
Continuous Occupancy Maps using Overlapping Local Gaussian Processes

Soohwan Kim1 and Jonghyuk Kim2

Abstract— This paper presents an efficient method of building
continuous occupancy maps using Gaussian processes for large-
scale environments. Although Gaussian processes have been
successfully applied to map building, the applications are lim-
ited to small-scale environments due to the high computational
complexity. To improve the scalability, we adopt a divide and
conquer strategy where data are partitioned into manageable
size of clusters and local Gaussian processes are applied to
each cluster. Particularly, we propose overlapping clusters to
mitigate the discontinuity problem that predictions of local
estimators do not match along the boundaries. The results
are consistent and continuous occupancy voxel maps in a fully
Bayesian framework. We evaluate our method with simulated
data and compare map accuracy and computational time with
previous work. We also demonstrate our method with real data
acquired from a laser range finder.

I. INTRODUCTION

3D robotic mapping has gained significant attention re-
cently due to the wide availability of 3D data obtained from
various sensors such as Velodyne LIDAR scanners and Mi-
crosoft Kinect sensors. Among various map representations,
this paper focuses on occupancy maps which distinguish
between empty and occupied areas and have great flexibility
in representing unstructured and complex 3D environments
as shown in Fig. 1.

Conventional occupancy grid maps [1] discretize the world
into independent grid cells and update occupancy of each
cell individually. This independence assumption makes the
algorithm run fast and easy to implement, but also leads to
sparse results because only those cells which laser beams, for
example, pass through or reflected at are updated. Octomaps
[2] elaborate this approach to 3D occupancy voxel maps by
applying an efficient data structure, an octree.

Recently, Gaussian processes [3], a Bayesian nonpara-
metric approach to regression and classification in machine
learning, have been applied to map building in the robotics
literature. Elevation maps for outdoor terrains [4], [5] have
been estimated using Gaussian process regression, but they
are basically 2.5D and thus not suitable for modeling ar-
bitrary 3D environments. For full 3D representation of the
world, continuous occupancy maps [6], [7] have been pre-
dicted using Gaussian process classification. Since Gaussian
processes capture spatial correlation between data, dense
and accurate occupancy maps are obtained as well as map
uncertainties. In the meanwhile, Gaussian process implicit

1S. Kim is a PhD student of College of Engineering and Com-
puter Science, The Australian National University, Canberra, Australia
soohwan.kim at anu.edu.au

2J. Kim is a Senior Lecturer of College of Engineering and Com-
puter Science, The Australian National University, Canberra, Australia
jonghyuk.kim at anu.edu.au

Fig. 1: 3D continuous occupancy map built from the dataset
of University of Freiburg [18] with our proposed method.

surfaces have been reconstructed from point clouds [8],
LIDAR data [9], [10], and hybrid data [11], while the
uncertainties of mesh points have been utilized for path
planning [12]. However, the main drawback of Gaussian
processes is the high computational complexity of O(N3)
where N is the number of training data and thus, not directly
applicable for large-scale environments.

To enhance the scalability, various approximation methods
have been proposed. KD-trees [5], [7], [13] have been used to
predict outputs of test positions only with their nearest train-
ing data, while a mixture of Gaussian processes [9], [14]–
[16] partitions training data into manageable subsets and
merges predictions of experts by a gating network. However,
the former method needs to invert a new covariance matrix
for each test point, while the latter requires each Gaussian
process expert to predict over the whole input space. Thus,
both are not appropriate for large-scale mapping where the
sizes of training and test data are enormous. Pseudo-inputs
[17] and active data selection [6], [10] approximate the
training data with representatives. However, it is also time-
consuming to search for best pseudo-inputs or basis vectors.

The contributions of this paper are two folds. First, we
further reduce the computational complexity of occupancy
mapping using Gaussian processes by partitioning test points
together with training data and applying local Gaussian
processes. Second, to mitigate the discontinuity problem
along the boundaries we propose overlapping training data
for local Gaussian processes. Experimental results with sim-
ulated data show that our method is more accurate than
occupancy grid maps and more stable than the previous
methods of occupancy mapping using Gaussian processes.
We also demonstrate our method with real data acquired from
a laser range finder.

The structure of the paper is as follows. In Section II we
review occupancy mapping using Gaussian processes. We
propose our local approximation method in Section III. In

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4709

Section IV we compare our method with previous work on
simulated data and demonstrate our method with real data.
We conclude the paper with future work in Section V.

II. BUILDING OCCUPANCY MAPS USING
GAUSSIAN PROCESSES

In this section we review occupancy mapping using Gaus-
sian processes [6], [14], [15]. We also calculate the compu-
tational complexity of this approach theoretically, which will
be addressed by our method in Section III.

A. Occupancy Mapping

Occupancy mapping is a binary classification problem
to find the posterior distribution of the occupancy m at
every test position (test data), given robot pose states s and
observations z of range measurements (training data) ,

p(m|s, z) , (1)

where m=0 (free) or 1 (occupied). The robot poses s will
be omitted hereinafter since they are embedded in the ob-
servations z while converting range measurements in sensor
polar coordinates to line segments and hit points in the global
Cartesian coordinates.

B. Gaussian Process Regression

Instead of applying Gaussian process classification di-
rectly, we first apply Gaussian process regression and then
conduct probabilistic least square classification. This avoids
time-consuming approximations such as Laplace’s method
or Expectation Propagation with tolerable loss of accuracy.

For now, we assume that range beams are discretized into
several free points and predict the posterior of the continuous
occupancy value m̃,

p(m̃|z) , (2)

where m̃ ∈ R, z = (z1, ..., zN)T, zi ∈ R, zi = −1 (free
point) or +1 (hit point), and N is the number of training
data. The discretization will be replaced by the integral
kernels, and the regression results will be converted to class
probabilities by the probabilistic least squares classification.

We consider the continuous occupancy value as a function
of a location x and apply a Gaussian process prior,

m̃(x) ∼ GP (0, k(x,x′)) , (3)

where the mean function is chosen to be zero and k(x,x′)
is the covariance function between two locations x and x′.

Since the estimation of robot poses and range measure-
ments are not perfect, we assume that observations are
corrupted with additive Gaussian noise,

z(x) = m̃(x) + ε, (4)

where ε ∼ N (0, σ2
n) and σ2

n denotes the noise variance. (For
exact modeling of input noise, refer to [19].)

Then, the joint distribution of the observations z and the
occupancy value m̃ is a Gaussian distribution,[

z
m̃

]
∼ N

(
0,

[
K + σ2

nI k∗
kT
∗ k∗∗

])
, (5)

where K ∈ RN×N , [K]ij = k(xi,xj), k∗ ∈ RN , [k∗]i =
k(xi,x∗), and k∗∗ = k(x∗,x∗) while xi is the location of
the i-th observation zi and x∗ is the test position. (For details,
refer to [3].)

Therefore, the conditional distribution of the occupancy
value is also a Gaussian distribution,

p(m̃|z) = N
(
m̃;µ, σ2

)
, (6)

where µ = kT
∗ [K + σ2

nI]
−1z and σ2 = k∗∗ − kT

∗ [K +
σ2
nI]
−1k∗.

1) Covariance Function: We use the Mátern covariance
function with ν = 3/2,

kν=3/2(r) = σ2
f

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
, (7)

where r = |x− x′|, and the hyperparameters σ2
f and l are

called the signal variance and the characteristic length-scale,
respectively.

The choice of the covariance function is based on the
fact that the squared exponential covariance function in the
previous methods [6], [14] is too smooth to model sharp
changes in occupancy values of arbitrary environments.

2) Integral Kernels: Originally, a covariance function
defines similarity between two data points. Therefore, we
should discretize continuous range beams into several free
points, which makes the size of training data even larger.
To avoid this problem, we employ the integral kernels [6]
and treat a line segment as a single data point. The integral
kernels are

klp(l,x) =

∫ 1

0

k(l(u),x)du,

kll(l, l
′) =

∫ 1

0

∫ 1

0

k(l(u), l′(v))du dv, (8)

where klp and kll are called line-to-point and line-to-line
covariance functions, respectively, while l(u) and l′(v) de-
note line segments parameterized with u, v ∈ [0, 1], respec-
tively. Accordingly, the output of a line segment should be
integrated as minus its length, z(l) = −length(l), while the
output of a hit point is still +1.

Note that the integral kernels of the Mátern covariance
function have no closed form solutions. Therefore, we em-
ploy Clenshaw-Curtis quadrature [20] to integrate point-wise
covariance functions numerically.

C. Probabilistic Least Squares Classification

Now, we apply the probabilistic least squares classifica-
tion [21] and return from the posterior distribution of the
continuous occupancy value p(m̃|z) to the binary occupancy
p(m|z) by squashing the mean with the variance through a
cumulative Gaussian density function Φ,

p(m|z) = Φ

(
m(αµ+ β)√

1 + α2σ2

)
, (9)

where the parameters α and β are optimized by performing
leave-one-out cross-validation on the training set.

4710

TABLE I: Comparison of computational complexity between various occupancy mapping methods using Gaussian processes.
([methods] OM GP: occupancy mapping using a Gaussian process, OM MGP: using a mixture of Gaussian processes, and
OM LGP: using local Gaussian processes, [parameters] N : number of training data (line segments and hit points), M :
number of test positions, and K: number of equally-divided clusters.) Note that N ≈M in large-scale environments.

OM GP OM MGP OM LGP (our method)

O(N3) +O(N2M) O

(
N3

K2

)
+O

(
N2M

K

)
O

(
N3

K2

)
+O

(
N2M

K2

)

D. Computational Complexity

It is worth examining the computational complexity of
occupancy mapping using a Gaussian process (OM GP). The
occupancy map p(m|z) in Eq. (9) requires the means and
variances for all test positions. In Eq. (6), inverting the N×N
matrix costs O(N3), while multiplying the cross covariance
vector and the inverted matrix costs O(N2) per test position.
Therefore, the total computational complexity is O(N3) +
O(N2M), where N and M are the number of training data
and test positions, respectively.

The previous work [14], [15] focused on the cubic com-
plexity of the first term and partitioned the training data into
manageable subsets and predicted occupancy maps using a
mixture of Gaussian processes (OM MGP). Suppose that the
training data are equally divided into K clusters, then the
number of training data would drop to N/K in each cluster.
Thus, the computational complexity decreases significantly
even though predictions are repeated K times by individual
Gaussian processes. Table I summarizes the computational
complexity of various occupancy mapping methods using
Gaussian processes.

III. BUILDING OCCUPANCY MAPS USING OVERLAPPING
LOCAL GAUSSIAN PROCESSES

The previous work (OM MGP) aimed at partitioning large
amount of training data but missed the fact that the number
of test positions are also huge in large-scale environments.
In fact, we found that the orders of magnitude of the training
and test data are almost same (N ≈M) in reality in Section
IV. Thus, the second term in the computational complexity of
OM MGP in Table I becomes more significant than the first
one. Therefore, in order to further reduce the computational
complexity, we propose to partition test positions as well
as training data and apply local Gaussian processes to each
cluster.

A. Partitioning Training Data

We use range measurements with returns as training data,
and thus an observation is composed of a line segment and a
hit point. Technically, the influence of a line segment on a test
position depends on the distance between them. Therefore,
we need to find all line segments close enough to each test
position [7], but this is too time-consuming and does not
have much impact when thresholding the final results.

Instead, we first divide hit points with the k-means clus-
tering [22] and then assign line segments to the clusters in-
cluding corresponding hit points. This successfully recovers
sharp edges on the walls by balancing the influences of line

segments (free) and hit points (occupied) in each cluster.
The choice of the k-means clustering is based on scalability
and feasibility; the Dirichlet process mixture models in the
previous work [14], [16] takes too much time until Gibbs
sampling converges, while the line tracking of the previous
work [15] is not applicable for 3D data.

In addition, because the amount of training data is huge, all
of them cannot be loaded on the memory at once. Thus, we
take a coarse-to-fine clustering strategy; we roughly partition
the world with boxes and finely cluster again with the k-
means clustering in each box. Meanwhile, the cluster size
depends on the distribution of the point clouds and thus
varies cluster by cluster. Therefore, in order to guarantee
each cluster to be less than a manageable size, we perform
the k-means clustering iteratively on those clusters which are
larger than a maximum limit.

B. Local Gaussian Processes

Suppose that the training data are partitioned into K
subsets, z = {zi}Ki=1 associated with their cluster centers.
Then, we assume that the occupancy value of a test position
only depends on the closest cluster,

p(m̃|z) ≈ p(m̃|zk), (10)

where the k-th cluster center is closest to the test point.
This assumption is reasonable because the covariance of

two data points drops quickly as the distance increases, espe-
cially in the Mátern covariance function. This independence
factorizes the global Gaussian process into K local Gaussian
processes (OM LGP) with their own training and test data,
which predict means and variances over their own expert
domains, not over the whole input space. Suppose that all
test positions are evenly partitioned to K clusters. Then, the
number of test positions per cluster would decrease to M/K,
which further reduces the computational time as shown in the
last column of Table I.

C. Overlapping Training Data

The independence assumption, however, is violated near
the boundaries of the partitioning boxes and clusters, because
they are disjoint and thus the correlations of close training
data are ignored. This causes the discontinuity problem
that predictions do not match on the boundaries of local
estimators. Therefore, we coarsely partition the training data
with overlapping boxes and extend the ranges of clusters to
share some training data near the boundaries.

Fig. 2 illustrates the effect of overlapping training data.
Local Gaussian processes with disjoint training data suffer

4711

(a) Global Gaussian process (b) Local GPs with disjoint training data (c) Local GPs with overlapping training data

Fig. 2: 1D example of overlapping training data. (a) Global Gaussian process with hit and free points (+1 and −1 cross
points), (b) Local Gaussian processes with the same observations partitioned into three disjoint clusters (red, green, and
blue), (c) Local Gaussian processes with the same clusters extended by 30%. Recognize that overlapping training data (red
and blue crosses in green circles in gray overlapping regions) mitigate the discontinuity problem on the the boundaries. In
each plot the black curve and the shaded region denote the mean and twice the standard deviation at each test point. The
Mátern covariance function with l = 1/3 and σf = 1 is used.

from the discontinuity problem on the boundaries as shown
in Fig. 2(b). The overlapping training data in Fig. 2(c) con-
nect the predictions of local Gaussian processes seamlessly,
and the results are comparable to the global Gaussian process
in Fig. 2(a). The extent of extension should be determined
carefully based on the hyperparameters and the density of
training data, but we found that 20 ∼ 30% of extension is
sufficient in most of the times.

IV. EXPERIMENTAL RESULTS

In this section we evaluate our method with simulated data
and compare run time and map accuracy with the previous
methods. We also demonstrate our method with real data.

A. Experiments on Simulated Data

We simulated laser scanning from 28 robot poses in a
virtual environment of 22 × 18m2 as shown in Fig. 3(a).
To imitate imperfection of robot pose estimation, we added
independent Gaussian noise with zero means and standard
deviations of 10cm and 2◦ to the true robot positions
and rotations, respectively. Totally, 1, 320 observations (hits
points and line segments), were obtained.

The training data were coarsely partitioned into 4 boxes
of 11 × 9m2 and finely clustered into 14 clusters with a
maximum size of 100 hit points per cluster. The boxes and
clusters are extended by 20%. With a map resolution of
20cm, we generated 9, 900 test points in total and assigned
them to the closest clusters. Fig. 3(b) depicts the partitioned
training data (only disjoint clusters of hit points are shown for
clarity) and test positions. Since the test point are allocated to
the closest clusters, equidistance lines in each box are found
like Voronoi diagrams.

1) Comparison of Run Time: We implemented occupancy
grid maps (OGM) and occupancy mapping using Gaussian
processes (OM GP, OM MGP, and OM LGP) in MATLAB
as well as data partitioning in C++ on a computer with an
Intel Core 2 Duo 3.0 GHz CPU and 3.25 GB RAM. The
run time of each map building method is summarized in

TABLE II: Comparison of run time with the simulated data.
(OGM: occupancy grid map, OM GP: occupancy mapping
using a Gaussian process, OM MGP: a mixture of Gaussian
processes, and OM LGP: local Gaussian processes)

Clustering Mapping Total
OGM – 0.044 sec 0.044 sec
OM GP – 6.065 sec 6.065 sec
OM MGP 0.007 sec 5.277 sec 5.284 sec
OM LGP (ours) 0.011 sec 1.187 sec 1.198 sec

Table II. As expected, OGM ran the fastest, while OM GP
was the slowest. The map building time of OM MGP was
reduced with negligible overhead for clustering the training
data. Our OM LGP sped up more by partitioning the test
data together with the training data. This result reflects the
theoretical computational complexity in Table I.

2) Comparison of Accuracy: The objective of this paper
is to reduce the computational time, while retaining the map
accuracy. So, now we turn our attention to the quality of the
results. OGM in Fig. 3(c) is consistent with observations.
However, there exist a lot of holes of unknown spots in
empty spaces, which is getting worse in distant areas from
robot positions. This may be not crucial because we usually
threshold OGM with a value greater than 0.5 (unknown).
The more serious problem is that not so many grid cells
are predicted as occupied. Therefore, after thresholding,
occupied cells are remained sparsely, which may mislead
robots to plan a path through a wall. In order to avoid
this problem, more observations should be acquired close
to obstacles.

On the other hand, Gaussian processes produced dense
and more accurate occupancy maps given the same obser-
vations because the correlations between training data are
considered. OM GP in Fig. 3(d) successfully classifies oc-
cupied spaces from empty ones even with the noise in robot
poses. There are some mis-predictions due to insufficient

4712

(a) Simulated data (b) Partitioned hit points and test points (c) Occupancy grid map (OGM)

(d) OM GP (e) OM MGP (f) OM LGP (our method)

Fig. 3: 2D Simulation Results. (a) Laser hit points (blue crosses) and corresponding laser beams with returns (black lines)
obtained from noisy robot poses (red circles), (b) Partitioned training and test data (Neither laser beams nor shared hit
points are drawn for clarity.), (c) Occupancy grid map, (d) Occupancy mapping using a Gaussian process, (e) A mixture of
Gaussian processes, (f) Local Gaussian processes (our method). Note that occupancy is color-coded; red/green/blue denotes
occupied/unknown/empty. Hyperparamters are trained as l = 2.66, σf = 2.81 and σn = 0.99, and the squashing parameters
are learned as α = 7.94 and β = −1.42.

Fig. 4: ROC curves of occupancy mapping methods with
the simulated data. (Refer to Fig. 3 for the abbreviations of
method names.)

observations in some areas such as the right face of the
L-shape wall in the middle and the right corner of the
rectangular pole. OM MGP in Fig. 3(e) suffers from loss
of details when merging predictions of individual Gaussian
processes. The sharp changes of occupancy on the walls are
also little blurred. Finally, our OM LGP in Fig. 3(f) recovers
the sharpness but shows some breaks on predictions, which
is not significant especially when thresholding the results.

For more precise comparison of map accuracy, we plot
the Receiver Operating Characteristic curves based on the

ground truth of the simulated data. The ROC curve in Fig.
4 confirms that our OM LGP is comparable to OM GP and
OM MGP, while outperforms OGM. From the comparison
results of map accuracy and run time, we can say that our
method is more accurate than OGM and more scalable than
OM GP and OM MGP.

B. Experiments on Real Data

We demonstrated our method with the laser dataset of
University of Freiburg [18]. A region of 45 × 45 × 30m3

containing buildings, trees and roads was selected as a
representative for outdoor environments. Totally, 3, 676, 474
training data (laser hit points and laser beams with returns)
were collected, while 7, 593, 750 test positions were gen-
erated with a map resolution of 20cm. Recognize that the
number of test positions are even bigger than the number of
training data.

The training data were coarsely partitioned into 18 over-
lapping boxes of 15 × 15 × 15m3 and finely clustered into
11, 497 clusters with a maximum number of 500 hit points
per cluster in 22.6 minutes. The size of boxes was determined
by the memory capacity and the density of 3D point cloud.
The maximum size of clusters, on the other hand, was chosen
based on the trade off between run time and map accuracy.
As mentioned in Section II-D, the computational time for

4713

(a) Occupancy grid map (OGM) (b) Our method (OM LGP)

Fig. 5: Results with the laser dataset of the University of Freiburg [18]. Note that results are color-coded by height.

inverting a square matrix grows cubically, and we tested and
found that it increased sharply after 1, 500. Thus, we selected
1, 000 number of training data (hit points and line segments)
as a limit and extended each cluster by 15%.

As with the simulated data, our OM LGP in Fig. 5(b) is
more accurate than sparse OGM in Fig. 5(a); the holes on the
ground and buildings were tightly filled. OGM was generated
in 66.3 seconds, while OM LGP was built in 1.3 hours, but
we expect significant speed-up by converting the MATLAB
codes to C/C++ in future work. The hyperparameters were
learned as l = 1.33, σf = 2.81 and σn = 0.99.

V. CONCLUSIONS

In this paper, we proposed to apply local Gaussian pro-
cesses with overlapping training data for occupancy map-
ping. Previous work focused on the huge size of training
data and partitioned them to reduce the cubic complexity of
Gaussian processes. In contrast, we pointed out the fact that
the orders of magnitude of training data and test positions
are almost same in large-scale environments and partitioned
test positions together with training data. Therefore, we
achieved to enhance the scalability by further speeding up
the computational time. In addition, we proposed overlapping
training data to overcome the discontinuity problem on
boundaries of local Gaussian processes.

Experimental results on simulated data show that our
method is more accurate than occupancy grid maps and more
scalable that the previous work of occupancy mapping using
Gaussian processes. We also demonstrated our method with
real data obtained from a laser range finder and showed
the feasibility of our method in reality. As future work, we
plan to employ an efficient data structure like octomaps to
reduce the memory usage and to consider online updates
with sequential observations in dynamic environments.

REFERENCES

[1] H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in Proceedings of the IEEE International Conference on
Robotics and Automation, vol. 2, 1985, pp. 116–121.

[2] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: an efficient probabilistic 3d mapping framework
based on octrees,” Autonomous Robots, pp. 1–18, 2013.

[3] C. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[4] T. Lang, C. Plagemann, and W. Burgard, “Adaptive non-stationary
kernel regression for terrain modeling,” in Proceedings of Robotics:
Science and Systems, 2007.

[5] S. Vasudevan, F. Ramos, E. Nettleton, and H. Durrant-Whyte,
“Gaussian process modeling of large-scale terrain,” Journal of Field
Robotics, vol. 26, no. 10, pp. 812–840, 2009.

[6] S. O’Callaghan and F. Ramos, “Continuous occupancy mapping with
integral kernels,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2011, pp. 1494–1500.

[7] ——, “Gaussian process occupancy maps,” The International Journal
of Robotics Research, vol. 31, no. 1, pp. 42–62, 2012.

[8] O. Williams and A. Fitzgibbon, “Gaussian process implicit surfaces,”
in Proceedings of the Workshop on Gaussian Processes in Practice,
2006.

[9] M. Smith, I. Posner, and P. Newman, “Generating implicit surfaces
from LIDAR data,” in Proceedings of Towards Autonomous Robotic
Systems, 2010.

[10] ——, “Adaptive compression for 3d laser data,” The International
Journal of Robotics Research, vol. 30, no. 7, pp. 914–935, 2011.

[11] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2011,
pp. 2845–2850.

[12] G. Hollinger, B. Englot, F. Hover, U. Mitra, and G. Sukhatme, “Active
planning for underwater inspection and the benefit of adaptivity,” The
International Journal of Robotics Research, vol. 32, no. 1, pp. 3–18,
2013.

[13] Y. Shen, A. Ng, and M. Seeger, “Fast Gaussian process regression
using kd-trees,” in Advances in Neural Information Processing Systems
18. MIT Press, 2006, pp. 1225–1232.

[14] S. Kim and J. Kim, “Towards large-scale occupancy map building
using Dirichlet and Gaussian processes,” in Proceedings of the Aus-
tralasian Conference on Robotics and Automation, 2011.

[15] ——, “Building occupancy maps with a mixture of Gaussian pro-
cesses,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2012, pp. 4756–4761.

[16] ——, “Building large-scale occupancy maps using an infinite mixture
of Gaussian process experts,” in Proceedings of the Australasian
Conference on Robotics and Automation, 2012.

[17] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using
pseudo-inputs,” in Advances in Neural Information Processing Systems
18. MIT Press, 2006, pp. 1257–1264.

[18] B. Steder and R. Kümmerle, “The outdoor dataset of the university of
freiburg,” http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/.

[19] A. Girard and R. Murray-Smith, “Learning a Gaussian process model
with uncertain inputs,” University of Glasgow, Tech. Rep. TR-2003-
144, 2003.

[20] W. Gentleman, “Implementing Clenshaw-Curtis quadrature, I method-
ology and experience,” Communications of the ACM, vol. 15, no. 5,
pp. 337–342, 1972.

[21] J. C. Platt, “Probabilities for SV Machines,” in Advances in Large
Margin Classifiers. MIT Press, 2000, pp. 61–74.

[22] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 881–892, 2002.

4714

