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Abstract— The paper deals with the problem of motion
planning for a spherical rolling robot actuated by two internal
rotors that are placed on orthogonal axes. To solve the problem,
we employ the so-called geometric phase approach based on the
fact that tracing a closed path in the space of input variables
results in a non-closed path in the space of output variables.
To set up the governing equations, the contact kinematic
equations are modified by the condition of dynamic realizability,
which constrains the component of the angular velocity of
the rolling carrier and depends on the mass distribution, and
parameterized. By using a motion planning strategy based
on tracing two circles on the spherical surface, an exact and
dynamically realizable motion planning algorithm is fabricated
and verified under simulation.

I. INTRODUCTION

The design and control of spherical rolling robots, that
can be regarded as non-conventional vehicles, is still an
insufficiently explored research area. Different schemes of
spherical robots are reported in [1]–[6]. In this paper we
consider a rolling robot actuated by two internal rotors.

One of the most important problems in the control of
spherical robots is the construction of motion planning
algorithms. In the majority of papers in the robotics literature
this problem is considered for the so-called ball-plate system
where the sphere is actuated by moving two parallel plates.
Under such an actuation the spinning of the sphere around
the vertical axis is canceled out and the sphere moves in the
pure rolling mode. Typically, motion planning for the ball-
plate system is conducted in kinematic formulation [7]–[11],
and the extension of the proposed algorithms to different
types of actuation is a challenging research problem.

It should be noted that if the number of actuators is more
than two the motion planning can be decomposed and solved
sequentially at the kinematic and dynamic levels. However,
for the minimal number of actuators such a decomposition
is impossible and the motion planning must be considered
from the beginning in dynamic formulation.

The motion planning problem for the actuation by two
rotors was first addressed in [2]. It was posed in the optimal
control settings using an approximation by a Phillip Hall
system [12]. However, since the robot dynamics are not
nilpotent, this is not an exact representation of the system
and it can result to inaccuracies. A motion planning strategy
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based on the iterative steering and nilpotent approximation
is reported in [13]. An exact motion planning algorithm
was described in [5], but the trajectories generated by this
algorithm are not always dynamically realizable.

Since the mathematical model of rolling robot with two
rotors is structurally similar to that for the ball-plate system,
it is worthwhile to look at the two motion planning ap-
proaches developed for the kinematic model of pure rolling.
The first is based on the optimal control theory [8], while
the second deals with geometric phases [7], [12]. Numerical
implementation of the optimal control approach, apart from
the long computation time, can be sensitive to initial guess
of the optimal controls. The geometric phase approach is
based on the fact that a closed path in the space of the
inputs variables results in a non-closed path in the space of
the output variables. We resort to this approach to develop
an exact motion planning algorithm, and this constitutes the
main goal of this paper.

The paper is organized as follows. First, in Section II
we review the mathematical model of the rolling robot and
then, in Sections III, address the motion planning problem.
There, by modifying the contact kinematic equations by
the condition of dynamic realizability, we first establish a
working model for solving the motion planning problem.
Then, by using a motion planning strategy based on tracing
spherical figure eights, we fabricate an exact and dynamically
realizable motion planning algorithm and verify it under
simulation. Finally, conclusions are drawn in Section IV.

II. MATHEMATICAL MODEL

Consider a rolling robot composed of a spherical shell
(carrier) actuated by internal rotors. It is assumed that the
rotors have the same mass distribution and the center of mass
of the system is located at the geometric center. The rotors
are mounted symmetrically along orthogonal axes as shown
in Fig. 1. On each axis the two diametrically opposite rotors
are actuated in tandem. This scheme, with actuation along
two orthogonal axes, was first proposed in [2] and later on
studied in [5].

Define the following coordinate frames (see Fig. 2): Σa

is an inertial frame fixed in the contact plane, Σo is a frame
fixed at the geometric center of the sphere. In addition, we
introduce the contact frame of the object Σco, and the contact
frame of the plane, Σca. The contact coordinates are given
by the angles uo and vo, describing the contact point on
the sphere, and the displacements ua and va, describing the
contact point on the plane, and by the contact angle ψ which
is defined as the angle between the x-axis of Σco and Σca
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Fig. 1. Rolling system with orthogonal placement of rotors.

(the z-axes of these frames are aligned as depicted in Fig. 2).
It is assumed that the frame Σca is parallel to Σa, and in the
zero configuration the axes of Σo are parallel to those of Σa.

The position of the contact point on the sphere is param-
eterized as

c(uo, vo)=R

⎡
⎣−sinuo cos vo

sin vo
−cosuo cos vo

⎤
⎦ , (1)

where R is the radius of the sphere. In this parameterization
the origin is placed at the south pole of the sphere. In terms of
the contact coordinates, the orientation matrix of the sphere
(the orientation of Σo relative to Σa) is defined as

R = RT
z(ψ)R

T
x(vo)R

T
y(uo) =

[
n1 n2 n3

]
, (2)

where Rx(vo),Ry(uo), and Rz(ψ) are the matrices of
elementary rotations, and the columns of the orientation
matrix are defined as

n1 =

⎡
⎣ cosuo cosψ+sinuo sin vo sinψ

−cosuo sinψ+sinuo sin vo cosψ
cosuo cos vo

⎤
⎦ , (3)

n2 =

⎡
⎣ cos vo sinψ

cos vo cosψ
− sin vo

⎤
⎦ , (4)

n3 =

⎡
⎣ −sinuo cosψ+cosuo sin vo sinψ

sinuo sinψ+cosuo sin vo cosψ
cosuo cos vo

⎤
⎦ . (5)

Let ωo = {ωx, ωy, ωz}T be the angular velocity of the
frame Σo, defined in projections onto the axes of Σa. The
evolution of the contact coordinates can be constructed from
the Montana equations [12] and represented as

u̇a = Rωy, (6)

v̇a = −Rωx, (7)

u̇o = −(ωx sinψ + ωy cosψ)/ cos vo, (8)

v̇o = −ωx cosψ + ωy sinψ, (9)

ψ̇ = −ωz − (ωx sinψ + ωy cosψ) tan vo, (10)

[xp, yp ]xo
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ca Σ 
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 ( u a , v  a ) c 

ψ 

Fig. 2. Basic frames and contact coordinates.

The dynamic model for the system under consideration is
established in [14]. Under the assumption that the motion
does not start impulsively, the dynamic model admits the
following integral [14]

Jc ωo+Jr

2∑
i=1

niϕ̇i = 0, (11)

reflecting the conservation of the total angular momentum of
the system about the contact point, which can be interpreted
as the driving principle of the robot under consideration.
Here, ϕi is the angle of rotation around the axis ni Jr is
the inertia moment of the single rotor around its axis of
rotation, Jc = diag{Jxx, Jxx, Jzz} is the inertia tensor of
the composite system (rolling carrier and the rotors) with
respect to the contact point, Jxx = Jzz + MR2, Jzz =
2
3moR

2 + 2Jp + Jr, M is the total mass of the system, mo

is the mass of the spherical shell, mr is the mass of the single
rotor and Jp is its inertia moment about the plane orthogonal
to the axis of rotation.

III. MOTION PLANNING

If the angular velocity ωo is given, one can define define
the motion of the rotors by pre-multiplying (11) by the
orthonormal vectors n1 and n2. For the kinematic motion
to be dynamically feasible, one must have

n3 ·Jcωo = 0. (12)

This condition does not depend on the motion of rotors, and
therefore can be called the condition of dynamic realizability.
For the system under consideration the condition (12) can be
written down as

k (n3xωx + n3yωy) + n3zωz = 0, (13)

where n3x, n3y, n3z are the components of the vector n3

given by (5), and the dimensionless constants k = Jxx/Jzz
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is defined through the components of the inertia tensor Jc:

k = 1 +
MR2

2
3moR2 + 2Jp + Jr

. (14)

In general, the pure rolling motion (ωz = 0) is not realizable
in the system with two rotors; it can be maintained only when
n3xωx+n3yωy = 0. Hence, the conventional kinematics-
based motion planning algorithms [7]–[11], designed for
the model (6-10) under the assumption of pure rolling, are
not directly applicable for the generation of dynamically
realizable trajectories.

A. Parameterized form of the dynamically realizable contact
kinematics

Note that the condition (12) imposes a constraint on the
components of the vector ωo, and this constraint needs
to be embedded into the motion planning algorithms. If
the motion planning is based on the direct specification of
contact curves on the sphere, the embedding can be done as
follows. Assume that the functions uo(t) and vo(t) are given.
The kinematic equations (6-10) can now be casted as

u̇a = −R cosψ cos vo u̇o +R sinψ v̇o, (15)

v̇a = R sinψ cos vo u̇o +R cosψ v̇o, (16)

ψ̇ = −ωz + sin vo u̇o. (17)

To guarantee the dynamic realizability, express ωz in the
last formula through ωx and ωy by using (13). In doing so,
we first need to express ωx, ωy as well as n3x, n3y, n3z in
terms of the contact coordinates. From the definition of the
angular velocity ω̂o = ṘRT [12], one obtains

ωx = −u̇o cos vo sinψ − v̇o cosψ, (18)

ωy = −u̇o cos vo cosψ + v̇o sinψ, (19)

Having expressed everything in terms of the contact coordi-
nates, one can finally replace ψ̇ in (17) by

ψ̇ = (1−k) sin vo u̇o + k
tanuo
cos vo

v̇o. (20)

If we, formally, set here k = 0 the variable ψ̇ will be defined
as in the kinematic model with pure rolling. However, this
case is purely hypothetical because by the definition (14)
k > 1 always.

Assume that the position of the contact point on the
sphere is parameterized by a spherical curve c(θ) �
{x(θ), y(ϕ), z(θ)}T. Since the same point is defined by (1),
one has

c(uo, vo) = c(θ). (21)

Differentiating this relationship, one obtains

cuu̇o + cv v̇o = cθ θ̇, (22)

where cθ � ∂c/∂θ, cu � ∂c/∂uo and cv � ∂c/∂vo. The
partial derivatives cu and cv ,

cu = R

⎡
⎣− cosuo cos vo

0
sinuo cos vo

⎤
⎦ , cv = R

⎡
⎣sinuo sin vocos vo
cosuo sin vo

⎤
⎦ ,

(23)

are defined from (1). To express cu and cv as functions of
θ, one resolves (21) and obtains

cos vo =
√

1−(y(θ)/R)2, sin vo = y(θ)/R, (24)

cosuo =
−z(θ)/R√
1−(y(θ)/R)2

, sinuo=
−x(θ)/R√
1−(y(θ)/R)2

,(25)

Therefore,

cu=

⎡
⎣ z(θ)

0
−x(θ)

⎤
⎦ , cv=

⎡
⎣−x(θ)y(θ)/

√
R2−y2(θ)√

R2−y2(θ)
−y(θ)z(θ)/√R2−y2(θ)

⎤
⎦ , (26)

Next, taking into account that the vectors cu and cv are
orthogonal, one obtains from (22)

u̇o =
1

R2 cos2 vo
cT
ucθ θ̇, v̇o =

1

R2
cT
vcθ θ̇, (27)

and substituting (27) into (15-17) yields the following system
of differential equations

u′a(θ) = − cosψ(ϕ)√
R2−y2(ϕ)c

T
ucθ +

sinψ(θ)

R
cT
vcθ, (28)

v′a(θ) =
sinψ(θ)√
R2−y2(θ)c

T
ucθ +

cosψ(θ)

R
cT
vcθ, (29)

ψ′(θ) =

{
(1−k)y(θ)cT

u

(R2−y2(θ)) +
kx(θ)cT

v

z(θ)
√
R2−y2(θ)

}
cθ
R

(30)

describing the change of the contact coordinates as function
of θ. Here, primes denote the partial differentiation with
respect to the variable θ, while dots are reserved for the
time differentiation.

B. Motion planning strategy

Define c(θ) to be a periodic curve, c(θ) = c(θ ± 2kπ),
k ∈ Z, such that c(0) = {0, 0,−R}T and therefore
uo(2πn) = vo(2πn) = 0, i.e. the values of uo and vo in the
initial and final configurations are assumed to be zero. The
assumption restricts the generality of the problem statement.
However, the movement to be found under this assumption
can be thought of as a non-trivial maneuver of a general
reconfiguration strategy similar to that considered in [7], [9],
[10]. The generality can be easily restored if the non-trivial
maneuver is accompanied by a trivial one (bringing uo and
vo to the desired values).

To satisfy the boundary conditions ua(2πn) = ua,des,
va(2πn) = va,des, ψ(2πn) = ψdes, for a given the number
of steps n, there must be at least three free parameters
in a specific representation of the curve c(θ). The three
parameters can be introduced as follows. Let c(θ) be a
spherical figure eight with characteristic sizes of its leaves a
and b. The orientation of this curve on the sphere is defined
up to the angle γ of rotation around the axis OZ of the
frame Σo. The motion planning problem is then reduced to
the following formulation. Given a spherical figure eight

c(θ) = Rz(γ)c̄(a, b, θ), (31)

where Rz(γ) is the matrix of rotation around the axis OZ,
find the parameters a, b, and γ so that tracing this curve n
times brings the system to the desired configuration.
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Fig. 3. One-step movement in the contact plane. The 1st half-step (tracing
the 1st leaf of the figure eight) is shown in red, while the 2nd in blue color.
Also shown are the initial orientation and the assignment of local frames.

If the spherical figure eight is traced one time, the contact
point in the contact plane is shifted from P0 to P1 as shown
schematically in Fig. 3. The length of the linear displacement
h = |−−→P0P 1| defines the non-holonomic shift. It is assumed
that the x-axes of the local frames associated with the
movement steps are oriented along the tangent vectors to
the contact curve in the contact plane as shown in Fig. 3.
The orientation of the frame P1x1y1 with respect to P0x0y0
defines the holonomy angle η.

The non-holonomic shift h and the holonomy angle η are
the same for all the movement steps. They are functions of
the generalized parameters a and b and do not depend on
the angle γ. To compute h(a, b) and η(a, b), one can set in
(31) γ = 0 and integrate the system (28-30) numerically
for one step of movement (θ ∈ [0, 2π]) with zero initial
conditions. This defines h(a, b) �

√
ū2a(2π) + v̄2a(2π) and

η(a, b) � ψ̄(2π). Here, we the bar denotes the contact
coordinates obtained for γ = 0.

P0

P1

P2Pn�2

Pn�1

Pn
hdes

Ψdes

h

Η

Fig. 4. The change of the vectors of the non-holonomic shift during n-step
movement.

Having formally defined the functions h(a, b) and η(a, b),

one can establish their relation with hdes =
√
u2a,des + v2a,des

and ψdes. As one traces the spherical figure eight n times,
the vector of the non-holonomic shift will rotate each time
by the angle η as shown in Fig. 4. Therefore, the points
P0, P1, . . . , Pn will lie on a circle of (now unknown) radius
r. Clearly,

η(a, b) = ψdes/n. (32)

The formula for h(a, b) can be established as follows. From
the relation between the length of the chord of a circular

arc and the corresponding central angle one has h(a, b) =
2r sin(η(a, b)/2), and hdes = 2r sin(n η(a, b)/2), where r is
the radius of the circular arc. By excluding it, one obtains

h(a, b) =
sin(η(a, b)/2)

sin(n η(a, b)/2)
hdes =

sin(ψdes/2n)

sin(ψdes/2)
hdes. (33)

Note that if ψdes = 0 the leaves of the figure eight have the
same size, a = b, and by evaluating the indeterminacy in
(33) one obtains

h(a, a) = hdes/n. (34)

In general, one determines the parameters a and b from
solving the system (32,33), which can be done by iterating
the nonlinear system (32,33) with numerical integration of
the system (28-30) on each iteration step. Having established
a and b, one can finally establish the orientation of the
frame P0x0y0 with respect to the frame Σa, denoted by the
angle γ, from the requirement that the vector of the resulting
displacement

−−→
P0Pn points to the desired destination (see [15]

for the details).

C. Case study

To specify the curve c̄(θ) in a relatively simple analytical
way, one can concatenate spherical polygons (geodesic tri-
angles [16] or quadrilaterals [17]) or circles [11], or use the
generalized Viviani curve [15].

R

aoΣ

Fig. 5. Spherical circle

In this case study we would like to clarify the formation
and the dependance of the non-holonomic shift on the inertia
distribution specified by the parameters k. For this purpose
it will suffice to deal with symmetric figures eights (a = b).
Consider a maneuver when one traces a circle of radius a on
the spherical surface as shown in Fig. 5. The curve c̄(a, θ)
in (31) is specified as

c̄(a, θ) =

⎡
⎣ a sin θ

−a cosα cos θ + d sinα
−a sinα cos θ − d cosα

⎤
⎦ , (35)

where d = R
√
1− (a/R)2, sinα = a/R and cosα = d/R.

By concatenating two circles, one defines a spherical figure
eight.

Assume that the number of movement steps n = 1.
Consider first the case of pure rolling (k = 0). The trajectory
of the contact point on the contact plane is composed of two
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Fig. 6. Contact point trajectory for k = 0 and a ≈ 0.533681R.

circular segments. The normalized non-holonomic shift at
the end of movement can be defined analytically [11] as

h/R = 4
a/R√

1− (a/R)2
sin

(
π
√

1− (a/R)2
)
. (36)

In the simulation we set a ≈ 0.533681R so that h/R = 1.
The orientation of the figure eight on the sphere, defined by
the angle γ of rotation around the axis OZ of the frame Σo,
is set as γ ≈ −1.13393rad so that the sphere propels along
the va axis of the frame Σa. The simulation results for the
case of pure rolling (k = 0) are shown in Fig. 6.
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Fig. 7. Contact point trajectory for k = 2.5 and a ≈ 0.533681R.
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Fig. 8. Contact point trajectory for k = 5 and a ≈ 0.533681R.

Next, we inspect the contact point trajectories obtained
with the same radius a of the spherical circle but with
different inertia ratio k. The simulation results corresponding
to k = 2.5 and k = 5 are shown in Fig. 7 and Fig. 8.
Here, for the same a we have different non-holonomic shifts:
h ≈ 0.410842R for k = 2.5 and h ≈ 0.515783R for k = 5.

To direct the resulting displacement along the va axis, one
sets γ ≈ −0.965672rad for k = 2.5 and γ ≈ −0.797416rad
for k = 5. One can see that, while the length of the
of the trajectory of the contact point in the contact plane
is exactly the same as that obtained for the case of pure
rolling (kinematic model), its form is drastically different. In
particular, one can see that the number of internal loops in
the contact plane is increasing with the increase of k.

The normalized non-holonomic shift is plotted in Fig. 9 as
a function of k for a ≈ 0.533681R. Here, one can observe
the existence of the inertia ratios (k1 ≈ 0.233154, k2 ≈
2.64357, k3 ≈ 5.20728, k4 ≈ 7.80506, k5 ≈ 10.9801, . . . )
producing the zero resulting displacement. One can say that
for the given a/R at the zeros of h/R the system behavior is
that of a holonomic one. It is also interesting to note that the
number of self-intersections of the trajectory of the contact
point on the plane for the half step of movement is exactly i
if k ∈ [ki, ki+1] , i = 0, 1, 2, . . .. This statement was verified
under simulations.

2 4 6 8 10 12
k

0.5

1

1.5

2

2.5

h�R

Fig. 9. Non-holonomic shift as a function of k for a ≈ 0.533681R.

In the final series of simulations we assume that the inertia
ratio k is given. To produce a desired non-holonomic shift,
one needs to re-size the spherical figure eight and redefine its
orientation on the sphere. Let us set the inertia ratio as k =
2.5. The normalized non-holonomic shift is plotted in Fig. 10
as a function of a/R for the given k. Assume now that the
desired value for the non-holonomic shift is h/R = 1 (that
is as in the pure rolling case). For the given h/R we have a
multiplicity of solutions: a1 = 0.300429R, a2 = 0.491471R,
a3 = 0.538682R, a4 = 0.609147R, . . ..
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Fig. 10. Non-holonomic shift as a function of a/R for k = 2.5.
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To align the resulting displacement along the va axis,
we set γ ≈ 0.931883rad for a ≈ 0.300429R, and γ ≈
−0.69726rad for a ≈ 0.491471R. The trajectories of the
contact point on the sphere and on the plane corresponding
to the first two solutions obtained are shown in Fig. 11 and
Fig. 12. It is clear that the first solution produces the contact
point trajectory of minimal (compare to the other solutions)
length. It is also interesting to note that the length of the
contact point trajectory for first solution is considerably
smaller than that corresponding to the kinematic model of
pure rolling. This shows the effect of the spinning motion
when it is not canceled out but dynamically constrained.
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Fig. 11. Contact point trajectory for k = 2.5 and a ≈ 0.300429R.
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Fig. 12. Contact point trajectory for k = 2.5 and a ≈ 0.491471R.

IV. CONCLUSIONS

An analysis of the motion planning problem for a spherical
rolling robot, actuated by two internal rotors that are placed
on orthogonal axes has been undertaken in this paper. A
mathematical model for solving the motion planning prob-
lem has been obtained by modifying the contact kinematic
equations by the condition of dynamic realizability which
constrains the component of the angular velocity of the
rolling carrier. By using a motion planning strategy based
on tracing a spherical figure eight, an exact and dynamically
realizable motion planning algorithm has been fabricated and
verified under simulation. The dependence of the resulting

non-holonomic shift on the mass distribution was clarified.
It has been shown that for the same tracing figures the
dynamically realizable trajectories on the contact plane are
essentially different from and more complex than those
obtained with the use of the kinematic model of pure rolling.
Also, the dynamically realizable contact paths are shorter
than their kinematic counterparts. This can be explained
by the contribution of the spinning motion, which is not
completely canceled but only dynamically constrained.
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