
Unsupervised extrinsic calibration of depth sensors in dynamic scenes

Stephen Miller, Alex Teichman, and Sebastian Thrun

Abstract— While inexpensive depth sensors are becoming
increasingly ubiquitous, field of view and self-occlusion con-
straints limit the information a single sensor can provide. For
many applications one may instead require a network of depth
sensors, registered to a common world frame and synchronized
in time. Historically such a setup has required a tedious manual
calibration procedure, making it infeasible to deploy these
networks in the wild, where spatial and temporal drift are
common. In this work, we propose an entirely unsupervised
procedure for calibrating the relative pose and time offsets of a
pair of depth sensors. So doing, we make no use of an explicit
calibration target, or any intentional activity on the part of a
user. Rather, we use the unstructured motion of objects in the
scene to find potential correspondences between the sensor pair.
This yields a rough transform which is then refined with an
occlusion-aware energy minimization. We compare our results
against the standard checkerboard technique, and provide
qualitative examples for scenes in which such a technique would
be impossible.

I. INTRODUCTION

With the advent of inexpensive depth sensors such as the
Microsoft Kinect or Asus Xtion Pro, virtually anyone can
now collect 3D pointclouds for the cost of a point-and-
shoot camera. Rather than discerning information from a
rectangular grid of pixels, algorithms can instead reason in
the intuitive world of Euclidean space. This has simplified
many perceptual tasks—be it mapping, reconstruction, object
detection, or scene understanding.

However, these sensors are confined to a rather limited
field of view. As such, algorithms must reason about non-
intuitive, self-occluding hulls rather than full, 3D shapes.
One can imagine instead a room with a network of mounted
depth sensors, each with a novel view of the scene. With
proper extrinsic calibration—knowledge of the translation,
rotation, and time offset of each sensor with respect to
a world frame—full pointclouds of moving objects could
be constructed in realtime, allowing algorithms to analyze
dynamic 3D scenes.

Such extrinsics are often difficult to obtain, since they
typically require ground-truth correspondences by means of
a precise calibration pattern. If any camera is bumped or is
prone to drift, the entire routine must be redone. Even in
the research setting, this is frustrating and time-consuming.
When deployed in large-scale environments where there is
no dedicated engineer to monitor the setup, it becomes a very
serious stumbling block.

The task of automating this procedure has been well-
studied in the 2D domain. Sensor registration is typically

Stephen Miller, Alex Teichman, and Sebastian Thrun are with the
Department of Computer Science at Stanford University.
E-mail: {stephen, teichman, thrun}@cs.stanford.edu

done by matching 2D keypoints—SIFT [1] and ORB [2]
being two common examples. Typical indoor scenes, how-
ever, are often fairly untextured. These environments, when
seen from wildly different viewing angles and exposures,
do not lend themselves to feature-based approaches. This is
particularly true for commodity depth sensors, whose RGB
cameras—-if they exist at all—-are often low resolution and
imperfectly registered to the depth image.

In this paper, we aim to make the extrinsic calibration
task as painless and off-the-shelf as the sensors themselves,
requiring no intentional human effort or distinctive texture
cues. Rather than relying on structured calibration patterns,
we will use the dynamic scene itself to calibrate. As objects
move within the scene, their positions at each time frame
provide candidate correspondences from which crude extrin-
sics can be inferred. This initial hypothesis is then refined
by densely aligning the dynamic geometry of the scene,
optimizing both the spatial and temporal offsets of the two
sensors. We make no assumptions about the shape of the
objects or the way they move, nor do we assume anything
about the relative poses of the cameras beyond the basic
requirement that something in the scene must be visible to
both simultaneously.

In Section II we consider related work in the 2D and
3D domains. We then briefly introduce the problem in Sec-
tion III, and present our unsupervised solution in Section IV.
In Section V we compare our results against the standard
checkerboard calibration approach, and give a number of
qualitative examples.

II. RELATED WORK

Camera calibration
The problem of registering two sensors together has been

extremely well studied in Computer Vision. By far the most
common technique is the approach of Zhang [3], as widely
popularized by Bouget’s MATLAB toolbox [4] and the
calibration tools present in the OpenCV library [5]. This ap-
proach uses a planar calibration target to establish camera-to-
world correspondences, which can then be used to estimate
intrinsic and extrinsic parameters. Although a checkerboard
is the most common source of correspondences, others have
used circular [6] and point [7] targets for similar purposes.
Target-free techniques also exist for autocalibrating multiple
cameras, particularly in the stereo domain. Demirdjian et
al. [8] solve for a stereo baseline by means of a moving,
textured plane. Houraud et al. [9] use sensor egomotion to
solve for the stereo baseline in unstructured environments.
Similar to our intuitions, Stauffer and Tieu [10] solve for the
topology of a large sensor network by tracking the motion

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

U.S. Government work not protected by U.S.
copyright

2695

Fig. 1. An example calibration task. Left: the image and associated pointcloud for both sensors. Right: The combined cloud returned by our calibration
routine.

of multiple arbitrary objects which are assumed to be planar.
This assumption works well for their surveillance use case,
for which distant cars are well approximated by planes.

Structure from motion, bundle adjustment
The goal of sensor alignment is not unique to extrinsic

calibration. There is a large body of work in the Computer
Vision community which aims to reconstruct the 3D structure
of static scenes via multiple discrete camera views. In this
task the sensor pose is often estimated as an inner loop of an
alternating optimization algorithm, and thus these methods
could be adapted for extrinsic calibration purposes. Seminal
work by Pollefeys et al. [11], Agarwal et al. [12], Bao et
al. [13], and numerous others have shown that sensor pose
and scene geometry can be inferred from multiple, often
uncalibrated sensors. An excellent survey of these methods
is given by Triggs et al. [14], for those interested. Recent in-
dustrial advances such as Autodesk’s 123D1 have also shown
impressive performance on a small scale, reconstructing
shape from unordered cellphone images. And while state of
the art reconstruction techniques such as DTAM [15] require
a continuous trajectory rather than disparate viewpoints, the
task of finding loop closures is quite similar to our own.

The above methods are clearly infeasible for calibrating
sensors with only a depth channel. For those which provide
registered RGB information, however, they could easily be
adapted to the task at hand. Unfortunately, we’ve found
that camera quality and depth registration error tend to
limit their effectiveness. Even with high quality sensors,
these approaches naturally favor highly textured scenes with
maximally redundant fields of view. This is not unreasonable
when calibrating a low-baseline stereo rig, reconstructing
objects of interest, or inferring sensor egomotion in cluttered
environments. When the scene itself is relatively featureless

1http://123dapp.com

and sensors are placed to maximize coverage, however, these
assumptions no longer hold.

Depth sensor calibration
Calibration techniques have also been designed explicitly

for RGB-D sensors. Zhang and Zhang [16] use a checker-
board to track correspondences between the RGB and IR sen-
sors. Others have developed a glass checkerboard2, which has
the advantage of being directly visible in the depth image.
While these approaches attempt to register a depth sensor
with an RGB camera, the task of finding correspondences is
the same in the multi-sensor scenario.

In recent years, a body of work has emerged which
attempts to perform extrinsic calibration in an unsupervised
fashion, by optimizing the geometry of the reconstructed
scene. Levinson and Thrun [17] propose a method for
calibrating 2D and 3D LIDAR sensors mounted on a moving
platform, using the observation that, on a small scale, local
regions tend to be planar. Maddern et al. [18] and Pandey et
al. [19] propose similar techniques, replacing the planarity
assumption with entropy and mutual-information terms, re-
spectively.

While the task of aligning a sensor to a vehicle reference
frame is distinct from our own, the spirit of these approaches
is quite similar. Both approaches, however, require an initial
estimate of the sensor pose. This is reasonable for a spe-
cialized vehicle but less convenient when mounting sensors
in new environments. We also note that depth discretization
error is far more extreme in the Primesense-style sensors we
wish to calibrate than it is in Velodyne data, and it is doubtful
that a point-to-plane or entropy term alone would suffice.

Perhaps most similar to ours in spirit, if not domain, is
the work of Kodagoda et al. [20], which tracks the motion of
objects in a scene to align the 2D poses of coplanar LIDARs.
This uses a fairly sophisticated motion model to directly align

2No known citation; see, for example: http://doc-ok.org/?p=289

2696

Fig. 2. (A) Foreground pixels (shown in red) are extracted from the background. (B) Connected components in the foreground image are used to find
candidate objects for each frame. (C) The centroids of these objects, aggregated over all time, provide candidate correspondences which RANSAC can use
to estimate an initial pose. (D) This initialization is refined with an alternating grid search on foreground objects across all frames simultaneously.

the seen trajectories; while we too exploit motion, we are
largely agnostic to the way in which things move. It is unclear
whether the trajectory-based approach would be robust or
scalable in the 6DOF domain.

Pointcloud registration
Finally, the problem of data association in pointclouds has

been explored for a wide range of applications. As is the case
in 2D, this is often done for the purposes of reconstruction
from a continuously moving sensor. Recent work by Endres
et al. [21], Henry et al. [22], and Whelan et al. [23] leverage
both RGB and depth channels found in commodity sensors,
while Newcombe et al. [24] and Bylow et al. [25] use
the depth map alone. These systems, which depend on
continuous egomotion, are not applicable to the task at hand.
However, the loop-closure and registration techniques they
rely on solve a similar problem to ours. While 2D feature
matching is the most common, depth features such as the
Fast Point Feature Histogram [26] have also been proposed.
Other methods, like that of Makadia et al. [27], register
clouds by globally aligning histograms of surface normals.
Both approaches, by relying on accurate surface normals,
do not scale well to large, noisy environments. Once crude
initializations are given, local techniques such as point-to-
plane [28] or generalized [29] ICP are often used to refine
these registrations. While these could easily be adapted to
our approach, we found that a dense grid search is better at
overcoming poor initializations.

III. NOTATION

We consider a pair of sensors S0 and S1, each of which
records timestamped depth maps and, optionally, color im-
ages. Given proper camera intrinsics, each depth reading can
be converted into a 3D point measurement. This yields a
stream of 3D pointclouds {C(t)

0 },{C
(t)
1 }, where p≡C(u,v) is

the 3D point measurement at pixel (u,v). Here our coordinate
system follows standard pinhole camera conventions, where
the image plane lies in XY and +Z denotes forward distance
from the sensor.

While our timestamps are continuous, depth readings are
only given at discrete points in time. For notational simplic-
ity, then, we let C(t) denote the cloud whose timestamp is
nearest to t.

We wish to bring these clouds into a common reference
frame. Without loss of generality, we assume S0 lies at the
origin of the world frame with accurate timestamps. The goal
of this work, then, is to find the 6DOF transform T and time
offset ∆t such that T C(t+∆t)

1 is aligned with C(t)
0 .

IV. METHOD

As noted in Section I, this work hinges on the premise that
the unstructured scene alone contains enough information to
align two sensors. We will frame this as an optimization task,
formulating an energy term E[T ,∆t] such that its minimum
will be attained when the two sensors are properly aligned.

However, the search space is large and the objective non-
convex, rendering a good initialization essential. To get a
rough estimate of pose, we observe that even under drasti-
cally different viewing conditions one cue is fairly stable:
the motion of foreground objects. These objects—or more
accurately, their centroids—provide a sparse set of candidate
correspondences, much like the corners of a checkerboard
or results of a keypoint detector. Aggregated across all
timesteps, these correspondences are used to predict an
initial transform T0 via RANSAC. This prediction is then
refined by an alternating minimization of E[T ,∆t]. This
approach is demonstrated visually in Figure 2, and outlined
in Algorithm 1.

Algorithm 1: Calibration Pipeline

Data: Two sequences, {C(t)
0 }, {C

(t)
1 }

Result: Transform T and time offset ∆t
{O(t)

k,i}← ExtractObjects({C(t)
k });

T0← CentroidRANSAC({O(t)
0,i},{O

(t)
1,i});

T ←T0;
∆t← 0;
while ||∆T − I||F > ε do

T ← argmin
T̃

E[T̃ ,∆t];

∆t← argmin
∆̃t

E[T , ∆̃t];

end

2697

A. Object extraction

We first segment each frame into foreground and back-
ground pixels. To do so, we sweep through the entire
sequence and build up a per-pixel depth histogram

Hk(u,v, ẑ) ∝ ∑
t

1{b[C(t)
k (u,v)z] = ẑ}

Where b[z] maps depth values to histogram bins. A fore-
ground mask is then computed for each frame by finding
pixels whose current depth values do not frequently occur in
the sequence. Candidate objects O(t)

k,i are then extracted by
finding large connected components in the foreground mask.

B. Initial alignment via Centroid RANSAC

We now wish to use these foreground objects to infer an
initial transform. To do so, we follow the standard RANSAC
approach: sample 3 pointwise correspondences, use them to
estimate a 6DOF transform, and repeat for a set number of
iterations. The transform which yielded the most inliers is
chosen, and subsequently refined.

In the sampling step, a foreground object O(t)
0,i is chosen

at random, among all clouds given by S0. A corresponding
object O(t)

1, j is sampled at random from C(t)
1 . We repeat this

three times, then use Levenberg Marquardt to solve for the
6DOF transform Tguess which minimizes the sum of squared
distance to the corresponding objects’ centroids.

Note that this sampling step is done jointly across all
frames; thus, the need for three point correspondences does
not mean that three objects must move. In fact, a single
moving object, aggregated across multiple frames, provides
ample correspondences.

This procedure is detailed in Algorithm 2.

C. Pose and synchronization Refinement

With a rough transform T0 given by Centroid RANSAC
and an initial guess of ∆t = 0, we can now perform our
optimization. To do so, we formulate an energy function
E[T ,∆t] which encodes the intuition that points which are
visible in both scenes should align, while being robust to the
largely non-overlapping portions of the scene.

It is tempting to use a simple Nearest Neighbor penalty
across all frames:

E[T ,∆t] = ∑
t

∑
p1∈C(t)

1

φ
(t−∆t)[T p1] (1)

φ
(t)[p̂1] = h(‖ p̂1−NN(p̂1,C

(t)
0)‖) (2)

h(x) = min(x,d+
max) (3)

Where NN(p,C) denotes the nearest neighbor of point p
in cloud C, and the hinge loss h(x) minimizes the effect of
distant outliers.

However, as can be seen in Figure 3, this penalty can have
adverse effects when the area of overlap between the sensors
is small. When an object is viewed from the left and right
sides, the penalty serves to compress the object, favoring

Algorithm 2: Centroid RANSAC
Data: Two roughly synchronized sets of foreground

objects, {O(t)
0,i},{O

(t)
1,i}

Result: Rough guess of transform, T0

BestInliers ←{};
for K iterations do

Corr ←{};
for 3 correspondences do

t ′← RandomSelect({t});
O(t ′)

0,i ← RandomSelect({O(t ′)
0,i });

X0← CentroidOf(O(t ′)
0,i);

O(t ′)
1, j ← RandomSelect({O(t ′)

1, j });
X1← CentroidOf(O(t ′)

1, j);
Corr = Corr ∪{(X0↔ X1)};

end
Tguess← EstimateTransform(Corr);
Inliers ← ComputeInliers(Tguess, dinlier);
if |Inliers|> |BestInliers| then

T ←Tguess;
BestInliers ← Inliers;

end
end
T ← EstimateTransform(BestInliers);

pointwise overlap at the cost of plausibility. To correct for
this, we add a free space violation term:

φ
(t)[p̂1] = h(‖ p̂1−NN(p̂1,C

(t)
0)‖xyz−)+FSV (4)

‖x‖xyz− =

{
‖x‖1, x ·u >−d−max

‖x− (x ·u+d−max)u‖1 otherwise
(5)

FSV =

{
|pproj

0,z − p̂1,z|, pproj
0,z − p̂1,z >−d−max

d−max, otherwise
(6)

Where pproj = C(t)
0 (up̂,vp̂) is the point in C(t)

0 which
projects to the same pixel as p̂1, and ‖x‖xyz− an anisotropic
L1 distance which does not penalize for large positive dis-
placement along the ray from S1 to p1, denoted u. Here, the
penetration limit d−max signifies the minimum allowable object
thickness, below which any disparity should be attributed to
noise. These combine to encode the intuition that if a point in
one sensor is mapped to space which was observed to be free
in the other, modulo sensor noise, it should incur a penalty.
Otherwise it may be plausibly explained by occlusion, and
should incur no additional cost.

We optimize this objective with an alternating minimiza-
tion scheme. Holding ∆t fixed, we solve for T by with a
dense 6DOF grid search. We then hold T fixed and solve
for ∆t via a 1DOF grid search on the same objective. This
is repeated until convergence.

2698

Fig. 3. Left: When a naive nearest-neighbor metric is applied, two sides of
an object will be drawn toward each other, often at the expense of violating
free space. Right: Our occlusion-aware energy term is able to recover from
many of these situations.

Parameter Description Value
b[z] Depth binning function dz/10cme
d+

max Correspondence limit 10cm
d−max Penetration limit 3cm
ε Minimum grid search step 0.01
K Number of RANSAC iterations 1000
dinlier RANSAC inlier threshold 10cm

Fig. 4. A list of free parameters used in our approach, and the values used
for our experiments.

D. Implementation Details

Our objective E[T ,∆t] requires a nearest-neighbor lookup
over all points in all frames. To make this problem tractable,
we randomly sample 5-frame fragments among those which
exhibit motion. We have found that 50 such frames often
suffice, putting the run time at an average of 10 minutes and
37 seconds. Also, when evaluating E[T ,∆t], to avoid double-
counting background points, we align only foreground ob-
jects {O(t)

1,i} with the full cloud C(t)
0 .

It is also well known that these sensors suffer from fairly
high distortion at a distance, as observed by Herrera et
al. [30]. To counter this effect, we preprocess our initial
depth maps via a learned undistortion model, following the
unsupervised calibration method proposed by Teichman et
al. [31].

V. EXPERIMENTAL RESULTS

Our experiments were done with a pair of ASUS Xtion
Pro Live sensors, plugged into separate machines. Shortly
before recording each sequence, an NTP update was done to
synchronize the frames. As mentioned previously, while this
synchronizes the machines fairly well, a small time offset is
typically incurred throughout the duration of the sequence.

Perfect ground truth is difficult to attain for this task,
as 6DOF transforms and millisecond-level time offsets are
too subtle for precise human labeling. For lack of a perfect
method, then, we look to the de facto standard: checker-
boards. For all configurations in which the sensors shared a
wide enough field of view to make checkerboard calibration
possible, we recorded a second calibration sequence with the
sensors in the same pose. This employed a simple technique:
• Carry a checkerboard through the scene, as shown in

Figure 5.
• Detect corners of the checkerboard in the registered

RGB images of both sensors

Fig. 5. Ground truth evaluation was provided by using a checkerboard to
align the two sensors for each configuration. Quantitative results using this
method can be seen in Figure 6.

Seq Trans (cm) Rot (◦) PtP (cm) ChStd (cm/◦)
01 3.43 0.70 3.86 ±1.02 / ±0.35
02 2.75 0.49 2.49 ±0.18 / ±0.05
03 4.67 1.23 4.67 ±0.25 / ±0.08
04 10.49 1.54 6.57 ±2.07 / ±0.33
05 4.21 1.30 4.56 ±1.25 / ±0.25
06 5.11 0.19 4.62 ±6.68 / ±1.20
Avg 5.11 0.91 4.46
Std ±2.53 ±0.48 ±1.21

Fig. 6. The results of our experiments on 6 sequences. Trans is the
translation error. Rot is the minimal angle needed to rotate Tunsupervised
into Tground. Point to Point error refers to the average distance between
corresponding points in the estimated and checkerboard-predicted frames,
thresholded at 3m—beyond which readings are known to be noisy. ChStd
is the approximate standard deviation of the checkerboard approach, using
the Bootstrap method described in [32]. Note that this metric still does not
capture the inherent bias of the checkerboard technique, and these numbers
should not be taken as ground truth error; we urge those interested to
visit http://stanford.edu/˜sdmiller/iros2013 and compare
the pointclouds directly.

• Project these corners into 3D space, and use RANSAC
to estimate a transform.

To estimate the noise inherent in this approach, we em-
ployed the Bootstrap method as described in [32], substi-
tuting the final transformation given by RANSAC for the
mean.

We compared our unsupervised results with those given
by a checkerboard in six sequences, as shown in Figure 6.
As can be seen, they tend to agree with one another within
5cm and 1 degree. Note, however, that the bias inherent in
the checkerboard approach makes it difficult to treat this
comparison as a true error metric—the poorest scoring results
are visually quite compelling. To illustrate, in Figure 8 we
show the best and worst scoring results on the dataset.

We also perform a comparison between limited versions
of our system, as shown in Figure 7. RANSAC yields the
worst performance, showing that the refinement phase is
quite crucial. Replacing the robust occlusion-aware energy
term with the strict Nearest Neighbor metric of Equation 1
also leads to drastic performance reductions. Removing time
optimization resulted in a significant error in one of the
sequences, but otherwise the differences were well within

2699

Fig. 7. Performance with different subcomponents removed. RANSAC does no refinement; the standard L2 Nearest Neighbor (NN) metric does not reason
about occlusions and is prone to outliers, occasionally doing even worse than the unrefined estimate; when no synchronization (NOSYNC) is performed
the results are fairly precise, likely because the synchronization error is fairly low to begin with.

Fig. 8. The best (top) and worst (bottom) scoring calibration runs in our experiments. Sensor 0 is given in red, our unsupervised estimate of sensor 1 is
given in blue, and the checkerboard estimate is given in green.

the noise of the calibration routine itself, suggesting that
synchronization was not a serious issue in our dataset.

Figure 9 shows a number of results on our dataset.
However, it is difficult to observe the reconstruction quality
from single images. To better understand the performance
of both approaches, we encourage those interested to visit
http://stanford.edu/˜sdmiller/iros2013 and
examine the 3D clouds directly.

One advantage of an unsupervised approach is that we
are able to handle situations where, due to field-of-view con-
straints, checkerboard calibration is infeasible. See Figure 11
for an example. We note, however, that even an occlusion-
aware energy suffers from “squishing” artifacts under such
extreme field of view changes, as shown in Figure 10.

Fig. 10. Failure mode: when the angle between the cameras is extremely
drastic and no thin objects are visible, our energy minimization approach
still has a tendency to pull objects too tightly toward each other.

2700

Fig. 9. Example results as compared to the checkerboard approach. Left: our unsupervised approach, Right: Results using a checkerboard. See website
for details.

Fig. 11. An example result where few, if any, surfaces are visible to both sensors at the same time. Note that while this recovers the camera poses fairly
well, it is not perfect: see Figure 10

2701

VI. CONCLUSIONS AND FUTURE WORK

We propose a fully unsupervised technique for registering
depth sensors in space and time, using the unstructured
motion of foreground objects in a scene as our only cue. So
doing, we eliminate the need to rely on distinctive calibration
objects, textured environments and RGB registration, or
indeed any intentional action at all. While this is meant to
be used in environments where a manual routine would be
impractical, we have shown it to perform competitively in
those scenarios where both are feasible.

While this work dealt specifically with a pair of sensors,
we recognize that it can be extended to—and made more reli-
able by—a higher number of sensors, via graph optimization
techniques such as those in G2O [33]. In the future we hope
to explore this extension.

VII. ACKNOWLEDGEMENTS

Stephen Miller is supported by the Stanford Graduate
Fellowship and Google Hertz Foundation Fellowship.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2, pp.
91–110, 2004.

[2] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” in International Conference on Computer
Vision, 2011.

[3] Z. Zhang, “A flexible new technique for camera calibration,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,
no. 11, pp. 1330–1334, 2000.

[4] J.-Y. Bouguet, “Camera calibration toolbox for matlab,” 2004.
[5] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[6] G. G. Mateos, “A camera calibration technique using targets of circular

features.”
[7] T. Svoboda, D. Martinec, and T. Pajdla, “A convenient multicamera

self-calibration for virtual environments,” Presence: Teleoperators &
Virtual Environments, vol. 14, no. 4, pp. 407–422, 2005.

[8] D. Demirdjian, A. Zisserman, and R. Horaud, “Stereo autocalibration
from one plane,” in Computer VisionECCV 2000. Springer, 2000,
pp. 625–639.

[9] R. Horaud, G. Csurka, and D. Demirdijian, “Stereo calibration from
rigid motions,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 22, no. 12, pp. 1446–1452, 2000.

[10] C. Stauffer and K. Tieu, “Automated multi-camera planar tracking
correspondence modeling,” in Computer Vision and Pattern Recogni-
tion, 2003. Proceedings. 2003 IEEE Computer Society Conference on,
vol. 1. IEEE, 2003, pp. I–259.

[11] M. Pollefeys, R. Koch, and L. V. Gool, “Self-calibration and metric
reconstruction inspite of varying and unknown intrinsic camera pa-
rameters,” International Journal of Computer Vision, vol. 32, no. 1,
pp. 7–25, 1999.

[12] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski,
“Building rome in a day,” in Computer Vision, 2009 IEEE 12th
International Conference on. IEEE, 2009, pp. 72–79.

[13] S. Y. Bao, M. Bagra, Y.-W. Chao, and S. Savarese, “Semantic structure
from motion with points, regions, and objects,” in Proceedings of
the IEEE International Conference on Computer Vision and Pattern
Recognition, 2012.

[14] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustmenta modern synthesis,” in Vision algorithms: theory
and practice. Springer, 2000, pp. 298–372.

[15] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time,” in Computer Vision (ICCV), 2011
IEEE International Conference on. IEEE, 2011, pp. 2320–2327.

[16] C. Zhang and Z. Zhang, “Calibration between depth and color sensors
for commodity depth cameras,” in International Workshop on Hot
Topics in 3D, 2011.

[17] J. Levinson and S. Thrun, “Unsupervised calibration for multi-beam
lasers,” in ISER, 2010.

[18] W. Maddern, A. Harrison, and P. Newman, “Lost in translation (and
rotation): Rapid extrinsic calibration for 2D and 3D LIDARs,” in
ICRA, 2012.

[19] G. Pandey, J. R. McBride, S. Savarese, and R. Eustice, “Automatic
targetless extrinsic calibration of a 3d lidar and camera by maximizing
mutual information.” in AAAI, 2012.

[20] K. Kodagoda, A. Alempijevic, J. Underwood, S. Kumar, and G. Dis-
sanayake, “Sensor registration and calibration using moving targets,”
in Control, Automation, Robotics and Vision, 2006. ICARCV’06. 9th
International Conference on. IEEE, 2006, pp. 1–6.

[21] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-
gard, “An evaluation of the rgb-d slam system,” in Robotics and
Automation (ICRA), 2012 IEEE International Conference on. IEEE,
2012, pp. 1691–1696.

[22] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping:
Using depth cameras for dense 3d modeling of indoor environments,”
in the 12th International Symposium on Experimental Robotics (ISER),
vol. 20, 2010, pp. 22–25.

[23] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended kinectfusion,” in RGB-
D Workshop at Robotics: Science and Systems (RSS), 2012.

[24] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International
Symposium on. IEEE, 2011, pp. 127–136.

[25] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, “Real-
time camera tracking and 3d reconstruction using signed distance
functions,” in Robotics: Science and Systems (RSS), June 2013.

[26] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature his-
tograms (fpfh) for 3d registration,” in Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on. IEEE, 2009, pp. 3212–
3217.

[27] A. Makadia, A. Patterson, and K. Daniilidis, “Fully automatic registra-
tion of 3d point clouds,” in Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, vol. 1. IEEE, 2006,
pp. 1297–1304.

[28] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-
rithm,” in 3-D Digital Imaging and Modeling, 2001. Proceedings.
Third International Conference on. IEEE, 2001, pp. 145–152.

[29] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.”
[30] D. Herrera C., J. Kannala, and J. Heikkilä, “Accurate and practical

calibration of a depth and color camera pair,” in Computer Analysis
of Images and Patterns, 2011, pp. 437–445.

[31] A. Teichman, S. Miller, and S. Thrun, “Unsupervised intrinsic cali-
bration of depth sensors via slam,” in Robotics: Science and Systems
(RSS), 2013.

[32] B. Efron and R. Tibshirani, “Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy,” Sta-
tistical Science, vol. 1, no. 1, pp. 54–75, 1986.

[33] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in ICRA, 2011.

2702

