where the dagger represents the Moore-Penrose
pseudoinverse.

0, = UlX; ©)

F. Simulation

The PWA models identified by this approach can be used
to simulate a system state trajectory (Fig. 4c). The simula-
tions presented in this work use naive Euler integration with
exogenous control and state determined submodels (Eqn. 7)
to generate trajectories. At each time step, the control ug;,, is
calculated from Xg;,, using the same control law discussed
in II-C. The submodel parameters O; used to calculate the
state derivative are chosen such that ¢ = x(Xgim)-

TABLE I: MoDEL COMPARISON

Variance Normalized Average Error

Model i i 3 ¥ g ¢ dL  dg
Null 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Avg 0.843 0.781 0.672 0.950 0.790 0.737 0.820 0.821
Z-1.5 0.791 0.760 0.622 0925 0.768 0.730 0.744 0.765
K-10  0.719 0.728 0.594 0.839 0.648 0.663 0.727 0.713
K-50  0.627 0.638 0.521 0.684 0.516 0.529 0.575 0.555
o 6.581 10.18 9.449 5159 2947 112.1 2259 2203
units m/s2 m/s2  m/s?  rad/s? rad/s? rad/s?2 rad/s? rad/s2

G. Validation

Comparing the performance of these models requires a
metric that relates vector quantities in different spaces based
on the distribution of values in that signal. We chose the
Mahalanobis Distance (Dj;) of an error vector e with respect
to collection of observations Z. >z is the covariance matrix
of the distribution of Z.

Dy(e,Xz) =1/eT2, e

The remainder of our discussion will refer to a vector e
as an “error”, and the scalar value calculated by Dy, as a
“score”. A higher score corresponds to a greater error, and
thus a poorer prediction.

(10)

III. RESULTS AND DISCUSSION

Our results are presented in three major sections. The first
describes how the models perform strictly as a predictor of
the state acceleration based on the state and input. Next we
evaluate how forward simulation of state trajectories varies
across the modeling approaches and duration of simulation.
Finally we examine how the state-space partitions identi-
fied by segmentation may be correlated with physical non-
linearities.

A. Data Selection

Our approach to model identification relies on collecting
data from a robot running in a stable or desirable operating
regime. Models fit to this zone of operation would then be
most accurate around a nominal point of stable running.
We collected running data from the VelociRoACH with
treadmill speeds in the range of 0.1 to 0.5 m/s. Fig. 5
shows the resulting distribution of leg phase observations
as a function of treadmill speed. Leg phase is defined to be
® = a; — a,- + 7. The most stable operating speed was 0.25
m/s, corresponding to a stride frequency of approximately
5 Hz. At this leg frequency, the robot tends to passively
converge to an alternating tripod gait (¢ = 0) which indicates
an empirical basin of stability for the alternating tripod gait
in this region.

B. Model Evaluation

All of the models discussed in this work are predictors
of state derivative, conditioned on state and control input.
We have constrained the parameters of our identification to
second-order state-space differential equations and so our
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Fig. 5: Contour map of probability of leg phase plotted against
velocity. Lighter regions are more likely to occur. There are
approximately 100,000 observations for each measured speed.
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Fig. 6: Model performance on an Input/Output basis, as a function
of approach. Input score is defined as Das(Cy(x (1)) — X (1), ¥x)
where C\(x(+)) is the centroid of the submodel region containing

X (). Output score is defined as Dy (X — X, X ). The marked
points on each series are the mean of an equal number of observa-
tions, so that the density of the points indicates the distribution of
observations on each axis.

prediction output space is the acceleration vector, q. Table
I reports the average prediction error for each of these
variables for all five of the modeling approaches we consider.
These results were generated using 10-fold cross-validation
between model generation and prediction. The table values
are the average absolute error between the predicted and
actual value, normalized by the standard deviation of that
value. The standard deviation of each variable is reported in
the last row to provide scale.

The Null model shows a baseline normalized error of
1 for all variables. The prediction accuracy improves as
the number of model regions increases. This validates the
hypothesis that a linear model at least improves over the Null
model with no dynamics, and that more submodel regions
allow better local approximations of non-linear dynamics.

Fig. 6 shows that as more regions are added, the average
distance to a submodel centroid decreases. This empirically
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Fig. 7: Predicted time trajectories of fore-aft velocity (A), Yaw
angle (B), and the submodel index of the K-10 simulation state
XK —-10(XK—10) superimposed on the K-10 submodel index of the
observed trajectory Xx—10(Xops) (C). In (A) and (B), transitions
between submodels are marked with + symbols.

shows the intuitive positive correlation between input score
and output score. We expect that an input observation close to
the centroid of a subregion is representative of the behavior
in that region, and thus the output prediction is best in that
vicinity.

C. Simulation

As discussed in section II-F, the models can be used to
predict the behavior of the system. Fig. 7 shows characteristic
simulations for several models compared to the experimen-
tally observed trajectory of the system. We chose to show
forward velocity (2) and yaw (¢), which are examples of first
and zeroth-order state predictions. These variables are also
useful to predict robot motion for turning maneuver planning.
In each case we initialized the simulation state to an observed
state, and then simulated the state and control for 200 1
ms time steps. The observed data for the duration of these
simulation times was excluded from the data used to train the
models. Fig. 7 (A) and (B) show simulated trajectories of the
Average, K-10, and K-50 models, along with the observed
trajectory of the system.

The simulations qualitatively follow the behavior of the
system through several submodel regions. After a simulation
time horizon of 100-125 ms the model prediction of the
state diverges from the observed state trajectory. Fig. 7 (C)
shows that the submodel transitions in the simulation lag the
observed submodel transitions. This lag causes a divergence
from the observed submodel region trajectory for the K-10
model. The dynamics of the K-50 model are noisier than
those of K-10 due to a larger number of transitions between
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the affine submodels. The K-50 submodel trajectory diverges
earlier than K-10 which shortens the time horizon of its
usefulness.

The time horizon of useful predictions from simulations
decays with the number for submodels. Figure 8 shows this
trend of prediction accuracy versus simulation duration. The
plot shows a Pareto frontier for the model complexity. The
K-50 model is most accurate for short time spans (up to 40
ms), K-10 for a brief midrange (40-60 ms), and the average
model remains closest to the observed trajectory from 60 to
200 ms. After 200 ms, all models make a poorer estimate
than a null model with constant acceleration.

D. Interpretation of Model Regions

A hypothesis of our model identification approach is
that model regions will be roughly associated with distinct
dynamic behaviors which are caused by physical nonlinear-
ities. To explore how the models identified for our robot
correspond to a physically interpretable dynamic structure,
we project the likelihood of model transition onto a plane
of the state-space where we expect regions of disparate
dynamics to be readily identifiable.

The leg crank angle largely determines whether a leg is
on or off the ground, so we expect it to generate the clearest
distinctions in dynamics. To examine this hypothesis, we
analyze how closely the observed dynamics match a simple
diff-drive kinematic model as a function of the projection
to the leg phase space (the plane of («y, a,.)). We consider
the diff-drive state Xp = [# ] . The kinematic model
predicts that X p is the inverse of the linear mapping in Eqn.
2; we label this prediction XD. In Fig. 9a we see that the
diff-drive model does not make accurate predictions of robot
behavior over the course of a stride. Variations in the local
dynamics of the robot from the kinematic model are shown
by the color in this figure. Regions of high contrast indicate
that the dynamics of a region are changing rapidly. These
changes were caused by leg touchdown and liftoff events,
physical nonlinearities which ideally would be matched by
submodel transitions.

Fig. 9b shows submodel transition ratio projected onto the
same leg angle space. The transition ratio is calculated by

binning the state trajectories on this space, and reporting the
ratio of trajectories that experience a submodel transition to
the total number of trajectories in the bin.

If there were no structure to the observed state trajectories,
then we would expect there to be an even distribution of
submodel transitions. From a mechanical perspective, we
would expect leg touchdown events to be hybrid transitions
in the robot dynamics. The most salient trend visible in Fig.
9b are the high probability bands in the vicinity of 3w /4,
which corresponds to liftoff of the front and rear legs (see
Fig. 2). These bands match well with several regions of high-
contrast in Fig. 9a.

IV. CONCLUSIONS AND FUTURE WORK

We applied a highly simplified differential drive model to
a legged robot, which fit well enough to control its position
and heading on a treadmill up to speeds of 5 body-lengths
per second. This allowed for the collection of a large dataset
of robot state observations. We demonstrated a data-driven
methodology which learns models that predict the observed
robot 16 dimensional state and derivative on time scales
of about one stride. The methodology is platform agnostic,
which will allow application of our approach to determine
the dynamics of a wide variety of systems.

The predictive ability of the sets was measured via a
Mahalanobis Distance metric (Djs). The one-time-step pre-
dictive performance of learned models increased with the
granularity of the state space partitions. However, forward
simulations of models with more subregions tended to di-
verge from the observed state trajectory in shorter time
periods than simulations of simpler models. We expect
this balance between short and long-term predictions to be
a trend in all models identified with this technique. The
choice of model granularity will depend on the prediction
and simulation goals of a specific robotic state estimation
problem.

Future work will target further improving the predictive
ability of the data derived models. More sophisticated parti-
tioning strategies could be employed by allowing the shape
of the k-means clusters to more closely match the dynamical
transitions of the robot. Iterative optimization techniques
could then modify the regions to move towards improving
the descriptive ability of the models with fewer model
subregions. Analysis under the model selection framework
of the Bayesian Information Criterion (BIC) could help
automatically tune the balance of model complexity and
prediction.

Simulation could also be improved over naive Euler inte-
gration. Probabilistic frameworks such as Gaussian mixture
models and Markov Chains could add information about the
likelihood of model transitions, and reduce the instability
seen due to diverging from observed submodel index trajec-
tories.

Finally, we are planning future work on using these
learned models for on-line state estimation and control. The
models are particularly amenable to an on-board Kalman
filter or particle filter, as the simple to compute affine
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(a) Heat-map of differential drive dynamics observed for the robot.
’l:he color axis shows the Dynamic Score, defined as Dy (Xp —
Xp,¥x, ).projected onto leg phase space.
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(b) Heat-map of model transition ratio as a function of left and right
crank angle (ay,, ar) for the K-50 model.

Fig. 9: Heat-maps showing observed robot and model dynamics. The robot stick figures on the axes show how mid-stance for each of
the legs is associated with the « variable. Top dead center for the front and rear legs occurs at w/2, and at 37 /2 for the middle leg

dynamical models can also be stored with an estimate of their
accuracy. This relationship can be easily approximated with
the Input/Output score relationship in Fig. 6, or extended
to a full empirical motion model covariance. Extending
to control and planning, other future investigations could
use the models to investigate the dynamics of aggressive
maneuvers, such as rapid turns.

With these additions, the work presented here would
be a first step to a modeling and control paradigm that
could be used on nearly any type of dynamical system.
If state trajectories in regions of interest can be explored,
our approach can identify a collection of affine models that
predict the dynamics with tunable granularity. These models
can then identify physical parameters of interest, provide
a variable horizon simulation of the system, or provide
empirical measures of prediction uncertain in probabilistic
planning frameworks.
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