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Abstract— In nature, some animals exhibit impressive nav-
igation capability using ambient magnetic field. Particularly,
certain kinds of sea turtles can associate geomagnetism to
spatial representation for positioning in transoceanic migration
across the seemingly clueless sea. In robotics, the previous
works on magnetic navigation can position a robot using
ambient magnetic field, but they focused on an exploitation
of extensively-explored magnetic map, i.e. the magnetic field of
every inch of the region of interest is recorded for mapping. In
this work, we propose an algorithm that is based on our analysis
on how sea turtles navigate at sea under magnetic disruption
as investigated and reported by biologists [1], [2]. We propose
a direct likelihood method that generates pseudo training data
to improve the estimation accuracy of the Gaussian mixture
models. The experimental evaluation demonstrates that our
localization algorithm exhibits stable and accurate positioning
results. This work contrasts with the previous works which
focused on magnetic localization using extensive data collection.
On the contrary, we address whether magnetic localization is
still feasible under scarce data samples and how to overcome
this challenge.

I. INTRODUCTION

Animals know their bearings. Over the years, scientists
discovered that most, if not all, animals show remarkable
navigation and localization skills in the wild using ambient
magnetic field [3]. Turtles, birds, lobsters and many more
are making use of ambient magnetic field for migration.
The nose regions in some species of sharks [4] consist of
thousands of magnetometer-like sensors for self-localization
in deep sea. Even some bacteria are confirmed carrying
magnetosome chains to physically orient itself purposely in
a magnetic field. Such an invisible yet overwhelming vector
field is evidently exploitable in nature. However, ambient
magnetic field is not widely adopted in maps for robot’s
localization.

How exploitable is magnetic field? The general under-
standing of ambient magnetic field is that it points to the pole.
The variation in readings are understood as electromagnetic
disturbance due to, for example, an electric wire or an object
made of iron in the surrounding. Magnetic localization was
often explored in atomic level [5], [6]. Only in recent years,
studies [7], [8], [9] revealed that ambient magnetic field
can be exploited for localization with meter-grade accuracy.
Haverinen and Kemppainen [7] presented a particle filter-
based method to position in indoor corridors by using a
magnetic map that is constructed by extensive data sampling
over every inch of the floor. The significance of their work is
that, for the first time the magnetic field is demonstrated to be
useful for localization. However, their method can only yield
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one-dimensional localization in addition to the requirement
of extensive data collection and mapping. Later, their method
extended to 2-D localization [9] and the data sampling took
2.5 hours in an area of about 35ft2.

In this paper, we consider the problem of designing a
localization method for a robot car in an indoor environment,
and address whether magnetic localization is feasible under
scarce data samples. From technological perspective, our
algorithm can leverage scarce mapping samples – which
is composed of a series of position and magnetic field
measurement pairs as a training set – for localization. Our
key observations are in twofold: i) from the researches
on sea turtles reported by biologists [1], some turtles can
extract spatial representation solely from geomagnetism and
can navigate under magnetic disruption but with degraded
effectiveness; ii) the regional magnetic field is closely related
due to its electromagnetic characteristics, and hence a series
of Gaussian mixtures may characterize magnetic field in a
region using sample data that are in close proximity. The
first observation gives us evidence on what data would be be
necessary for magnetic navigation from a biomimetic view,
and is further explained in Section II. The second observation
inspires us on the modeling method of the magnetic field
and can be best explained by Fig. 1 and 2. In those figures,
the measurements of the magnetic field vectors from a tri-
axial magnetometer are plotted. The position of each of
the magnetic field vector is measured by a millimeter-grade
camera tracking system. It shows that the field vectors are
closely related to each other in near proximity in terms of
the direction and the magnitude.

In our algorithm, the key advantage of modeling the
vector field of magnetism using Gaussian mixture models
is related to the reduction of the sample complexity. When
a robot car steers near a previously sampled position, its
measured magnetic field vectors can be found using a series
of Gaussian mixture models by regression after training,
hence lesser samples are needed as we do not need to cover
every inch of the field. On the other hand, to minimize
the occasionally large variance in the Gaussian mixture
regression, we introduce a direct likelihood method that
can match between similar magnetic field vectors in the
sampled data when the position estimates from the regression
is deemed unreliable. We generate pseudo training data by
using the direct likelihood method and add it into the original
training set for a new set of model parameters. Therefore,
the Gaussian mixture models can evolve to improve its
predictability in poorly modeled regions. We evaluate our
proposed method on a toy car carrying a tri-axial magne-
tometer. The ground-truth positions of the car are measured
using a camera tracking system for the collection of training
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Fig. 1. The field vectors collected along a circular path. This figure shows
that the magnetic field in a region is remarkable unique and continuous in
terms of the variations in direction and magnitude.

Fig. 2. The magnetic field vectors in a field measured by our setup as
shown in Fig. 3.

data and references. The empirical results show that our
algorithm can significantly outperform the Gaussian mixture
regression, and yields a remarkable accuracy of ±3cm.

The paper is arranged as follows: Section II explains how
we exploit biologist’s research on sea turtles in geomagnetic
navigation. Section III details the design of our algorithm.
Section IV gives the experimental setup and results. Sec-
tion IV-A presents the comparisons between the Gaussian
mixture regression and our proposed method. Section VI
closes with a conclusion.

II. DECODING NAVIGATION OF TURTLES

Many kinds of turtles have shown remarkable ability to
navigate across hundreds of miles in the seemingly clueless
ocean, and get back to the very same spot for laying eggs
or perform transoceanic migration [10], [11], [12], [13],
[14]. Biologists conducted extensive experiments over last
decades trying to unravel turtle’s navigation secret. Various
theories are being raised, many of them are debatable -
but one consensus has been made: turtles make use of the
geomagnetic information for navigation [2].

A series of experimental studies on turtles that drew our
attention and inspired this work is carried out by Lohmann’s
group [1], [2], [11]. They found that hatchling turtles does
not navigate as good as the older turtles. They captured
older turtles and placed them into a pool with devices that
generated specific magnetic fields. Then they reproduced
magnetic field that was similar to a place hundreds of
miles north of the capture site. They found that the turtles

swam southward. When the magnetic field mimicked a site
hundreds of miles south of the capture site, the turtles swam
northward. Similar experiments have been conducted for
sites along both latitudinal and longitudinal directions of the
capture site, and the turtles could swam towards the direction
of the capture site. This finding suggests that the turtles may
make use of geomagnetism for navigation, and they may
somehow translate a magnetic field to spatial information
and eventually know which direction to go, i.e. a possible
hypothesis of this ability can be represented in this way,

bk = f(pk|θ), (1)

where bk is the magnetic field at place k, and pk is its spatial
representation, namely position, and f(·) is an unknown
mapping function parameterized by θ. Older turtles may
possess a θ that lead to more accurate mapping between
magnetic fields and their spatial representations. Equation
(1) means that when given certain knowledge in a form of
a function parameter θ, the magnetic field of a place can be
retrieved by its spatial representation. During localization,
the spatial representation of a magnetic field is retrieved by
an inverse of the mapping function, i.e. f−1(·).

In another setting of experiments [1], [14], the turtles were
transported to and released in sites hundreds of miles away
from the capture site. A group of turtles were attached with
strong magnet to disrupt their sense of geomagnetism, while
the other group were not. The results showed that the group
with magnet can still swim back to the capture site, while
the group without magnet can swim back more directly.
Similar results are found in both latitudinal and longitudinal
cases [15]. Based on our hypothesis that is represented in (1),
there are at least two possibilities: 1) the turtles may make
use of other senses for navigation, such that there exist a
third parameter in the unknown mapping function f(·), hence
bk = f(pk, θ, γk), where γk is the measurement associated
with pk from the unknown sense; 2) the turtles can evolve
the function parameter θ to improve the mapping accuracy
from time to time, such that,

pk = f−1(bk|θ∗), θ∗ = argmax
θ

Jt, (2)

where θ∗ is an evolving function parameter to maximize the
mapping accuracy. Jt is a time-varying cost function. As no
literature can verify what the unknown sense is guiding the
turtles amidst disrupted geomagnetism, we therefore consider
the most possible case: they may be making an efficient use
of all they have in their magnetic map. More specifically, they
may make use of the current magnetic field and places where
they believe they were at to improve their mapping functions.
As a result, the cost function should be a function of the
previous position estimates, and their existing knowledge of
geomagnetism and its spatial representation, such that,

Jt = Jt({p̂k(t− n)}n=0,1,..., {pk, bk}k=1,2,...), (3)

where p̂ is the position estimate at a specific time, {pk, bk} is
a magnetic field measurement and its spatial representation
at a place k.
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III. DESIGN OF ALGORITHM

In this section, we derive an algorithm that makes use
of our hypotheses (1-3) in Section II to mimic the ability
of geomagnetic localization as in turtles for a robot car.
Particularly, we experiment with our algorithm in an indoor
setting that the floor of a room exhibits magnetic field that
is similar to geomagnetic isolines for navigation. And we
consider that our robot car first briefly explores the room
and collects magnetic field measurements with their spatial
representation (i.e. 2D positions), and then we employ our
algorithm to locate the car using the car’s previous mapping
knowledge and the current magnetic field measurement,
without using other positioning method. The robot car is
restricted to locate its position by making use of its magnetic
map and the current 3D magnetic readings.

To establish a magnetic map that facilitates retrieval of
spatial representation of a magnetic field measurement as
hypothesized in (1), we employ a mixture of Gaussian
functions to connect the magnetic readings with their spatial
representations that are collected during exploration. This
model fitting can approximate a map of magnetic field over
the explored region. Then we design a method to improve the
performance of localization when the accuracy of estimation
worsens. We make use of our hypothesis given in (3) to
design a method that makes an efficient use of a robot car’s
previous position estimates and its existing knowledge of the
geomagnetism map. Firstly, we make use of the variance of a
series of previous position estimates (p̂(t−n), n = 0, 1, . . .)
to determine the accuracy of the localization at the moment.
Secondly, when this variance is significant, we search for
magnetic field readings (b̄) that is similar to the current one
(b̃) from the existing magnetic map ({b̄i, p̄i}i=1,2,...). Once
a match is found, we combine the current magnetic field
measurement and the matched spatial representation ((b̃, p̄))
as a pseudo training data, and assign it to the existing map
via model fitting under the framework of Gaussian mixture
model. The details of the algorithm design is given below,
and its performance are given in Section IV.

The algorithm is composed of two parts: the Gaussian
mixture regression and the direct likelihood method. The
Gaussian mixture regression consists of the expectation-
maximization (EM) [16] and regression of the Gaussian
mixture models. The Gaussian mixture regression is well-
studied in literature, we refer readers to Reference [17] for
a more comprehensive review.

A. Gaussian mixture method (GMM)

Each entry in our training data is a pair of data that com-
prises of the position p ∈ RN×3 and the magnetic field vector
b ∈ RN×3. The magnetic field vectors measured on board
are converted from the sensor’s orientation to the inertial
frame’s orientation. To position using the magnetic field, we
need to design a function f as in our hypothesis (1) such
that, we can establish a function parameter θ for b = f(p|θ)
via training. Afterwards, when given a magnetic field vector
with unknown position, we can inversely find this position,
such that p = f−1(b|θ). To avoid extensive data sampling,
we leverage the fact that the regional magnetic field vector

are closely related and alike due to the electromagnetic
characteristics (as shown in Fig. 1, 2), and hence we employ
the Gaussian mixture models to characterize such relation
among the magnetic field vectors, such that the probability
of a magnetic field vector being in a specific position is
probabilistically characterized by,

P (x|θ) =
M∑
j=1

wj · N (x|µj ,Σj) (4)

where x = [ p b ] is the measurement, wj is the weights such
that

∑
wj = 1. µj is the mean vector. Σj is the covariance

matrix. N (·) refers to the normal density function. θ is the
model parameters, such that θ = {µj ,Σj , wj} for j =
1, . . . ,M . M is the number of Gaussian models. To fit the
model parameters to the measurement, we write,

θ∗ = argmax
θ

N∏
i=1

P (xi|θ) (5)

where N is the total number of training data. Therefore,
the function f(·) is represented by the probability function
P (pk|bk), meaning the probability of being in pk when given
bk. We employ the expectation-maximization technique to
find θ∗. The idea is to incrementally and iteratively adjust
and improve the model parameters so as to achieve a best
fit in data. The update equations for the mean vector, the
covariance matrix and the weight are as follows,

µj =

∑N
i=1 P (j|xi, θ)xi∑N
i=1 P (j|xi, θ)

(6)

Σj =

∑N
i=1 P (j|xi, θ)[(xi − µj)(xi − µj)T ]∑N

i=1 P (j|xi, θ)
(7)

wj =

∑N
i=1 P (j|xi, θ)

N
(8)

Once all the model parameters are determined, the models
can be used to approximate the spatial representation of a
magnetic field vector,

p̂i = µpi + Σp,bi (Σbi )
−1(b− µbi ), p̂ =

M∑
i=1

hip̂i (9)

where hi is the conditional probability for the magnetic field
vector b in a Gaussian model, such that,

hi =
wi N (b|µbi ,Σbi )∑M
i=1 wi N (b|µbi ,Σbi )

(10)

The proof of convergence of this regression method can be
found in Reference [18].

B. Direct likelihood method (DLM)

In practice, due to the lack of samples, some query mag-
netic field vectors would be too ambiguous to be classified
by the Gaussian mixture models. Here, we introduce a
direct likelihood method to yield position estimates using
the collected data set {b̄, p̄}, and leverage these estimates as
pseudo training data to improve the regression of GMM. This
method is formulated as a function optimization problem,
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such that,

i∗ = argmin
i=1,...,Nb̄,j=1,...,Nb

E‖b̄(i)− b(j)‖ (11)

p̂ = p̄(i∗) (12)

where Nb is the total number of queries. To find the position
of a magnetic field vector b(t) at time t, the queries needed
in the direct likelihood method is b(t − Nb + 1), b(t −
Nb), . . . , b(t). The disadvantages of solely using this method
are that, the direct likelihood method yields discrete and
steps-like responses when plotted against time; moreover,
this method is susceptible to a deviated trajectory. Therefore,
the results by this method alone may not be suitable for the
wheeled robots that require velocity estimates for control and
a spatial buffer for motion correction,.

In view of these disadvantages, when combining with the
Gaussian mixture regression, we first determine the variance
of the position estimate under a time horizon p̂(t), . . . , p̂(t−
Nv + 1) where Nv is the total number of position estimates
in a time horizon. When the variance is higher than a
threshold value, we update the Gaussian mixture models
by adding the position estimates from the direct likelihood
method p̃ and its associated magnetic field vector b to the
training dataset. By adding this pseudo training data from
the direct likelihood method to the GMM, we can ensure
that the position estimates are smoothed and the Gaussian
distributions can evolve to cover poorly modeled regions.
The update procedure is given in Algorithm 1. Although the
heuristics of this update is intuitively simple, we find that it
can dramatically boost the usability of the position estimates
when comparing with the results purely by the Gaussian
mixture method. As we have shown in the experiments
(Section IV), the results by GMM is not referable at all times.
In our proposed method, we introduce the pseudo training
data {p̃, b} to improve the Gaussian mixtures and hence
improve GMM’s predictability in poorly bootstrapped re-
gions. A small random number σ is introduced to the pseudo
training data to avoid over-fitting when bootstrapping the new
model parameters. The algorithm in Algorithm 1 is written
as a post-processing operation for ease of understanding. No
future data is required in all operations. In Algorithm 1,
GMM.Fit(·) refers to Equation (4) to (8). GMM.Regression(·)
refers to Equations (9, 10). DLM.PseudoData(·) refers to
Equations (11, 12). All computations are designed to run
on a single-threaded processor. The main computation only
involves summations and low-dimensional matrix multipli-
cations.

IV. EXPERIMENTS

To evaluate our method, we implement an IMU that comes
with a tri-axial magnetometer (Honeywell HMC5883) on
a toy car. The car is tracked by a camera system (from
NaturalPoints) for the ground truth data of its position. The
accuracy of the ground truth data is up to ±0.1mm. The
reason for the collection of this ground truth data is that we
need to collect a set of position and magnetic field vector
pairs for the training of the Gaussian mixture models.

A collection of samples is given in Fig. 1 and 2. It is

Algorithm 1 LOCALIZATION VIA AMBIENT MAGNETIC
FIELD

1: Input: {b̄, p̄}, the training set
2: {b}, the query magnetic field vectors
3: {µ,Σ, w} = GMM.Fit({b̄; p̄})
4: for all queries
5: p̂(t) = GMM.Regression({µ,Σ, w})
6: if V ariance({p̂(t), p̂(t− 1), . . .} > threshold
7: while always
8: p̃(t)=DLM.PseudoData({b(t), b(t− 1), . . .}, {b̄, p̄})
9: {µ,Σ, w}=GMM.Fit({b̄, b(t); p̄, p̃(t) + σ})

10: p̂(t) = GMM.Regression({µ,Σ, w})
11: if V ariance({p̂(t), p̂(t− 1), . . .} < threshold
12: break
13: else if iteration ≥ iteration.maximum
14: p̂(t) = p̃(t)
15: break
16: end
17: end
18: end
19: end
20: Output: {p̂}, the position estimates

Fig. 3. The setup in the experiments. An off-the-shelf RC car with a tri-
axial magnetometer. The coordinate frame of the sensor suite is illustrated
in the figure, and is denoted as bx, by, bz.

plotted by using Paraview1. A color code is used to represent
the magnitude of each of the collected magnetic field vector.
From the figures, we can observe that the field vectors that
are close in proximity are more closely related in terms of
their directions and magnitudes, and hence is suitable for
the characterization of the Gaussian mixture models. Our
car maneuvers in the field to collect the position and the tri-
axial magnetic field measurement for training. And then we
estimate the model parameters θ = {µ,Σ, w}. Afterwards,
our car maneuvers in the scene again and positions itself
using our algorithm with the measured magnetic field as
inputs. For references, the ground truth measurement of
the position of the car is collected all the time during the
evaluation. Only the orientation information and the 3D
magnetic field measurement from the on-board sensor suite
are used for the localization in our algorithm.

1An open-source scientific data viewer http://www.paraview.org/
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TABLE I
A PERFORMANCE OVERVIEW BETWEEN OUR ALGORITHM AND GMM

Method Accuracy [cm] Variance [cm]
GMM 5.96 5.83

Ours 3.27 0.68

A. Comparison and analysis

In Fig. 4 to 6, we present the results of localization using
the standard Gaussian mixture method (GMM) [19] and our
proposed method. The ground truth is in solid black lines.
The red dots and lines are the results by our method. The
orange dots and lines are from the GMM. To have the same
footing for comparison, we use the same model parameters
({µ,Σ, w}) for both sets of the Gaussian mixture models in
both algorithms. Although the GMM can track the position
in most of the time, it cannot give a steady and consistent
estimation of the position throughout the whole period of
time. As shown in the position against time graphs on the
right-hand sides of Fig. 4 to 6, the GMM gives unsteady
estimations (the orange lines). On the contrary, our proposed
method can keep track with the positions of the robot with
much fewer outliers. Statistically, our proposed exhibits a
remarkable increase of 45%+ in the mean-absolute accuracy
and an increase of 80%+ in the variance reduction. The large
amount of reduction in the variance of estimates suggests
that our method yields a more consistent performance in
estimating the positions. The same data sets are used for
training in the GMM and our algorithm.

V. DISCUSSION

• What is difference between the proposed algorithm and
the existing algorithms in magnetic localization?
The existing algorithms focused on magnetic local-
ization using extensively-explored magnetic map. For
example, it was reported [9] that an inch-by-inch mag-
netic field mapping that took 2.5 hours to complete is
needed to cover a region of about 35ft2. In this work,
we address whether magnetic localization is feasible
without an extensive exploration of the magnetic field in
a region. Particularly, we look into a case that whether
a rover, using ambient magnetic field, can position itself
on a path that, i) the rover has only visited once before;
ii) this path is not exactly the same path it visited, but
with a deviation about ±10 ∼ 20cm. We found that
our algorithm can still manage to position the car using
ambient magnetism and scarce data sample.

• Is the proposed method a complete solution for robot’s
localization in indoor or outdoor settings?
No, it is not. This work addresses the technical feasibil-
ity that whether magnetic localization is still feasible us-
ing scarce data samples. From our experimental results,
we found that when the rover maneuvers on a place
that is far from where it has previously explored during
data sampling, our algorithm alone cannot position the
car. However, our results sheds a new and important
light on robot localization that it may complement with
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Fig. 4. Experimental results. All plots in this figure represent the results
from the same experiment. Left: The 2D x − y plots with respect to the
inertial frame. Right: The positions on each inertial axis against time graphs.
This figure presents a comparison between the Gaussian mixture method
(GMM) and our proposed method. The same convention of representation
is used in Fig. 5 and 6. All units are centimeters. Best view in colors.

odometry, visual SLAM or laser-based ranging meth-
ods, and significantly improve the overall performance,
especially during the lost-and-recovery scenario.

• How does the proposed algorithm work?
First, our algorithm requires a set of data sample over
a region of interest. This set of data sample requires
magnetic field measurements and their spatial represen-
tations (i.e. 2D positions). Our algorithm will generate
a series of Gaussian models to fit the data. Secondly,
when a rover is deployed in the region of interest, our
algorithm will make use of the current magnetic field
measurement and the heading information to compute
position estimates. When the variance of the estimates is
significant, our direct likelihood method will kick in and
generate pseudo training data to improve the regression
of the series of Gaussian models.

VI. CONCLUSION

Without any referencing sensors like GPS or GLNOSS,
how can sea turtles navigate across hundreds of miles in the
seemingly clueless sea for migration and laying eggs? In this
paper, we look into the previous experimental studies on sea
turtles reported by biologists, and derived hypotheses that
guide us to design an algorithm, that can make an efficient
use of ambient magnetism for robot’s localization.

Leveraging the fact that regional magnetic field vectors
are closely related in directions and magnitudes due to elec-
tromagnetic characteristics, we demonstrate that Gaussian
mixtures can be effectively employed to model and hence
extend the spatial coverage of scarce training data. And
then these mixture models can be generalized to probabilisti-
cally associate the spatial representation with its magnetism.
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Fig. 5. Experimental results. Note that our algorithm can accurately localize
an about 1.5cm vertical displacement as shown in the z− t graph at about
t = 1 .
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Fig. 6. Experimental results using the platform shown in Fig. 3.

Furthermore, we propose the direct likelihood method that
generates pseudo training data to improve the occasionally
high variance among position estimates due to insufficient
data collection. The combination of these techniques yields a
method for a robot car to localize using its ambient magnetic
field and heading information. The empirical results demon-
strate that, by using an inertial measurement unit that comes
with a tri-axial magnetometer, our proposed method enables
a robot car to accurately localize its position, and yields a
remarkable accuracy of ±3cm. To our best knowledge, this
is the first publication that, without extensive mapping of
magnetic field, successfully localizes a robot car solely by
using its ambient magnetic field and its orientation informa-
tion. We believe the extent of this work shows promises and
sheds a new and important light to complement with existing
localization methods like visual SLAM, odometry, infrared
laser ranging sensor (i.e. Microsoft Kinect [20]) and laser
ranger for long-range localization on robots in both indoor

and outdoor settings.
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