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Abstract— This work is concerned with the matching of
straight lines between two stereo image pairs by reprojection.
While we will focus on visual odometry in the realm of
simultaneous mapping and localization, the techniques are also
relevant to monocular and stereo 3D object detection and
tracking. Our first contribution is an adaptation of the Iterative
Closest Point (ICP) algorithm to the domain of lines. We argue
that a naive ”Iterative Closest Line” derivation cannot deliver
similar performance. In contrast, our novel Iterative Closest
Multiple Lines (ICML) algorithm allows efficient line matching
while even reducing the amount of local minima during iterative
optimization with its consideration of several weighted matches.
The second contribution is a fast and robust hypothesize-and-
test algorithm which can act as a fallback for challenging
frame pairs where pure gradient-based optimization fails. In
several differently textured scenes, we demonstrate robust
performance, even in very sparse cases where proven feature
point based methods fail. In comparison to edge-point ICP, we
see speed improvements of more than an order of a magnitude
and reduced susceptibility for local minima.

I. INTRODUCTION

Visual navigation for mobile robots is an intensively
researched topic which can be arbitrarily complex. Ideally,
a system should be able to recognize features and places
independent of environmental influences. Dramatic changes
in appearance due to lighting, partial scene reconfiguration
or even seasonal changes in the environment are challenging
in this respect. In addition, a system must be able to cope
with dynamic objects in its field of view and work equally
well in textured and untextured environments. However, to
the knowledge of the authors, such a complete solution has
not been proposed yet.

Many real-time capable visual navigation systems rely on
point features. They have favorable properties like being
easily detectable, locatable and matchable. In many environ-
ments, these systems function fast and robustly. However,
reliable point features are not always available in sufficient
number. Untextured three-dimensional objects and environ-
ments pose problems to these kind of systems. Edges on
the other hand are interesting image features for a host of
robotic applications where textures are sparse. Many man-
made structures lack texture while edges are usually still
abundantly available (see Figure 1). In [1], it was exemplarily
shown how an edge-based system can outperform a feature
point-based algorithm like the popular KLT tracker [2]. We
will go one step further and provide quantitative results of the
state-of-the-art stereo odometry algorithm VISO2 [3] for all
our test sequences. In the KITTI benchmark [4], this method
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Fig. 1. Non-textured scenes can be a challenge for feature point based
SLAM systems. The images show frames of an indoor Room sequence for
which ICML (left column) successfully computes odometry, while the state-
of-the-art feature point based VISO2 [3] (right column) fails to recover the
camera motion in many frames. Even the matched feature points (green)
are often inaccurate, when they are not located on corners. The result is a
zig-zag trajectory with large jumps. ICML achieves an accuracy of 2.5% on
this short trajectory of 2.1m length (note the video link on the last page).

has proven to be very accurate and one of the fastest feature
point based odometry algorithms.

Concerning the use of edges in vision-based navigation,
inherent difficulties exist. By definition, edges divide regions
of homogeneous intensity. Accordingly, their distinctiveness
is limited. Finding an individual edge correspondence be-
tween two images without known camera motion is not
simple and sometimes not even possible in a reliable manner
[5]. However, with a calibrated stereo camera, within a
stereo image set, this task is a lot simpler. This is because
stereo matching searches a constrained solution space. With
prior stereo matching, in order to match edges between
two distinct stereo camera locations, we are left with the
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problem of finding the rigid transformation that aligns the
largest number of lines between the two stereo frames. This
can make an appearance-based inter-frame edge matching
unnecessary.

Finding the six motion parameters between two stereo
edge frames is still challenging, since the search space
contains local minima. This registration problem can be
approached with the well-known Iterative Closest Point
(ICP) algorithm in a 2D-3D variant [1], [6]. The possibility
of registration failures requires a robust fallback method,
though. While ICP has been shown to work, point sequences
are not a very compact representation for intensity edges,
especially when it is expected that many edges are partially
or completely straight. This leads to significantly higher com-
putation times than for most feature point based methods. For
example, a square is fully described with its four corners
(which are good feature points) or the lines that make up the
contour. On the other hand, the number of edge points in
image space is much larger, while not necessarily carrying
additional information.

The deduction of an ”Iterative Closest Line” algorithm is
not as straight forward as one might think at first, though.
In contrast to points, for lines, no definitive scalar metric for
closeness exists. Additionally, the detection of line endpoints
is usually unreliable. An edge that was detected as one long
line in a given image might be split into several shorter
segments in another image. Thus, a 1-to-1 matching would
have to discard all of those segments but one.

We propose a method called Iterative Closest Multiple
Lines (ICML) to efficiently register lines with a one-to-many
matching. This remedies the problems associated with the
selection of a single best matching line. The registration
rate even improves over the much more costly ICP. For
robustness, we use measures for automatic registration failure
detection and propose a sample consensus based solution as
fallback. In contrast to RANSAC, the hypothesis selection
is deterministic to make efficient use of computational re-
sources.

II. RELATED WORK

Several monocular SLAM systems that utilize edge seg-
ments as features have been proposed in recent years [7],
[8], [9]. They try to establish an appearance-based matching
between frames. However, only a subset of all possible edges
is considered to allow for successful matching. In very sparse
environments, this can lead to problems.

In [6], known three-dimensional models are matched to
edges that are detected in monocular images. The ICP
algorithm is employed. It iteratively aligns the reprojected
model edges with the detected image edges.

An extension of this technique to 3D SLAM using stereo
edge points was presented in [1]. Here, edge points are first
matched within the stereo frame and afterwards the rigid
transformation between two frames is iteratively computed
by optimizing the reprojection error. In distinction to this
work, the author uses individual edge points and employs
a variant of the ICP algorithm to align the stereo frames.

This direct method can suffer from local minima during
the optimization, which is why the author introduces SIFT
(Scale-Invariant Feature Transform) descriptors along edge
points in [10] for failure recovery.

A system using straight lines was proposed in [11].
Dense stereo matching for intra-frame and multi-level Lucas-
Kanade optical flow for inter-frame matching are employed.
With the significantly reduced search space, RANSAC is
used to find the best transformation by computing a rigid
transformation hypothesis, built from two or three matched
lines. Accordingly, the line matching and motion recovery
are separate steps in this approach. A consequence of this
appearance-based matching is that the success depends on
the performance of the optical flow algorithm.

III. STEREO RECONSTRUCTION

For stereo edge matching, we employ an adapted version
of [12]. Briefly, edges are detected with a Canny detector [13]
in the left and right image of a stereo frame. Subsequently,
straight segments are extracted with the Douglas-Peucker
algorithm [14] and lines are fitted for each. Slightly curved
edges are included as multiple straight lines and are not left
out. All found lines are binned, depending on their angle and
sorted from left to right within each angular line group (per
image). Finally, dynamic programming finds the matches
based on pixel support regions and overlap. Note that the line
order of the sorted lines can not be reversed during dynamic
programming. Horizontal lines can not easily be matched and
are not included in this step. They are recovered during post-
processing, when horizontal line disparities are interpolated
from adjacent diagonal and vertical matched lines.

Although the more general edge matching technique in
[15] finds even more correct matches and works very well,
the line matching is usually about 5-10 times faster. The
technique proposed in [16] was also considered for stereo
edge matching, but for horizontal edges the matching rates
are poor. This was found to be problematic in many in-
stances, since the environments that we are interested in
mainly consist of long and featureless vertical and horizontal
edges.

We represent lines by their endpoints, which is convenient
for reconstruction and reprojection. The 3D reconstruction
of one point requires two matched image points (ul, vl) and
(ur, vr). The vertical coordinate v = vl = vr is the same for
both image points, since we only consider rectified images
where matches lie on the same scanline. The reconstruction
in camera coordinates is obtained by

c =

(
bul

ul − ur
,

bv

ul − ur
,

bf

ul − ur

)T

(1)

with known intrinsic stereo camera parameters (we assume
subtracted principal points). The baseline is denoted with
b and f corresponds to the focal length. The difference in
horizontal point coordinates ul − ur is the disparity, corre-
sponding to depth. World point coordinates p are computed
with the camera rotation R and translation t.

p = R−1c + t (2)
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IV. MOTION RECONSTRUCTION USING LINES

Motion reconstruction is achieved through registration of
the previously reconstructed three-dimensional lines with
the currently detected (yet two-dimensional) image lines.
Although it would be possible to do 3D-3D matching by
reconstructing the current image lines prior to registration, a
naive approach would introduce unnecessary errors as lines
with large Euclidean errors would dominate the optimization
(i.e. lines that are far away). Optimizing the reprojection
error (3D-2D optimization) naturally accounts for the type
of uncertainty that is inherent to image space measurements.
In addition, the registration of monocular imagery with a
3D model is equally possible, as done in [6]. The minimum
number of line matches is three in this case, while stereo
matching requires only two nonparallel lines to recover the
6-DOF motion.

A. Line Reprojection Error
The reprojection for 3D points is defined by the intrinsic

and extrinsic camera parameters. While the rotation matrix
Rk and the translation vector tk make up the unknown six
degrees of freedom of the camera that we would like to
recover at frame k, the intrinsic parameters, again, are known
from prior calibration. First we transform from world to
camera coordinates, then we project to the image plane.

c = Rk(p− tk) (3)

(u, v)T =

(
fcx
cz

,
fcy
cz

)T

(4)

While it is rather straightforward to define the reprojection
error between two points (or a point and a line) as their
minimum Euclidean distance, such a clear statement for the
error between two lines is not possible. This stems from the
fact that the error between 2D lines is two-dimensional (if
endpoint locations are not considered). One possibility to
parameterize this error is by representing one of the lines by
its end points and computing the perpendicular distance to
the other line for each.

We characterize the match between the jth reprojected line
lj(x) and the ith image line l̂

i
by their overlap l(lj(x), l̂

i
) and

mean distance dij(x) in image space.

dij(x) = 0.5
(
|dP1

(lj(x), l̂
i
)|+ |dP2

(lj(x), l̂
i
)|
)

(5)

The terms dP1
(lj(x), l̂

i
) and dP2

(lj(x), l̂
i
) denote the per-

pendicular distances of the end points of image line l̂
i

to the
reprojected line lj(x). We will omit the dependency of the
overlap l(lj(x), l̂

i
) on the transformation x by writing lij to

convey that this value is kept as a weighting constant instead
of participating in the optimization (although it is updated in
between iterations). The product of dij(x) and lij equals
the overlapping area between the two lines. Accordingly,
the mean pixel error (ME) for all matching lines can be
formulated in the following way:

ME(x) =

∑
i,j dij(x)lij∑

i,j lij
(6)

Fig. 2. Multiple reprojected lines (dashed) near a line in the current
frame (solid). Which one is the ”best” match? Since the matching error is
multidimensional, a scalar ”best” metric as for the distance between points
does not exist.

Another natural choice would be the weighted mean squared
error (MSE):

MSE(x) = 0.5

∑
i,j

(
dP1

(lj(x), l̂
i
)2 + dP2

(lj(x), l̂
i
)2
)
lij∑

i,j lij
(7)

The weighting with the overlap lij is introduced to reflect the
significance of a match in the cost function. Accordingly, a
number of small matching lines have the same influence on
the result as one larger match with equal cumulative overlap.

While the MSE is a common and usually sound choice
in optimization problems, the mean pixel error includes
absolute value functions in dij(x), which are problematic
for optimization. However, if the absolute value terms are
replaced by Huber functions h(z), the equation becomes
differentiable while keeping its linear behavior for larger
errors.

h(z) =

{
0.5z2 |z| < k
k|z| − 0.5k2 else

(8)

Using values like k = 1px limits the region with quadratic
behavior to small errors.

B. Iterative Closest Multiple Lines (ICML) Algorithm

The Iterative Closest Points (ICP) algorithm [17] functions
by finding the minimum distance to a model (which would be
lines or edge point sequences in this case) for each point and
improving this distance with gradient-based optimization.
This is repeated until convergence. The publications [6] and
[1] use this approach for the monocular and stereo case,
respectively.

Due to the two-dimensional reprojection error it is not
clear what the closest line to another line is, as shown in
Figure 2. Of course we can define a matching score and
utilize e.g. the mean pixel distance and overlap between two
lines as a criterion, but we will see why this is unfavorable.

Instead of finding a ”best” match among the model lines
(1-to-1 matching), the ICML algorithm considers all lines
in the neighborhood (1-to-N matching). For a line to be
considered in the neighborhood it has to fulfill the following
criteria: dij < dmax, lij > 0 and αij < αmax. The term αij

refers to the angle between both lines in the image plane,
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while αmax and dmax are free parameters. During all stages
we use αmax = 12◦.

The resulting optimization problem has two rows for each
line match per view. For stereo optimization, the matches in
the right image are added analogously. With the weighting
matrix W = diag(lij) we minimize the following quadratic
cost function in the case of MSE:

f(x) =
1

2
e(x)T We(x) (9)

e(x) =
(
..., dP1(lj(x), l̂

i
), dP2(lj(x), l̂

i
), ...

)T
(10)

To minimize the Huber ME we use h(z) as an element-wise
Huber function and yield:

fh(x) =
1

2
Weh(x) (11)

eh(x) = h(e(x)) (12)

These functions can finally be minimized with Levenberg-
Marquardt optimization when the incremental motion update
x and the error Jacobian J are defined:

x = (tx, ty, tz, φx, φy, φz)
T (13)

J =
∂e(x)

∂x
(14)

Note, that f(x) and fh(x) are scaled versions of Eq. 6 and
7 respectively. Since the denominator with the cumulative
overlap is constant during one iteration, we omit it for
simplicity.

The solution vector x constitutes the incremental transfor-
mation that we want to calculate. Besides a translation vector
∆t = (tx, ty, tz)

T it contains an incremental rotation which
relates to the following linearized rotation matrix.

∆R =

 1 −φz φy
φz 1 −φx
−φy φx 1

 (15)

The pose update equations from frame k − 1 to k are

Rk = ∆RRk−1 , (16)

tk = tk−1 − (∆RRk−1)−1∆t . (17)

While for a given dmax, the scheme of alternate matching
and optimization is similar to regular ICP, we overlay another
loop to control this matching parameter and implement a
coarse-to-fine strategy. We iteratively reduce dmax from a
large value dinit down to a fine value dfinal to achieve
convergence from a wider range of configurations while not
sacrificing accuracy when the lines are correctly aligned.
While dinit and dfinal are both free parameters, we kept
dfinal = 1px during all experiments. The parameter dinit

should be chosen large enough, so that the correctly matching
lines are among the matches. The algorithm is listed in the
following:

1) Set dmax = dinit.
2) For each image line, find all model lines with dij <

dmax, lij > 0 and αij < αmax.

3) With all found matches, do Levenberg-Marquardt until
convergence.

4) If dmax ≤ dfinal exit, otherwise dmax = dmax/2 and
go to step 2.

Optionally, one can add an offset in the order of dmax to
each lij to allow lines to influence the optimization that do
not actually overlap, but are within the axial range of this
offset. Accordingly, we need to count the axial gap between
lines as negative overlap. This can be of importance for fast
simultaneous movements in horizontal and vertical image
direction when no large lines are detected. However, in our
trials this was not necessary.

Due to the potentially large number of matched lines
(especially for sizeable dinit), ICML can be biased towards
one-sided groupings of parallel lines within match range.
A typical configuration of this kind can be found when
looking down corridors (see top left image of Figure 4). To
remedy this affinity, we sort all matches of each line by their
mean distance dij . Subsequently, the matches are removed
starting from the largest dij until the cumulative overlap of
the remaining matched lines is smaller than µOM |̂l

i
|. While

|̂l
i
| is the length of the image line that is matched, µOM is a

tuning parameter that controls the amount of ”overmatching”.
For example, when µOM = 3 the cumulative overlap of all
matched lines is restricted to three times the image line
length. Accordingly, three lines would be matched if the
overlap was 100% each. In the general case, a number N ≥ 3
is matched for µOM = 3 if enough lines are found in the
dmax neighborhood. The introduction of sorting usually has
no measurable influence on the optimization time.

C. Evaluation of Common Configurations

This section will investigate the behavior of ICP and
ICML in common configurations. In the presented cases with
infinite parallel lines, ICP and ICML with 1-to-1 matching
(i.e. µOM = 0) are equivalent. We will refer to this special
case of ICML where only the line with the smallest dij is
matched as Iterative Closest Line (ICL). For simplicity, we
look at one dimension of the optimization problem, which
is the horizontal displacement in this case.

Figure 3 shows a general configuration with parallel lines
for which both 1-to-1 and 1-to-N matching are applied. One
can see, that 1-to-1 matching is asymmetrical. So, if we
iterated over the reprojected lines to find the best matches
instead, we would get a different cost function. With 1-to-N
matching, this becomes symmetrical (for µOM →∞), since
all mutual distances are included.

1) Matching with Successful Line Detection: We will
first review the ideal case, when all lines have successfully
been detected. The corresponding cost function is shown
in Figure 3(c). First, we find that all cost functions are
strictly monotonic decreasing within a displacement of less
than half the line spacing. While with 1-to-N matching, the
function stays strictly monotonic, with 1-to-1 matching we
can locate plateaus on either side of the global minimum for
ME and Huber. This section corresponds to the displacement
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(a) The closest line is
matched, which is equivalent
to ICP/ICL for infinite parallel
lines (1-to-1 matching).

(b) All close lines are
matched, resulting in a
symmetrical matching (1-to-N
matching).
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(c) Cost function comparison when
all lines were successfully detected.
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(d) Cost function comparison for
the case when l̂2 is not detected.

Fig. 3. These figures depict the 1-to-1 and 1-to-N matching methods.
The dashed lines in (a) and (b) illustrate reprojected lines, while the solid
lines are image lines of the current frame. The lines are parallel and have
a horizontal spacing of five units. In (c) and (d), the mean error (ME), the
Huber mean error and the mean squared error (MSE) are given for two
scenarios. One can see that 1-to-N matching (solid lines) has fewer local
minima and plateaus for these common cases.

for which one reprojected line is matched to both image
lines and the distances have opposite signs. If no other edge
matches can drag the optimization over such a plateau, the
optimization is stuck. So for the optimization to converge,
the maximal tolerable displacement is half the line spacing
(both in image space). In many practical situations, this does
not hinder optimization, though.

2) Matching with Partial Line Detection: When lines are
only detected partially, the cost function changes. Consider
the same configuration, except that l̂

2
is not detected. The

resulting cost functions are plotted in Figure 3(d). With 1-
to-1 matching we see two minima. This actively hinders
successful optimization even if other lines have been matched
correctly. In the case of 1-to-N matching on the other
hand, a plateau permits effortless transition between both
possibilities in this ambiguous setup for ME and Huber. Of
course, other matches are needed to drive the optimization
in the right direction, but even a correct line match between
small line segments can provide the correct direction. When
dmax is iteratively reduced, the line is finally only associated
with one of the reprojected lines. When this is the case,
the cost function has a unique minimum which supports
an accurate alignment. In some scenarios, the MSE can be
problematic for this case, because it tries to push the solution
to the middle of both matches. However, in the sequences

that we tested, line detection was reliable so that those
situations were rare. When the line detector or the stereo
matching algorithm perform unreliably, this has been found
to make a difference.

D. Registration Failure Detection

Although optimizations most often converge to the global
minimum with 1-to-N matching, as with any gradient based
technique, local minima and other failures cannot be ruled
out. In order for other more robust and costly techniques
to take over, a measure for failure detection is required. In
[10], the ratio of matched and detected edge points is used for
failure detection. We use a similar measure by taking the ratio
of the cumulative matched line length that was calculated
with dmax = dfinal and the minimum of the cumulative
lengths of all detected image lines and reprojected lines. This
ratio must be larger than Mmin.

Mk =

∑
i,j lij

min
(∑

i |̂l
i
|,
∑

j |l
j(x)|

) > Mmin (18)

We further test whether the mean error ME(x) exceeds the
threshold Gmax. However, sometimes these criteria alone are
not a sufficient indicator whether we can trust the solution.
We found it necessary to include a measure which indicates
whether the solution is stable. Imagine a scene with mostly
parallel lines. In such a case, we can find a transformation
which easily fulfills both of the other criteria. However, this
solution is not unique. No reliable line match constrains the
camera motion to not slide in the direction of those parallel
lines. The measure that we propose here is an indicator
for the stability of the solution. For this, we determine the
directional cumulative matched line lengths lh, ldiag1, ldiag2

and lv for horizontal (|αi| < 22.5◦), diagonal (22.5◦ ≤
αi < 67.5◦ and −22.5◦ ≥ αi > −67.5◦) and vertical
(|αi| ≥ 67.5◦) lines to gain knowledge of how the line
directions are distributed. The angle αi is the line orientation
in image space. If three of these lengths are small we have
an unstable solution. We desire a minimum diversity in line
orientations to trust the solution. For this, lh, ldiag1, ldiag2

and lv are sorted and assigned to l1 ≤ l2 ≤ l3 ≤ l4. The
stability criterion that we impose is the following.

Lk = l1 + l2 + l3 > Lmin (19)

Accordingly, the sum of the lesser three directional cumula-
tive line lengths must be at least Lmin long. This does not
constrain the ratio of the lengths, but ensures an absolute
minimum orientation diversity among the matched lines.

E. Robust Sample Consensus Matching

When a registration failure was detected, a more robust
algorithm is needed to circumvent a possible local minimum.
In contrast to edge point matching, with lines, the geometry
information is significantly more compact which makes a
hypothesize-and-test scheme tractable. Since we are not
building a map at this point, we are interested in a fallback
solution for incremental motion that efficiently provides good
starting values for a subsequent refinement with ICML.
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Instead of assigning line match hypotheses purely random
(like RANSAC), for incremental motion we can restrict the
matching possibilities to the coarse initial line matching
with dmax = dinit. Further, we cluster the line matches in
horizontal and vertical ones (again with the image space
orientation α) and sort them by their overlap. In the last
section, we already discussed the necessity of diverse line
orientations to yield a robust solution.

Of both directional clusters, only NSAC/2 line matches
with the longest overlap are considered to maximize the line
orientation diversity. Then, we iterate over all NSAC matches
and form hypotheses of two line matches for all possible
combinations. Accordingly, up to

NH =

NSAC∑
i=1

i =
NSAC(NSAC + 1)

2
(20)

hypotheses are formed. Recall, that two nonparallel line
matches are sufficient to calculate the 6 degrees of freedom
(DOF) in the stereo case. Consequently, we disregard hy-
potheses whose line orientations are too similar. We employ
a threshold of 45◦ by which orientations have to differ at
least. For the remaining hypotheses we do the following:

1) Calculate 6 DOF transformation xH for the two lines of
the hypothesis with gradient descent (fixed matching).

2) If ME(xH) > GSAC drop hypothesis and go to 1).
3) Compute matching with all lines and dmax = dSAC to

measure consensus. Save cumulative line overlap.
4) Optional: Do an early-out test with the measures from

Section IV-D to speed up the algorithm in some cases.
The hypothesis with the largest cumulative line overlap

is chosen as the winner. Afterwards, the solution is refined
with ICML and a comparably small dinit = 2dSAC. We
parameterized the sample consensus algorithm with NSAC =
60, GSAC = 0.2px, dSAC = 4px.

V. EXPERIMENTAL RESULTS

To benchmark the presented algorithm in realistic envi-
ronments, we recorded image sequences containing different
visual complexity with a hand-held stereo camera. The Corri-
dor sequence consists of 532 stereo frames over a total travel
distance of approximately 48m. The sequence is noisy, due to
low lighting and reflections in the ceiling and has a medium
amount of visual features. A visually complex environment is
tested with the Big Room sequence. It contains many three-
dimensional objects and texture. Finally, in the Room se-
quence, the camera is moved through a mostly non-textured
scene with only very few visual corners, which makes it
specifically hard for feature point based systems. To evaluate
the loop closure accuracy, the groundtruth end positions
were computed with bundle adjustment by matching several
frames in the beginning and end of the sequences by hand.

The stereo camera that was used for recording has a
baseline of 16 cm, a resolution of 1280×1024 and a field-of-
view of about 100◦ × 80◦. The high resolution was used to
preserve the sharpness during rectification. The algorithms
were run on rectified sets with 640×512 pixels. For all

sequences, the parameterization was left unchanged after
being determined empirically. The maximum disparity for
stereo matching was set to 140px. The optimization used
µOM = 2.5, dinit = 64px and dfinal = 1px. The registration
failure detection was parameterized with Lmin = 100px,
Gmax = 0.7 and Mmin = 0.4. The experiments were run
on a single core of an Intel Core i7 with 2.8 GHz. No GPU
acceleration was used.

The ICP implementation uses the same coarse-to-fine
scheme and parameterization as ICML. The edge points for
ICP are extracted from the same refined lines that ICML uses
in these experiments. Recall, that ICL refers to a special case
of ICML where µOM = 0 and only the lines with the smallest
dij are used to build a 1-to-1 matching. In Table I, ICMLh

denotes the use of the Huber cost function fh(e) instead of
the MSE. Since the Huber function becomes quadratic near
its minimum, the final accuracy is the same as for MSE, if
the same lines are matched. Accordingly, we only compare
the registration failure rates between the two.

Figure 1 shows two characteristic frames from the Room
sequence along with a trajectory plot. Very few point features
are found, which leads to numerous failures and an unusable
trajectory with VISO2. While it generally performs very
well for its algorithm category, it cannot succeed in these
very sparse cases (we used the full resolution mode to
maximize the chance to find features). ICML on the other
hand successfully recovers the motion. Since this scene is
generally easy to register for edge-based systems, ICP and
ICL also complete without failures and achieve a similar
accuracy as ICML (they are omitted in the plot for clarity).
However, the stereo matching is very challenging for a
number of frames, since horizontal lines have to be recovered
in 3D to succeed. As this can be virtually infeasible for lines
that do not have locatable features at both ends, we opted for
the following strategy: for small numbers of detected lines,
we do not only match stereo lines with ICML, but a mixture
with all remaining image lines - thus simultaneous stereo
and monocular optimization. Additionally, we remember 3D
lines from previous frames, as long as they get matched to
at least one image line in consecutive frames. For easy cases
the horizontal line recovery step can directly compute the
desired disparities.

Table I lists the registration failure rates for different frame
increments to test for robustness with increasing distances
between frames. Without sample consensus matching (the
results of which are bracketed) the pure ICML convergence
rates can be directly compared to ICP. It is also interesting
to compare ICML with ICL in this way, as the registration
failures have been approximately halved without sacrificing
speed. In comparison to ICP, the registration failures are
often reduced by about 30%. The comparison of the different
cost functions for ICML reveals no overall winner. While
the Huber function theoretically seems more robust than
the MSE, the results of ICMLh in Table I show no clear
indication for the tested sequences. Often, ICMLh beats
ICML by just one successful registration. On the other hand,
ICML can be superior in some cases like for the Corridor
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TABLE I
REGISTRATION FAILURE RATES FOR THE CORRIDOR AND ROOM SEQUENCES. SAMPLE CONSENSUS FALLBACK RATES ARE BRACKETED.

Sequence Corridor Big Room Room

Frames / Inc. 532 / 1 266 / 2 177 / 3 272 / 1 90 / 3 240 / 1

ICML 0% (0.4%) 0% (4.9%) 0% (11.3%) 0% (0.0%) 0% (4.4%) 0% (0.0%)
ICMLh 0% (0.4%) 0% (4.5%) 0% (15.3%) 0% (0.0%) 0% (3.3%) 0% (0.0%)
ICL 0% (1.7%) 0% (10.9%) 0% (19.8%) 0% (0.0%) 0% (10%) 0% (0.0%)
ICP 0.9% 7.1% 16.4% 0% 5.5% 0%
VISO2 0% 0% 0% 0% 0% 12.9%
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Fig. 5. In the Corridor sequence, a total distance of 48m is walked moderately fast with a hand-held stereo camera. Due to the medium feature point
count, VISO2 is able to achieve an accuracy of 1%. However, with 0.65%, ICML is even more accurate since every edge pixel refines the solution, in
contrast to fewer reliable corner-like features. The accuracy of ICP suffers from the lack of a registration failure recovery algorithm (3.3% accuracy) but
would otherwise be comparable to ICML. ICL (not plotted) approaches the accuracy of ICML, but falls back to sample consensus matching more often.

Fig. 4. These images show initial matching configurations of the Corridor
sequence. ICML was able to register the lines without sample consensus
matching. ICP falls into local minima on the shown setups, because some of
the closest lines are false matches. The images show the initial reprojection
of the previous frame prior to registration with dmax = dinit = 64px.
Green depicts matched reprojected model lines, while unmatched ones are
drawn in orange. Detected image lines are cyan if they were matched and
dark blue for non-matched ones.

TABLE II
AVERAGE TOTAL COMPUTATION TIMES PER FRAME.

Corridor Big Room Room

ICML 35+7=42ms 44+8=52ms 16+4=20ms
ICMLh 35+8=43ms 44+9=53ms 16+4=20ms
ICL 35+7=42ms 44+7=51ms 16+3=19ms
ICP 35+169=204ms 44+180=224ms 16+51=67ms
VISO2 91ms 103ms 63ms

sequence with large frame increment.
As the Big Room sequence is the visually most complex

of the three, one would expect no big difference in accuracy
between feature point and edge based methods. However, the
large number of precisely detectable straight lines seems to
benefit the edge based methods, see Figure 6. The trajectory
of ICP is almost identical to the one of ICML, as anticipated

if no registration errors occur (except for a minor mis-
registration of ICP near the sequence end). As ICL can only
match one line, it does not always choose the best one in
terms of accuracy (e.g. it could choose a small line that
is closest by coincidence). While the accumulated error is
not big here, it could be in other scenarios where the line
detection is more unreliable.

The given time values in Table II are the mean of all
measurements in a sequence. For ICML, ICL and ICP the
stereo matching and line detection time (first number) and
reprojection optimization time (second number) are given
separately. Note, that the optimization times of ICP are more
than an order of a magnitude larger than for ICML. The
mean times for sample consensus (SAC) were about 50ms in
the case of the Corridor sequence, with its extrema between
2ms (with early out detection) and 130ms for NSAC = 60.
Figure 5 shows the trajectories for the Corridor sequence
with a frame increment of one. Due to the medium feature
count of the scene, VISO2 performs well. However, ICML
is twice as fast and more accurate. ICP suffers from the
lack of a registration failure recovery technique to compete
in such challenging scenes. While a method was proposed
in [18], a significant increase of the performance gap to
ICML is expected due to the use of expensive SIFT features.
Furthermore, in very sparse cases, falling back to a feature
point based technique may not be optimal.

VI. FUTURE WORK

The next logical step is to build a consistent map with
bundle adjustment and automatic line matching. In [19], it
was shown how bundle adjustment can be parameterized
with lines to yield a maximum likelihood estimator without
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Fig. 6. The Big Room sequence contains many three dimensional objects
and texture, as visible in the two frames above the trajectory plot (matched
lines drawn green). With 0.2%, ICML achieves the highest accuracy on
this short loop of 3m length, followed by ICL with 0.7% and ICP with
0.8%. VISO2 only achieves 2.4%, despite numerous feature points (Video
is available online1).

overparameterization. However, since the lines were hand-
matched, the relevance to real problems was limited. If
ICML is used to establish the matches, a solid SLAM
system could be created. With such a consistent line map,
an interesting idea would be to do only monocular tracking
between less frequent stereo reconstructions. Judging from
the computation times, a pure monocular tracking with line
detection and ICML should be feasible in under 25ms at
640×512. Saving some CPU resources for map building,
one could run the tracking at 25-30Hz. With such a high
frame rate, sample consensus matching should become a
rare occasion. Another opportunity to cut down computation
times and further increase registration success would be to
use the previous delta motion as a guess for the current
frame. Finally, a modified version of the sample consensus
matching could be used for global pose recovery which
ultimately allows for loop closure.

The source code of the developed C++ Line Vision Li-
brary is available online and will be updated as research
progresses1.

VII. DISCUSSION

We have presented a new projective line registration algo-
rithm, called ICML, that is substantially faster than ICP for
the analogous problem. We showed that a naive ”Iterative
Closest Line” algorithm is inferior in terms of registration

1Visit http://www.jonaswitt.de/ICML.shtml for the ICML
source code and videos.

success, since it is impossible to find the ultimately best
matching line in many cases. The allowance for multiple
matches in ICML eliminates this hindrance and even leads
to an improvement in registration performance, compared to
ICP. Additionally, we proposed a robust sample consensus
based bootstrapping algorithm which is automatically used
once a failure criterion is fulfilled. The performance was
demonstrated in an untextured and more complex, moder-
ately textured environments. The comparison with a state-
of-the-art feature point based algorithm demonstrated the
potential of this technique both in accuracy and speed. How-
ever, environments without sufficient numbers of straight
line segments will certainly favor traditional feature point
based odometry. This suggests a hybrid system for optimal
performance in diverse environments. However, a fast and
self-contained edge based method can be vital for successful
navigation. We already started work on automatic bundle ad-
justment and see great potential for real-time indoor mapping
and finally the reconstruction of planar surfaces.
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