
Evaluating Techniques for Learning a Feedback

Controller for Low-Cost Manipulators

Oliver M. Cliff∗, Sildomar T, Monteiro

Australian Centre for Field Robotics

University of Sydney

NSW, 2006, Australia
∗ocli5568@uni.sydney.edu.au

Abstract—Robust manipulation with tractability in unstruc-
tured environments is a prominent hurdle in robotics. Learning
algorithms to control robotic arms have introduced elegant
solutions to the complexities faced in such systems. A novel
method of Reinforcement Learning (RL), Gaussian Process
Dynamic Programming (GPDP), yields promissing results for
closed-loop control of a low-cost manipulator however research
surrounding most RL techniques lack breadth of comparable
experiments into the viability of particular learning techniques
on equivalent environments. We introduce several model-based
learning agents as mechanisms to control a noisy, low-cost
robotic system. The agents were tested in a simulated domain
for learning closed-loop policies of a simple task with no prior
information. Then, the fidelity of the simulations is confirmed
by application of GPDP to a physical system.

I. INTRODUCTION

The focus of this paper is to diverge from expensive ma-

nipulators and evaluate less precise, self-adaptive manipulator

systems for simple tasks. Off-the-shelf robotic arms are not

constrained by a standard, and as such there are kinematic

and dynamic discrepancies in the manufacturing of each arm.

We assess the viability of learning control, without any prior

knowledge, of a noisy manipulator system.

The main contribution of this paper is the concise evalu-

ation of common techniques used for learning manipulator

control. In particular, we rehash the work presented in [1] and

qualitatively compare two classes of reinforcement learning

agents in the manipulator domain. In doing so, this paper

presents the means for comparing several vastly different

algorithms in a comparable manipulator domain. The en-

vironment is executed in simulation and the more efficient

algorithm is then evaluated in a real, low-cost and inaccurate

robotic system.

There has been a lot of recent investigation into robotic

systems that are potentially efficient in the application of

everyday tasks, however these algorithms segregate the guid-

ance, navigation, and control components of a system, re-

quiring integration of complex modules to yield a complete

system. This approach typically involves expensive robotic

hardware and robot specific dynamics [2]–[4]. Introducing

learning agents to our system results in the inherent handling

of both path planning and state-oriented control in a low-cost,

generic robotic arm system.

Learning without any dynamics model a priori is a de-

sirable attribute for portability across systems. Recent de-

velopments in Reinforcement Learning (RL) show progress

toward effective control for complex systems [1], [5], [6].

However there is scant research on comparable manipulator

environments across the board. RL is an approach of machine

learning derived from behavioural psychology in that the

agent learns from direct experimentation in experience-based,

goal-directed learning methodologies. The objective of RL is

to find a strategy which optimizes a long-term performance

measure, a goal which can be acheived without any prior

knowledge of a system. This results in RL being an ideal

candidate for generalized control.

We propose that Gaussian Process Dynamic Programming

(GPDP) [7] is an effective approach to manipulator control

based on the agent’s evaluated performance in the classic

cart-pole RL environment ([8]) and contrast the response of

the system against a similar environment for the conven-

tional agents. To maximise the performance of applicable

conventional RL agents, the base agents were overlayed with

planning modules and decision trees.

The experiment domain is simple but perceptive: the goal

of each episode is to move from an initial Cartesian co-

ordinate to another attainable co-ordinate with no dynamics

model or planned path known prior to each experiment. The

experiments are performed for up to three degrees of freedom

(DOF). Our results support the hypothesis that GPDP is far

superior at learning closed-loop control in terms of reliability

and efficiency.

To evaluate the applicability of any method for a particular

purpose, unbiased experimentation must be undertaken. We

assess the performance of a novel GPDP learning algorithm,

PILCO [8], for the purposes of closed-loop control of a

low-cost and noisy manipulator. The effectiveness of GPDP

will be contrasted with more conventional RL algorithms:

Q-learner [9]; SARSA [10]; DYNA [11]; R-MAX [12]; and

TEXPLORE [13].

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 704

II. BACKGROUND

This background information is intended to familiarize the

reader with the nomenclature and subject matter covered

in this paper. The motivation and implications of these

algorithms are elaborated in section IV.

A. Reinforcement Learning

RL is characterized as learning by interaction; the agent

makes decisions and interacts with the environment. To eval-

uate the efficacy of an action at, the environment indicates

the reward rt the agent receives as a function of the next-

step state xt+1 of the environment. A task becomes episodic

given a terminal state x
+.

The crux of RL is the Markov Decision Process (MDP),

the 4-tuple M ≡ (X ,A,Pa

xx
′ ,Ra

xx
′) of the non-empty set of

states X ∋ xt; the set of possible actions A ∋ at; the reward

probability kernel Ra

xx
′ ; and the state transition probability

kernel Pa

xx
′ .

Finally, the action-value transition Q̂ designates the expec-

tation of stochastic return given some initial conditions.

B. Conventional Reinforcement Learning Algorithms

We now consider the base agents used in finite MDP,

where the set of states are a finite set of Cartesian coordinates

|X | ∈ R. In a conventional setting, the discretised environ-

ment has a (tabular) database or decision model based on

previous experiences.
1) Q-learning: Q-learning is a simple interpretation of

model-free RL techniques, and in combination with SARSA

provides an informative basis for PILCO against conventional

model-free methods. The core of Q-Learning comes from

value iteration, where the action-value prediction method

stems from Temporal-Difference (TD) planning [9]. 1-step

Q-learning uses an off-policy TD learning control method,

where the learnt action-value function Q̂(·, ·) directly approx-

imates the optimal action-value Q̂∗(·, ·) independent of the

policy that is being followed, [9].
2) SARSA: 1-step SARSA is a simple application of policy

iteration with an on-policy TD control method; updating the

action-value function based on the policy being followed,

[11]. The currently hreaded policy is updated online after

each non-terminal state x, in contrast to Q-learning, where

the policy is updated offline.
3) Dyna: DYNA agents extend the typical RL architecture

to form a world model by using planning steps in an online

simulated model, [11]. These agents consider the limitation

of RL that agents often rely heavily on a policy and return

basis, rather than a causal model. As a result, less emphasis

is placed on the scalar reward but on the relative state

information δx.
4) R-max: R-MAX is a model-based RL agent where

is it expected that each unsure transition yields maximal

reward; implicitly handling the dilemma of exploration versus

exploitation. This level of uncertainty is proportional to the

number of times the agent has visited a state [12]. The

laborious technique of executing each state-action pair until

a model is learnt is inefficient and often unapproachable in

larger state spaces.

5) T-explore: TEXPLORE is a more recent method to

avoid the time intensive trial-and-error approach to balancing

exploration and exploitation in model-based algorithms, [13].

The agent assumes the probability of the state transition ker-

nel is a product of each of its n state feature’s probabilities,

Pa

xx
′ =

∏n−1

i=0
Pa

xiδx
′ . TEXPLORE agents recursively build

a decision tree using the C4.5 algorithm, [14], rather than

the typical tabulated transition, using (Shannon) entropy to

spawn a discrete decision tree.

6) UCT: The model planning module UCT build on the

model-based algorithms introduced above, [15]. The UCT

method is a rollout-based algorithm in that it builds a look-

ahead tree by continuously sampling episodes from the initial

state. UCT uses an online model, where branches are added

to the tree throughout an episode, allowing for continuous

modelling.

7) M5 Regression Trees: The UCT algorithm employs

continuous M5 regression trees in order to diverge from

the rigidity of a discrete tree model into more flexible

domains, enabling optimal behaviour convergence in larger

state spaces [16]. The common approach in a small and finite

MDP is keeping a table of observations and targets. The

regression tree segments the continuous model into a linear-

piecewise model (linear approximations of the continuous

model) supporting continuous MDPs.

C. Gaussian Process Dynamic Programming

Gaussian processes (GPs) are a generalization of the

Gaussian distribution and popular application of Bayesian

inference, [17]. These processes are applicable to machine

learning tasks by placing a prior over the function space.

The GP combines flexible non-parametric modelling with

inference techniques based on Bayesian data analysis, in-

herently handling the issue of the infinite function space to

draw from in nonparametric function approximation method-

ologies. This data efficient process draws the near-optimal

function from the mean and covariance input-space,

f(x) ∼ GP(m(x), k(x,x′)). (1)

GPDP is a value-function based RL algorithm that gener-

alizes dynamic programming to continuous state and action

spaces. The methodology is characterized by the use of

Bayesian GP models to describe value functions in DP

recursion, [18]. In this paper, we analyse the merits of the

successor to [19], the Probabilistic Inference for Learning

Control (PILCO) algorithm ([7]) that learns a probabilistic

dynamics model and incorporates model uncertaintly into

long-term planning.

PILCO is a model-based, offline learning agent capable of

closed-loop control. As such, the algorithm learns a policy

from cascading one-step predictions through the state space.

Once a policy is learnt PILCO performs near-optimal closed-

loop control given the current state xt.

III. IMPLEMENTATION

The process for experiments were pipelined; each agent

was tested on a similar simulated platform and assessed for

705

(a) (b)

Fig. 1. The Lynxmotion AL5B manipulator. Figure 1(a) illustrates the sim-
ple but perceptive task used in these experiments, showing the probabilistic
steps each agent takes to move the cube, blue, to the target state, green.
In figure 1(b) an exaggeration of the method used for empirically selecting
system noise. The arm’s actual position (red) deviates from the expected
(dashed green) extended length.

viability in a physical system, if applicable or necessary,

the agent would be tested within the framework of the real

system.

Motivated by [1], the domain for testing was a simple

cartesian setup in three dimensional state space with up to a

three dimensional control vector u. In replicating [1], the

cartesian state used is the centre of a block in the end-

effector x = {xc, yc, zc}
T , see figure 1(a). As the control set

is variable, the number of parameters, or joints, controlled

is D. As a result, the action is mapped to control signal

(PWM) outputs for the arm a : R1 → R
D. We extend [1]

by incrementally increasing the number of enabled joints and

introducing conventional agents and simulated environments

for a more informed analysis of the PILCO agent.

The basic conventional agents and planner with regression

tree were provided by the open-source TEXPLORE ROS pack-

age ([13]) and the PILCO framework source code provided

access to PILCO’s underlying algorithms.

A. Conventional Agent Architecture

The environment must map a scalar action in the action

set at ∈ A to the control vector |u| = D ≤ 3. To do so,

we use bitwise manipulation to extract each control uk at

a given base value. To test different avenues for optimal

control, two modes of operation were experimented with:

incremental and unconstrained motion for the manipulator’s

revolute joints. Unconstrationed motion allows each active

servomotor to utilize the full range of motion to a specified

resolution - the actions increase exponentially with each

DOF. Incremental motion can only perturb each servo one

increment either direction of remain still, thus the actions also

increase exponentially, however orders of magnitude lower.

After some trial and error, the base value was set to 16 as

a conservative measure toward minimizing the action-space

i.e. a 11.25o increment for 180o of motion. This results

in A : R
16

D

for unconstrained motion and A : R
4
D

for

incremental.

The basic conventional algorithms have proven effective

at gaining optimality given the ability to explore the domain

thoroughly. With the exception of TEXPLORE, the model-

based algorithms use a tabular model of transition, exponen-

tially increasing the memory and inefficiency for higher order

MDP’s. In manipulator control a higher order MDP enables

higher precision of both goal state and motor precision and

thus we wish to effectively maximise the MDP for our

environment. The inclusion of UCT and M5 decision trees

for continuous states were a means to smooth the discrete

MDP algorithms.

B. Extension to larger MDPs

To improve on the underlying conventional agents and

encourage learning in a higher order MDP, we use Multi-

agent architecture and a Monte-Carlo style planner with

continuous decision tree models.

[20] proved minimizing the available action-space is an

effective way to overcome the ‘curse of dimensionality’ in a

higher order MDP, in contrast to methodologies with concen-

tration on state-space truncation. [21] implement multi-agent

architecture to minimize the action-selection dilemma on a

manipulator and in turn optimize the underlying Q-learning

algorithm. The value function converges efficiently however

these results are obtained through a noiseless simulation

and are not compared to other algorithms, rendering them

ineffective at ascertaining viability to real systems. The TEX-

PLORE ROS package supports centralized agent architecture,

with one node interacting with the environment. We extend

upon this to package to support decentralized control for

agents, assigning one agent to each controllable motor of the

manipulator. Distributing control to each joint minimizes the

action-space, nullifying the exponents in both unconstrained

and incremental motion.

Inspired by [13], the model-based algorithms are enhanced

through the UCT planner with a flexible M5 regression tree

for conventional agents. The motivation for rollout-based

algorithms such as UCT have an advantage in our simplified

manipulator domain where the set of successor states can

concentrate to a small number of states for near optimal con-

trol, [15]. Including M5 regression trees over other decision

tree algorithms, such as C5.4, promotes continuous valued

transition models.

1) Terminating the episode: In our experiments, we use

proximity to a target as a basis for terminating episodes. It

was observed that the single agent results are fairly robust

to the reward function if the episode was terminated based

on the Euclidean distance d to the target state x
+ where

d(x) = |xT
x|. However, [21] prove non-scalar reward

functions are advantageous in multi-agent architectures. From

[21] the continuous, saturating functions for both penalty r−

and terminal r+ rewards are

r−(x) = −αdn, r+(x) =
β

1 + dm
.

706

The experiments presented in this domain are episodic,

meaning there is a desired goal (Cartesian coordinate) and

the environment reinitializes to a starting condition where the

agent maintains any previous state-action-reward experience.

By using the conventional tools for learning control, such

as storing tabular transitions and Monte-Carlo learning, the

agents do not make an assumption of the environment akin

to a continuous probabilistic function, as does GPDP. As

a result, the conventional agent will not incline toward the

completion of the task until multiple observations of tran-

sitions have occured. This defining feature of conventional

RL requires a state terminated episode, where, in these

experiments, the episode terminates when a state is reached

within a proxied target state space.

C. Gaussian Process Dynamic Programming Architecture

The GP model learnt is the latent function f : R3+D → R
3

where the training inputs and respectively mapped targets

are (xt,at) → ∆ ≡ xt+1 − xt + ǫt, ǫt ∈ R
3 and i.i.d

Gaussian noise. GP enables multivariate regression, resulting

in a higher dimensional action-space than conventional agents

A ⊆ R
D. Each action ak is then trivially mapped to the

respective control signal uk.

From [1] we set the reward function to

r(x) = exp(−
1

2
(x− x

+)T (x− x
+))

where T = σ
2
cI and the cost width σc = { 1

2
b, b, 2b, 4b} and

b is the edge length of each block. The reward function is

therefore a function of scale mixtures of squared exponentials

to minimize reliance on one single weighting and yield non-

zeros policy gradients even far from x+.

Through function approximation step terminated episodes

can effectively be used. GPDP can still cascade one-step pre-

dictions for parameter gradients, such as those experienced

even relatively far away from x
+ in an initial rollout. The

result is that we are able to terminate the episode based

on a time step horizon, as opposed to proximity based.

This measure additionally enabled PILCO to perform offline

learning for on-line control, ensuring minimal randomly

seeded actions. Theoretically, allowing the system with the

minimum time to reach a target will suffice to learn a control

policy.

D. Simulation

To simulate the kinematics of the manipulator, the homo-

geneous transformation of the end-effector {3} is performed

relative to the base (shoulder) frame {1},
[

1
x

1

]

= 1
3T

[

3
x

1

]

+ ε (2)

where ε is i.i.d Gaussian noise ε : R3. Given joint angles

{θ1, θ2, θ3} and limb lengths {L1, L2, L3} indexed from the

shoulder joint,

1
3T =









cθ123 −sθ123 0 L1cθ1 + L2cθ12 + L3cθ123
sθ123 cθ123 0 L1sθ1 + L2sθ12 + L3sθ123
0 0 1 0
0 0 0 1









To accurately simulate responses, it was assumed that both

the actuation and sensing system noise could be considered

Gaussian. The simulated system noise is deduced by an

empirical approach, assuming the fully extended arm (with

the highest moment about the revolute shoulder joint) yields

the maximum normal force to each joint, see figure 1(b). We

then observe a conservative estimate of noise by perturbing

the shoulder joint, keeping the upper arm rigid and recording

disparaty of measurements from expected outcomes. The

results were confirmed Gaussian, producing the empirical

system noise as ε ∼ N (0, 20−6).

E. Real System

The physical system is designed for use of the PILCO

agent. The system consists of a local and remote machine, a

Kinect sensor and a robotic arm.

Our system is a distributed network communicating

through TCP/IP. The computationally intensive PILCO learn-

ing algorithm models the GP latent function through one-

step predictions on a remote server. A machine local to

the manipulator receives an updated policy and periodically

transmits state transition information to improve the PILCO

model.

The physical manipulator used is the Lynxmotion AL5B

Robotic Arm, see figure 1(a), a low-cost and relatively

inaccurate servomotor controlled manipulator with little feed-

back. We obtain the markov state through a blob tracker with

streamed depth registered images from a Microsoft Kinect,

tracking a foam block in the end-effector of the manipulator.

For communication and open-source libraries we used ROS.

IV. EXPERIMENTS

The experiments covered conventional agents in a simu-

lated environment and PILCO agents in both a simulated and

physical environment.

A. Conventional Agent Algorithms

The results in figure 2 were collated through experiments

spanning 1000 episodes; each episode terminated within

a pre-defined proximity kernel of the goal state with an

upright, fully extended initial configuration. The designated

goal state was a consistent but arbitrary position within the

workspace of the manipulator. Each plot shows the typical

accumulated reward per episode. Recall that higher reward

over the episode is optimal, with a maximum reward of 0.

Figure 3 captures findings from the agents optimized for

continuous MDPs. Only model-based agents are supported

this framework with the exception of R-MAX, requiring a tab-

ular environmental model. Further, the higher computational

requirements of TEXPLORE (by considering each feature of

the state) renderred the algorithm intractable in such a large

MDP (although the lower order MDP results can be seen

in table I). As a result, DYNA agent’s are the only plausible

agent to consider for the extension to a continuous state space

through the UCT planner and continuous M5 regression trees.

Figure 2 highlights results from the conventional agents

that act optimally in a finite MDP. In general, DYNA agents

707

0 200 400 600 800 1000
−250

−200

−150

−100

−50

0

Episode Number

A
c
c
u

m
u

la
te

d
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

sarsa, sa, all

sarsa, ma, inc

dyna, sa, all

dyna, ma, inc

qlearner, sa, all

qlearner, ma, inc

Fig. 2. Collated and averaged results for basic conventional agents (not
optimized for continuous MDPs). The graph depicts the typical accumulated
reward per episode over 1000 episodes. The legend describes: the agent e.g.
DYNA or Q-learner; the agent network format e.g. multi-agent (ma) or single
agent (sa); and the mode of operation e.g. incremental (inc) or unconstrained
(all).

0 200 400 600 800 1000
−250

−200

−150

−100

−50

0

Episode Number

A
c
c
u

m
u

la
te

d
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

dyna, ma, inc

dyna, sa, inc

dyna, sa, all

dyna, ma, all

Fig. 3. Results for the Dyna agent optimized through the UCT planner and
M5 decision tree as per figure 2.

outperform the SARSA and Q-learner agents for both un-

constrained and incremental motion proving these model-

based methods are sample efficient however they are also

computationally intensive (as suggested by the omission of

TEXPLORE and R-MAX). This is most likely due to the

fact that DYNA agents are able to hypothesis any number

of outcomes from any number of environmental models, as

opposed to updating a static world-view based on previous

observations.

Figure’s 2 and 3 in conjunction with table I show that dis-

tributed architecture ousts single agent control when operat-

ing in incremental mode. This might be due to the significant

reduction in action-space for incremental mode if it weren’t

also the case that unconstrained motion generally benefits

from single-agent control. These two results seemingly con-

tradict one another, as distributed, incremental architecture

supports the minimization of action space whereas central-

ized, unconstrained architecture does not. More investigation

0 5 10 15 20
−8

−7

−6

−5

−4

−3

−2

−1

0
GPDP Reward/Episode

A
c
c
u

m
u

la
te

d
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

Episode Number

2e−6m variance

1e−5m variance

real

Fig. 4. Typical reward response of the Gaussian Process Dynamic
Programming agent, PILCO, when applied to a physical system (red solid)
and simulated systems with differing noise (green and blue, dashed lines).
The episode terminates after 20 time steps.

should be considered for rewards given to different modes

of operation in this domain. The multi-agent architecture

improves the initial learning curve of the DYNA agent (see

figure 3) however this accelerated exploitation is clearly

detrimental to the agent’s exploration as the distributed agent

network response tapers off quickly compared to the single-

agent equivalent that converges on a near-optimal policy

much faster.

An important feature table I captures is the effect the

increase in state- and action-spaces has on the agents. For

lower order MDPs the agents can typically converge on a

near optimal policy, evident y the relatively high reward.

Further supporting this notion is that the continuous MDP

optimized DYNA with incremental control outperforming the

single agent architecture of the same configuration.

B. Gaussian Process Dynamic Programming Results

Figure 4 illustrates the results for the PILCO agent through

a kinematic simulation, and physical system. The simulated

noise was empirically selected as ε ∼ N (0, 2 × 10−6) as

specified in section III. In addition, we show results for ε ∼
N (0, 10−5) to illustrate the efficacy of GPDP at handling

noisy input.

The real system is not wholly consistent with the simu-

lation. This is primarily due to the conservative estimate of

the maximal expected noise and that the (95%) confidence

interval about the first step is approximately ±3.5.

Learning manipulator control allows agents to see a re-

lationship between their actions and the state-reward tuple,

however there are significant advantages to one method over

another in a particular domain; in this setup it is clear that the

PILCO agent trumps conventional agents at generalized ma-

nipulator control from scratch, noting the clear improvement

of figure 4 over both figure’s 2 and 3.

In GPDP the loss function minimizes by differentiation

w.r.t. the policy parameters. The algorithm then infers the

708

TABLE I
AVERAGED RESULTS OVER 100 EPISODES FOR EACH EXPERIMENT EXECUTED WITHIN THE CONVENTIONAL AGENT ARCHITECTURES. HIGHER

ACCUMULATED REWARD PERTAINS TO A BETTER RESPONSE FROM THE AGENT. ’-’ REFERS TO INVALID OR INTRACTABLE RESULTS.

Single Agent Architecture Multi Agent Architecture
Unconstrained Incremental Unconstrained Incremental

DOFs 1 2 3 1 2 3 2 3 2 3

Q-learner -0.20 -16.93 -156.7 -14.35 -84.8 -950 -25.5 -245.82 -52.1 -220
SARSA -0.37 -13.23 -141.7 -9.29 -44.9 -616 -24.15 -247 -27.9 -201
DYNA 0.00440 -10.67 -108.75 -13.05 -52.07 -656 -19.11 -236 -31.6 -135

R-MAX -4.08 -61.4 - -3.05 -176.3 - -59.0 - -60.5 -
TEXPLORE 0.742 -48.09 - -2.53 - - - - - -

Continuous DYNA 0.19 -10.37 -85.28 -3.41 -21.2 -301 -16.14 -158.8 -14.08 -108.4
Continuous TEXPLORE -7.47 -28.0 - -15.72 -21.80 - - - - -

DP value function via Bayesian probabilistic measures from

a function space view. In the conventional implementation,

however, value- and policy-iteration without function ap-

proximation use a discretised (tabulated) input-space that is

typically updated based on some type of Frequentist method-

ology. Therefore, in a continuous state-space the conventional

approach is typically to quantize all states within a discrete

cell. The result is that GPDP agents estimate a smooth

continuous function and the discretised, conventional archi-

tecture will observe on a state-by-state basis and not assume

any relationship to neighbouring states. These characteristics

explain the extraordinary disparity in the learning slope of

figure 4 versus figures 2 and 3.

V. CONCLUDING REMARKS

This paper evaluated the efficacy of a variety of agents

toward learning closed-loop control of a manipulator in a

simple task. The algorithms used were: Q-learner, SARSA,

DYNA. R-MAX, TEXPLORE and the GPDP agent PILCO. This

work extends [1] by comparing the PILCO agent qualitatively

against predeceding agents for up to three degrees of freedom

(DOFs).

The experiments were conducted with the intention of

maximising common environmental factors in an effort to

ascertain more valued agents for the manipulator domain.

Further, the basic conventional agents were optimized for

continuous MDPs with the inclusion of the UCT planner with

M5 decision trees.

Our results show that PILCO outperforms all conventional

agents by orders of magnitude in terms of efficiency and

exploitation. The results clearly allude to the merit of the

conventional agents in finite state spaces with lower order

Markov Decision Processes, however the curse of dimen-

sionality applies upwards of three DOFs.

VI. ACKNOWLEDGEMENTS

This work has been supported by the Australian Centre

for Field Robotics and the Rio Tinto Centre for Mine

Automation. We would also like to extend our gratitude to

Marc Deisenroth for supplying the PILCO framework source

code and ongoing assisting with its implementation; and

Todd Hester for his RL package in ROS and informative

discussions over continuous MDP algorithms.

REFERENCES

[1] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control
a low-cost manipulator using data-efficient reinforcement learning,”
in Robotics: Science and Systems, H. F. Durrant-Whyte, N. Roy, and
P. Abbeel, Eds., 2011.

[2] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding,” in ICRA. IEEE, 2010, pp. 2308–
2315.

[3] M. T. Mason, A. Rodriguez, S. S. Srinivasa, and A. S. Vázquez,
“Autonomous manipulation with a general-purpose simple hand,” I.

J. Robotic Res., vol. 31, no. 5, pp. 688–703, 2012.
[4] A. L. Thomaz and C. Breazeal, “Teachable robots: Understanding

human teaching behavior to build more effective robot learners,” Artif.

Intell., vol. 172, no. 6-7, pp. 716–737, 2008.
[5] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”

Machine Learning, vol. 84, no. 1-2, pp. 171–203, 2011.
[6] J. Pazis, “Reinforcement learning in multidimensional continuous

action spaces,” in ADPRL. IEEE, 2011.
[7] M. P. Deisenroth, “Efficient reinforcement learning using gaussian

processes,” Ph.D. dissertation, 2010.
[8] M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and

data-efficient approach to policy search,” in ICML, L. Getoor and
T. Scheffer, Eds. Omnipress, 2011, pp. 465–472.

[9] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disser-
tation, King’s College, Cambridge, UK, 1989.

[10] G. A. Rummery and M. Niranjan, “On-line Q-learning using connec-
tionist systems,” Tech. Rep., 1994.

[11] R. S. Sutton, “Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming,” in ML, B. W.
Porter and R. J. Mooney, Eds. Morgan Kaufmann, 1990, pp. 216–224.

[12] R. I. Brafman and M. Tennenholtz, “R-max - a general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of

Machine Learning Research, vol. 3, pp. 213–231, 2002.
[13] T. Hester and P. Stone, “Real time targeted exploration in large

domains,” in ICDL, 2010.
[14] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

no. 1, pp. 81–106, 1986.
[15] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”

in ECML, J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, Eds., vol.
4212. Springer, 2006, pp. 282–293.

[16] R. J. Quinlan, “Learning with continuous classes,” in 5th Australian

Joint Conference on Artificial Intelligence. Singapore: World Scien-
tific, 1992, pp. 343–348.

[17] C. E. Rasmussen and C. K. I. Williams, gaussian processes for machine

learning. MIT press, 2006.
[18] M. P. Deisenroth, C. E. Rasmussen, and J. Peters, “Gaussian process

dynamic programming,” Neurocomputing, vol. 72, no. 7-9, pp. 1508–
1524, 2009.

[19] C. E. Rasmussen, “Gaussian processes in machine learning,” in Ad-

vanced Lectures on Machine Learning, O. Bousquet, U. von Luxburg,
and G. Rätsch, Eds., vol. 3176. Springer, 2003, pp. 63–71.

[20] H. Kimura, “Reinforcement learning in multi-dimensional state-action
space using random rectangular coarse coding and gibbs sampling,” in
IROS. IEEE, 2007.

[21] J. A. M. Hernández and J. de Lope Asiaı́n, “A distributed reinforcement
learning control architecture for multi-link robots - experimental vali-
dation,” in ICINCO-ICSO, J. Zaytoon, J.-L. Ferrier, J. Andrade-Cetto,
and J. Filipe, Eds. INSTICC Press, 2007, pp. 192–197.

709

