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Abstract – This paper proposes a practical framework to es-
timate whether or not a grapple installed in demolition ma-
chines is in a grasp state. Object grasp is a highly difficult task 
that requires safe and precise operations, so identifying a grasp 
or non-grasp state is important for assisting an operator. These 
types of outdoor machines lack visual and tactile sensors, so the 
proposed framework adopts practically available lever opera-
tion and cylinder pressure sensors. The grasp is formed by a 
grasp motion, which is operations to make the grapple pinch an 
object, and the grasp state, where the grapple holds the object in 
any manipulator movements. Thus, the framework determi-
nately confirms the grasp motion through the requisite condi-
tions defined by using sequential changes of binarized operation 
and pressure data for the grapple and the manipulator, and 
stochastically confirms the grasp state through the enhancement 
conditions defined by using force and movement vectors in-
cluding vertical downward force, movement in the longer di-
rection, and horizontal reciprocating movement. The results of 
experiments conducted to transport objects using an instru-
mented hydraulic arm indicated that the proposed framework is 
effective for identifying grasp/non-grasp with high accuracy, 
independently of various operators and environments. 

I. INTRODUCTION 

ESCUE and recovery work at disaster sites [1], sorted 
dismantling for recycling resources, and tree thinning for 

forestry improvement [2], are socially expected to be carried 
out using construction machinery, which is able to produce 
the massive force. The above advanced tasks require grasping 
objects including transporting debris, removing fallen trees, 
and crushing waste products, which differs from conventional 
simple excavation. These tasks are thus conducted by using 
machines equipped with a grapple, which has a grasping 
mechanism, as shown in Fig. 1. An object grasp is an initial 
state for various elemental tasks such as transport, removal, 
and bending, so it is essential to execute the advanced tasks. 
On the other hand, operations to grasp an object are difficult 
and must be done safely and with high precision. This is be-
cause an operator is required to carefully adjust the position 
and orientation of the end-point of the grapple in accordance 
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with a distant object while paying attention to a contact with 
the environment. Moreover, the ground and debris conditions 
are often unstable, and the operator may have insufficient 
visibility, particularly in disaster response situations. These 
factors can cause false recognition such as mistaking a 
non-grasp for grasp (and vice versa) and a loose grasp for a 
firm one. This can result in operational errors and secondary 
disasters such as collapsing debris, the toppling over of ma-
chinery, and falling and breakage of transported objects. 
Consequently, advanced construction machinery must be able 
to grasp objects safely and precisely. This requires highly 
sophisticated skills involving cognitive and control abilities 
in machine operators. An effective way to address these 
problems is to provide operational support by using an intel-
ligent system that identifies grasp/non-grasp, i.e., whether or 
not the grapple has grasped an object. The authors previously 
proposed an intelligent system that provides operator support 
[3], [4] and work-analysis support [5] on the basis of identi-
fying work states. This study thus proposes a method to es-
timate a grasp or non-grasp for construction machinery. The 
proposed framework is also useful in underwater mainte-
nance work [6], tele-operated object handling at disaster sites 
[1], and demolition work in high places using a long-reach 
arm, where visual and tactile information is unsatisfactory.  

II. ANALYSIS OF GRASP IN CONSTRUCTION MACHINERY 

 Problems in grasp estimation were first analyzed and re-
quirements for a practical grasp estimation method for con-
struction machinery were clarified. 
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A. Problems in grasp/non-grasp estimation 

 1) Mechanism and sensors: A grapple is attached to the 
end-point of a manipulator. A link mechanism connects two 
forks (upper and lower) with one hydraulic cylinder, as shown 
in Fig. 2. A grapple opens (closes) by extending (contracting) 
the cylinder and its forks synchronously move in the reverse 
directions. The sensors available in these structures are po-
tentiometers for detecting the amount of lever input and hy-
draulic sensors for detecting joint load, owing to the limita-
tion from the severe work environments. Lever sensors reveal 
when the forks are opening/closing (Fig. 2 (a)). Pressure 
sensors reveal when the forks come into inside/outside con-
tact with objects by using the pressure balance of the pis-
ton-rod-side pressure ଵܲ and bottom-side pressure ଶܲ of the 
cylinder (inside contact: ଵܲ< ଶܲ and outside contact: ଵܲ> ଶܲ) 
(Fig. 2 (b)). Angle sensors are not installed and the two forks 
are linked, so a null grasp (completely closed without grasp) 
and a contacted fork (upper/lower) cannot be identified.  
 2) Difficulty of grasp estimation: The inside contact pro-
vides the essential information for representing the possibility 
of a grasp. However, grasp is not determined by the inside 
contact alone, owing to a contact with the inside part of either 
fork or a null grasp. By contrast, humans can use visual and 
tactile information obtained from their eyes and hands to 
easily identify grasp/non-grasp. Related studies have inves-
tigated an object grasping strategy using visual or tactile in-
formation [7], [8] and adaptive grasping control [9]. They 
were applied to instrumented manipulators for indoor appli-
cations. On the other hand, for construction machinery, grasp 
estimation is inevitably difficult because of the insufficient 
sensor capabilities. Thus, no studies have systematically fo-
cused on developing a method to identify grasp/non-grasp in 
the construction machinery field.  

B. Grasp motion and grasp state 

 To develop an object grasp estimation framework for con-
struction machinery, we analyzed the sequence of a grasp. A 
grasp can be divided into a grasp motion and a grasp state. (i) 
A grasp motion is represented as the following sequence. An 
operator maneuvers a grapple to close the forks, pinch an 
object with both forks, and hold the object by the grasping 
force. The grasp motion is a deterministic process and essen-
tial to achieve the grasp. If the grasp motion is not observed, 
the grasp possibility vanishes. This deterministic sequence is 
called a requisite condition for grasp (RCG). (ii) A grasp state 
is defined as one where the object does not move from the 
grapple in any manipulator movements. Various objects (e.g., 
with different shapes and mass) are found in various positions 
(e.g., on the ground and on walls) in disaster response work in 
particular, so the grasp state is inherently difficult to defini-
tively determine. Thus, the grasp state must be stochastically 
estimated. This probabilistic estimation is called the en-
hancement condition for grasp (ECG).  

C. Requirements for grasp estimation  

 From the above analysis, this study proposes a grasp es-
timation framework to confirm requisite and enhancement 

conditions for grasp, taking into consideration practical sen-
sors and a feasible algorithm for outdoor machines. The fol-
lowing analysis and developments were thus conducted.  
 1) Modeling relationship between grapple and object: The 
analysis of the positional relation between a grapple and an 
object was used to model contact states in order to distinguish 
grasp from non-grasp, considering the available sensors. Six 
contact states ܴ௫ were defined (section III). 
 2) Requisite condition for grasp: On the basis of an analy-
sis of grasp motion, the requisite condition for grasp (RCG) 
was modeled by using the sequential changes of operation 
and pressure data. Five grasp motion states ܵ௫ and their tran-
sition model were determinately defined (section IV). 
 3) Enhancement condition for grasp: The conditions that 
enhance the grasp possibility were analyzed to model the 
enhancement conditions for grasp (ECG)  ܥ௫ by using force 
and movement vectors. Three ܥ௫ and a grasp evaluation value 
 .for stochastic grasp judgment were defined (section V) ܧ

III. RELATION MODEL BETWEEN GRAPPLE AND OBJECT 

 On the basis of the analysis of the positional relationship 
between a grapple and an object, the contact states ܴ௫ was 
modeled to distinguish grasp from non-grasp. Hereafter, we 
refer to the grapple and manipulator as the hand and arm, 
respectively. Acquirable data in practical construction ma-
chinery are the operation and load for the hand and the oper-
ation, load, and angle for the arm. Thus, the parameters to 
define a contact are the arm load (ܮ஺), inside hand load (ܮு

ା ), 
and outside hand load (ܮு

ି ), and the parameters to define the 
operational intention of an operator are the arm operation 
( ஺ܱ), hand close (ܱு

ା), and hand open (ܱு
ି). When a relevant 

parameter is zero, zero is substituted into the upper right su-
perscript (e.g., ܮ஺

଴ ). The contact states ܴ௫ are defined using 
six parameters, which are schematically shown in Fig. 3. 
 1) Non-grasp/non-contact: States where the hand does not 
contact an object are inevitably regarded as non-grasp states. 
We call a state where the hand is not completely closed a no 
contact ܴଵ (ܮு

଴ , ஺ܮ
଴ ), whereas a state where it is completely 

closed is a null grasp ܴଶ (ܮு
ା , ஺ܮ

଴ ). The no contact ܴଵ arises 
from arbitrary operations (ܴଵ/ܱு, ஺ܱ ). The null grasp ܴଶ 
arises from a hand close operation (ܴଶ/ܱு

ା), and the grapple 
cylinder is in the stroke-end in this state.  
 2) Non-grasp/contact: In this state, the hand is in physical 

Fig. 2 Grapple configuration and acquirable information 
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contact with an object but is not grasping it. We call a state 
where the hand is in contact with an object on the outside of 
the hand an outside contact ܴଷ (ܮு

ି ,  ஺) and the state whereܮ
the hand is in contact with an object on the inside of the hand 
an inside contact ܴସ (ܮு

ା ,  ஺). The inside contact ܴସ is easy toܮ
change to a no contact ܴଵ by actuating the arm because the 
object is not secured by the two forks. The outside contact ܴଷ 
arises from three types of operations: a hand open operation 
(ܴଷு/ܱு

ି), an arm operation (ܴଷ஺/ ஺ܱ), and both of these 
(ܴଷு஺/ܱு, ஺ܱ). Similarly, the inside contact ܴସ arises from a 
hand close operation (ܴସு/ܱு

ା), an arm operation (ܴସ஺/ ஺ܱ), 
and both of these (ܴସு஺/ܱு, ஺ܱ). Moreover, the state where 
the hand holds an object on its inside and the two forks are in 
contact with each other is called a hook ܴହ (ܮு

ା ,  ஺). The hookܮ
ܴହ arises from arbitrary operations (ܴହ/ܱு, ஺ܱ). 
 3) Grasp/contact: This state is where the two forks contact 
and grasp an object at their inside surfaces without the forks 
contacting each other. We call this state a grasp ܴ଺ (ܮு

ା ,  .(஺ܮ
The grasp ܴ଺ arises from a hand close operation (ܴ଺/ܱு

ା, ஺ܱ).  
 Thus, six contact states were defined as follow: the no 
contact ܴଵ, null grasp ܴଶ, outside contact ܴଷ௜, inside contact 
ܴସ௜, hook ܴହ, and grasp ܴ଺. Contact states from ܴଵ to ܴହ are 
defined as non-grasp states, as shown in Fig. 3. 

IV. REQUISITE CONDITION FOR GRASP 

 On the basis of the contact states ܴ௫ defined in the previous 
section, the RCG was then defined by using grasp motion 
states ܵ௫ and their state transitions. 

A. Modeling of requisite condition for grasp 

 The parameters change as follow when the grasp ܴ଺ is es-
tablished: the inside hand load ܮு

ା  is generated by the hand 
close operations ܱு

ା, and the arm load ܮ஺ is generated by the 
arm operations ஺ܱ. A state transition model was thus modeled 
by using five grasp motion states ܵ௫, as shown in Fig. 4. 
 1) Initial state ܵ଴: A state where there is no hand operation 
(ܱு

଴ ) and no hand load (ܮு
଴ ) is defined as an initial state ܵ଴. ܵ଴ 

changes to a hand-close operation state ଵܵ when a hand close 
operation (ܱு

଴ ՜ ܱு
ା) is added. 

 2) Hand-close operation state ଵܵ: Hand close operations 
are continuously input. The distance and velocity of the fork 
movement depends on the object shape and the hand size, and 
angle sensors are not installed on the grapple. We thus use 

only the on-off state of hand closing. Until the state changes 
to ଵܵ, if the hand load is zero (ܮு

଴ ), the current state is re-
garded as a no contact ܴଵ. If the outside hand load (ܮு

ି ) arises 
from an arm operation ( ஺ܱ), the current state is regarded as an 
outside contact ܴଷ஺. If the inside hand load (ܮு

ା ) arises from 
an arm operation ( ஺ܱ), the current state is regarded as an in-
side contact ܴସ஺. If the outside hand load (ܮு

ି ) arises from a 
hand open operation (ܱு

ି), the current state is regarded as an 
outside contact ܴଷு. ଵܵ changes to an inside hand load state 
ܵଶ when an inside hand load (ܮு

଴ ՜ ுܮ
ା ) is added. 

 3) Inside hand load state ܵଶ: The inside hand load must be 
continuously generated. After the inside hand load has been 
generated once, the hand close operations do not need to be 
continuously input. ܵଶ changes to an arm operation state ܵଷ 
when an arm operation ஺ܱ is added. 
 4) Arm operation state ܵଷ: The inside hand load and arm 
operations must be continuously input. ܵଷ changes to an arm 
load state ܵସ when an arm load ܮ஺ is added. 
 5) Arm load state ܵସ: The inside hand load and arm load 
must be continuously observed. ܵସ is regarded as grasp ܴ଺ 
because it satisfies the RCG. After the arm load has been 
generated once, the arm operations do not need to be con-
tinuously input. Until the state changes to ܵସ, if the arm load 
is zero (ܮ஺

଴ ), the current state is regarded as a null grasp ܴଶ. 
The inside contact by a hand close operation ܴସு and hook 
ܴହ cannot be fully classified. This problem will be solved by 
using the ECG described in section V. 
 The transition diagram of grasp motion states ܵ௫ and iden-
tified contact states ܴ௫ are shown in Fig. 5. A grasp motion 
state ܵ௫ changes from ܵ଴ to ܵସ in order depending on the ob-
tained data, and ܵସ satisfies the RCG. When the hand load is 
zero, ܵ௫ is back to an initial state ܵ଴. Moreover, ଵܵ changes to 
ܵ଴ when ܱு

଴  occurs, and ܵଷ changes to ܵଶ when ஺ܱ
଴ occurs. 

B. Implementation 

 The operational data ( ஺ܱ, ܱு
ା, and ܱு

ି) can be precisely 
obtained from the potentiometers. The arm operation is out-
put as the logical addition of three cylinders such as the boom, 
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arm, and bucket cylinders, as shown in Fig. 1. Inside/outside 
contacts (ܮு

ା  and ܮு
ି ) can be identified by using the pis-

ton-side and bottom-side pressures of the grapple cylinder, as 
stated in section II A. The arm load (ܮ஺) is determined by 
using an external force measurement system, which was de-
veloped in our previous studies [10]. For identifying the 
on-off state of the hand and arm loads, the threshold is set to 
5% above and 10% above of the full range (16 MPa).  

V. ENHANCEMENT CONDITIONS 

 On the basis of the requisite conditions, the ECG (ܥ௫) was 
defined to improve the estimation accuracy and robustness, 
and the grasp evaluation value ܧ was defined. 

A. Modeling of enhancement condition for grasp 

 The RCG cannot fully distinguish grasp ܴ଺ from ܴସு  and 
ܴହ, as shown in Fig. 5. To solve this problem, it is necessary 
to confirm the grasp state, where the hand continues to hold a 
grasped object in any manipulator movements during ܵସ. A 
large circular motion of the end-point is preferable to confirm 
a grasp state, but it occurs in few situations in actual work. 
The possible movements and phenomena to increase the 
grasp possibility were thus analyzed, focusing on movement 
and force vectors (magnitude and direction) because a grasp 
state must be stochastically defined, as stated in section II B. 
To define the direction, world (ߑௐ) and hand coordinates 
 were prepared. From the analysis, three enhancement (ுߑ)

conditions ܥ௫ were defined, as shown in Fig. 6.  
 1) Down vertical force ܥଵ: When the arm grasps an object 
and detaches it from the surroundings, the arm is subject to 
the gravity force from the grasped object. The force direction 
is thus down vertical (ܮ஺: dir = ߑௐ0), and is independent of 
object location and manipulator posture, as shown in Fig. 6 
(a). The direction is measured by using a force vector meas-
uring system [10], and the judgment tolerance is set to േ45° 
considering the robustness. Moreover, an unstable large var-
iation of force direction caused by oscillating a manipulator 
occurs for less than 0.5 s, so the confirmation duration time is 
set to 3 s to surely distinguish down vertical from others.  
 2) Up vertical movement ܥଶ: After the hand has grasped an 
object, the operator maneuvers the hand in a direction oppo-
site to the approach, i.e., vertically up in the longer direction 
of the hand (ܯ஺: dir = ߑு180), as shown in Fig. 6 (b). The 
fork size of the hand is adopted as the minimum distance to 
release an object from the hand, and the judgment threshold is 
set at 300 mm in our target hand. 
 3) Horizontal round-trip movement ܥଷ: To dissolve an in-
side contact, the hand must make a round-trip movement in a 
direction perpendicular to the approach direction (ܯ஺: dir 
 ு90՞270), as shown in Fig. 6 (c). The maximum widthߑ =
when the hand is completely opened is adopted as the mini-
mum distance to release an object from the hand, and the 
judgment threshold is set at 300 mm in our target hand. 

B. Grasp evaluation value 

 To evaluate the grasp possibility, a grasp evaluation value 
 is set to zero from ܵ଴ to ܧ is defined. The evaluation value ܧ
ܵଷ because they do not satisfy the RCG, and changes to 1 at ܵସ. 
 increases 1 point according to which ECGs are established ܧ
during ܵସ, and comes to 4 points when all the ECGs are es-
tablished. In summary, 0 =ܧ represents a non-grasp, 1 =ܧ 
represents the possibility of a grasp, and 4 =ܧ represents a 
grasp with highest relative possibility, as shown in Fig. 7. 

VI. EXPERIMENTS 

 We conducted experiments to evaluate the proposed grasp 
estimation framework consisting of RCG and ECG by using 
an experimental setup, as shown in Fig. 1 [11].  
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A. Experimental conditions 

 1) Experimental task: The work machine had three pitch 
joints, a yaw joint, and a roll joint with a grapple. The evalu-
ation task we set was a sequential transport task. The objects 
to be transported were set in a material yard that had three 
layers (upper, middle, and lower stands), as shown in Fig. 8 
(a). They were eight objects to be transported, which differed 
in the shape, center of gravity, stiffness, and mass (larger than 
10 kg), as shown in Fig. 8 (b). To reproduce operational error 
during the grasping motion owing to the lack of a sense of 
depth, we placed the objects in front of and behind other ob-
jects, and the objects were overlapping each other, as shown 
in Fig. 8 (a). The operators were expected to grasp an object 
placed on the left stand and transport it to the right stand by 
using a swing joint (yaw-axis). Wooden objects were to be set 
on the middle stand and other objects on the lower stand, as 
shown in Fig. 8 (c). The operators are eight novice operators 
who were familiar with the operational method, as well as one 
skilled operator, and they all conducted the task three times. 
 2) Success and failure rate: To evaluate the performance of 
grasp estimation, we defined success rate ܵோ and failure rate 
 ோ. The success rate ܵோ represents the ratio of the number ofܨ
successful estimations determined by the estimation system 
 divided by the total number of actual grasps observed by ்ܦ
the observer  ܰ, and it is given by ܵோ ൌ ்ܦ ܰ⁄ . The failure 
rate ܨோ represents the ratio of the number of failed estimation 
determined by the estimation system ܦி  divided by the 
number of grasp detected by the system ܦ (ൌ ்ܦ ൅  ி), andܦ
it is given by ܨோ ൌ ிܦ ⁄ܦ .  

B. Experimental results 

 Figures 9 shows an observed grasp ܩை஻ , the estimation 
results using the hand load ܩ௅ு, the RCG ܩோ஼, and the ECG 
 ௫, andܥ ா஼, grasp motion states ܵ௫, enhancement conditionsܩ
grasp evaluation value ܩ .ܧை஻ was determined by an observer 
and represents actual grasps/non-grasps. It is changed to 1 
(grasp) when an object is lifted and 0 (non-grasp) when the 
object is released. ܩ௅ு is changed to 1 when ܮு

ା  or ܮு
ି  is ob-

served. ܩோ஼ is changed to 1 when ܵସ is observed. ܩா஼ is de-
fined according to E. Figure 10 shows the success rate ܵோ and 
failure rate ܨோ for each estimation system, i.e., ܩ௅ு, ܩோ஼, and 

 .in 27 operations for all 9 operators (ܦ) ா஼ for 234 graspsܩ
 1) Requisite condition ܩோ஼: Figures 9 (c) and (d) show that 
the RCG was adequately identified depending on the grasp 
motion states ܵ௫. Failed estimations often occurred with ܩ௅ு 
in comparison with ܩை஻. By contrast, ܩோ஼ was effective for 
precisely estimating grasp, as shown in Figs. 9 (a)–(d). The 
success rate ܵோ for ܩ௅ு is 100% but the failure rate ܨோ is 48%, 
meaning that half of the estimated grasps were misidentified, 
as shown in Fig. 10. By using the grasp motion state ( ଵܵ–ܵଷ), 
 ோ஼ (ܵସ)ܩ .ோ gradually decreases while sustaining a 100% ܵோܨ
identifies all grasps, and it reduced ܨோ to under 6%, meaning 
that ܨோ decrease by 87% compared with ܩ௅ு. ܶ-test indicated 
a significant difference between ܩோ஼  and ܩ௅ு  ( ݐ =3.36, 
 ோ஼, defined byܩ From the results, we confirmed that .(0.01>݌
using the simple transition model based on the on-off state of 
operation and pressure data, greatly contributes to reducing 
the failure rate while not missing any actual grasps, inde-
pendently of operational skills and object locations. 
 2) Enhancement condition: Figures 9 (e) and (f) show that 
the grasp evaluation value ܧ was identified according to the 
established ܥ௫ . To evaluate estimation ability, we defined 
three types of ܩா஼, which differ in the decision threshold of ܧ, 
as shown in Fig. 9 (g). Figure 9 (g) shows that ܩா஼ using a 
larger threshold completely eliminated failed estimations but 
often overlooked the actual grasps. Figure 10 statistically in-
dicates that the failure rate ܨோ for ܧ ൒ 2 decreases to 2%, and 
ܧ ோ forܨ ൒ 3 decreases to 0%. We confirmed that ܩா஼ greatly 
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reduced the failure rate, by contrast, the missing grasps 
greatly increased as the decision threshold of ܧ  increased. 
This is because the ECGs were established only in 79% (ܥଵ), 
ଵܥ .(ଷܥ) and 10% ,(ଶܥ) 59%  was expected to occur in all 
grasps, but it was not detected in 20% of the grasp because 
the object was securely grasped but not transported (just 
grasped and released). ܥଶ and ܥଷ were determined by using 
the displacement of the end-point, so they are strongly af-
fected by the environmental conditions and tasks. However, 
the ECGs are useful to eliminate failed estimations. Consid-
ering a trade-off relationship between ܵோ  and ܨோ , it is thus 
reasonable to use ܩோ஼ when actual grasps must be detected 
(e.g., to comprehend work tendencies) and ܩா஼ when failed 
estimation must be avoided (e.g., an active grasp control).  

VII. CONCLUSION AND FUTURE WORK 

 A practical object grasp framework for a construction ma-
nipulator was proposed that does not use visual or tactile in-
formation in order to enhance the perceptual capacity. The 
proposed framework estimates grasp/non-grasp states on the 
basis of requisite (RCG) and enhancement conditions (ECG) 
for grasp. The RCG is the essential condition for achieving 
grasp, which was defined by using a state transition of lever 
operational and cylinder pressure data for the grapple and 
manipulator. The ECG is the condition necessary to enhance 
the grasp possibility, which was defined by using force di-
rection applied to the end-point of a manipulator and move-

ment vector of the grapple. The possibility of a grasp was 
stochastically evaluated by using a grasp evaluation value. 
Transport experiments were conducted using an instrumented 
setup, and the results indicated that the RCG and ECG can 
respectively be used to detect actual grasps with less errors 
and to eliminate errors in return for decreasing success rate. In 
the future, we analyze ECG from the degree of contribution to 
estimating grasp in a target environment, and adaptively ad-
just an additional point for the grasp evaluation value. 
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Fig. 10 Success and failure rate for each estimation method 
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