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Abstract— Robotic clustering involves gathering spatially dis-
tributed objects into a single pile. It is a canonical task for self-
organized multi-robot systems: several authors have proposed
and demonstrated algorithms for performing the task. In this
paper, we consider a setting in which heterogeneous strategies
outperform homogeneous ones and changing the division of
labor can improve performance. By modeling the clustering
dynamics with a Markov chain model, we are able to predict
performance of the task by different divisions of labor. We
propose and demonstrate a method that is able to select an
open-loop sequence of changes to the division of labor, based on
this stochastic model, that increases performance. We validate
our proposed method on physical robot experiments.

I. INTRODUCTION

Studies of self-organized multi-robot systems (MRS) con-
sider multiple agents, each with limited individual capa-
bilities, but with the capacity for synergistic interaction in
order to perform tasks collectively. Unlike the more common
intentional distributed robot teams, the group’s functionality
emerges through feedback mediated by the environment and
is the product of action rather than representation or calcu-
lated reasoning [1]. Self-organized MRS have several poten-
tial advantages: simple hardware allows for the production of
cheap, specialized, and robust units which exploit economies
of scale. However, since the robots in self-organized MRS
have limited sensing and manipulation capabilities, it can
be difficult to improve the speed of collective performance.
It is already known that merely increasing the number of
robots will not improve the speed of the system above a
certain threshold because of the interference between team
members [2], [3]. Principled methods for maximizing system
performance (in terms of speed and/or quality) remains
challenging for self-organized robot swarms.

In our previous work [4], [5], we introduced a novel
approach for object clustering, one of the most widely
studied task domains for self-organized MRS. The approach
we demonstrated consisted of two complementary behaviors:
twisting and digging (Fig. 1 illustrates both). Conceptually,
twisting behavior is likely to deliver the object into the
central region, while digging behavior makes gaps between
objects and the boundary. Each robot was assigned with
one of these behaviors for the duration of a clustering
experiments. With a mix of robots executing the two com-
plementary behaviors, the robots detached the objects from
the boundary and successfully generated a single central
cluster as shown in Fig. 2. Certain mixes of the behaviors
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Fig. 1: Trajectories of Twisters and Diggers on the boundary
region. Basically the trajectories differ by the way they move
away from the boundary wall.

Fig. 2: The clustering process. (a) initial configuration and
(b) final configuration.

outperformed other mixes and in different respects. For
example, the mix of 2T3D (2 Twisters and 3 Diggers) had
reliable performance compared to other cases while mix
1T4D (1 Twister and 4 Diggers) formed a cluster efficiently
in the shortest observed time although it failed in one of
its trials. This suggests that, given a preference between
reliability and efficiency, an appropriate mix (or distribution
of labor) could be determined. In this paper, we attempt
to address the question of how to maximize the system’s
performance by computing a policy for altering the robot
division of labor as a function of time.

This research considers a sequencing strategy based on the
hypothesis that since clustering performance is influenced
by the division of labor, it can be improved by sequencing
different divisions of labor. We construct a model in order to
predict clustering behavior (in terms of likelihood of success
and speed) and propose a method that uses the model’s
predictions to select a sequential change in labor distribution.
Both of these aspects are performed off-line at design time.
The model is calibrated with values from experiments in
which robots maintain a constant distribution of labor. Then
the analysis step is conducted in order to produce a labor
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policy for the robots. This is then executed on-line at run
time. The system under study involves robots that are unable
observe the environment’s current state; fortunately, although
there is a deal of stochasticity, task performance does have
a degree of predictability. We constructed a Markov chain
model which abstracts away many of the details of the robots
but which captures the important geometric state for the
clustering task. The model is used to predict task progress as
a function of time, which allows for planning and evaluation
of different sequences of workload division.

Self-organized system is difficult to coordinate because
robots are deployed in the workplace without inter-robot
communication as well as does not equip sensors to recog-
nize directly environment. Such decentralized system need
to determine the efficient and effective scenario which plan
is the best for the situation. For that, the system must be
able to predict the outcome of each plan. Therefore, our
open-loop planning method by stochastic model is applicable
to non-observable self-organized system which is difficult
to sense the state of the environment. Site preparation by
decentralized system can be a good example in the real
world.

This paper is organized as follows. After discussing related
work on self-organized MRS for object clustering in Sec-
tion II, we present our model and sequencer in Section III.
We validate the result with physical robot experiments in
Section IV. Section V concludes.

II. RELATED WORK

Object clustering is a widely studied canonical task for
self-organized MRS. Deneubourg et al.’s classic paper [6]
introduced an distributed algorithm inspired by ants’ brood
sorting and applied it to a simulated MRS. Clustering was
achieved with a simple algorithm with only a local density
sensor and without direct communication between robots.
Beckers et al. [7] conducted a physical robot experiment and
demonstrated clustering without needing a density sensor by
employing a binary threshold sensor. They also explained the
emergence of clusters on the basis of the geometry of the
clusters. Beside this research, many authors inspired from
Deneubourg et al. [6] proposed clustering algorithms that
use similar approaches [8], [9].

Self-organized MRS robots typically do away with adap-
tive planning, representation, or calculated reasoning at run-
time. In contrast, producing desirable behavior in such sys-
tems often focuses on design decisions, employing theory
and analysis off-line. One successful approach is to model
such systems mathematically as a stochastic processes, which
can be a natural fit given the non-determinism often inherent
to such systems. The Rate Equation [10], [11], [12], [13]
has been used as a useful tool for analysis of collective
dynamics of swarm robotic systems. For the clustering
task, Martinoli [14] proposed a probabilistic model of an
object collection method by quantifying the geometry of
clusters and verified it through physical experiments as well
as simulations. Thereafter, Kazadi et al. [15] provided a
mathematical model of clustering dynamics by analyzing

Fig. 3: Ternary plots detailing the cluster dynamics for each
trial for two divisions of labor: (a) 2T3D and (b) 1T4D. The
system begins in the lower left, with no clusters formed.
The goal is for the system to form a single central cluster of
20 boxes, which is the state represented on the lower right
corner. Boxes that collect on the boundary show a degree of
hysteresis.

conditions where cluster formation occurs, and introduced
a characteristic function which described cluster growth
properties.

Almost previous related work in clustering uses cylindri-
cal objects. They also consider the robots equipped with
manipulation mechanisms that pick up or hold objects,
e.g. grippers, C-shaped scoops, shovel, etc. However, in
this research we consider more challenging environment by
considering square objects and simpler robots. Since square
objects aggravate sticking to the boundary walls due to flat
edges, it is difficult for robots to gather a box positioned
on the boundary into the center of the workplace. Almost
prior researches employ richer sensing robots, whereas our
robots are operated by open loop motion without special
manipulator. We demonstrate successful clustering with more
minimalist than past published work.

The previous work in robotic clustering mentioned above
either focused on empirical demonstrations or considered a
simple model in which environmental effects (like bound-
aries) play no role. In this paper, we develop a practical
model that we calibrate with actual data from initial ex-
periments, and then use in order to make predictions about
behavior in order to produce a division of labour policy to
improve overall clustering performance.

III. APPROACH: FROM A STOCHASTIC MODEL TO
PLANNED SEQUENCES

As mentioned in Section I, objects can be successfully
clustered using a mix of robots from the previos work, each
employing one of the two complementary behaviors. Fig. 3
shows the box cluster dynamics for each of the three 90
minute runs of five physical robots for mixes 1T4D and 2T3D
on a ternary plot. The axes of the ternary plot reflects the
fact that groups of boxes behave in qualitatively different
ways depending on whether they are part of a cluster on the
boundary, or are part of a cluster in the center, or are not
part of any cluster. The spread in each trial reflects changes
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Fig. 4: State diagram for a clustering task.

in the clustering configuration and gives an indication of
how goal-directed the cluster formation dynamics are. The
plot also illustrates how fluctuations and randomness in the
system become manifested as stochasticity in the evolution
of the task-performance measure. This view suggested that a
discrete-time Markov chain model may allow one to predict
the configuration of clustering based on the current transition
probabilities.

We observed that certain labor mixes outperformed others.
As shown in Fig. 3, the blue trial for 1T4D was extremely
efficient, while the magenta trial ended with some boxes on
the boundary. The reliability (but comparatively longer time,
visible in the meandering trajectory) is visible in the 2T3D
case as all the paths converge to the lower right corner.
These observations suggest that an appropriate sequence
of the different labor divisions might improve clustering
performance. That is, by planning the sequence of labor
mixes, the system can produce reliable quality and fast object
clustering performance too.

In the remainder of this section, a state transition matrix is
first computed from empirical data obtained from calibrated
experiments. Then, given an initial state condition, the state
after n time-steps can be predicted by using the model. Based
on a Markov chain model of single strategies, we can further
find a better strategy composed of the sequence of different
strategies.

A. The transition matrix

In our problem, the system state is describes the progress
of the clustering task. During the clustering process, each box
in the workplace may be part of a central cluster, a boundary
cluster, or neither. We define the state in the Markov chain
model as the number of boxes in central cluster(s) and the
number of boxes in boundary cluster(s) St = {Nc(t), Nb(t)},
where Nc(t) and Nb(t) are the number of boxes in central
clusters and boundary clusters respectively at time t. Then,
Nc(t) +Nb(t) = N0 −Nu(t) where N0 is the total number
of boxes and Nu(t) is the number of boxes that do not

Fig. 5: All shortest paths from St0 to St1 . (t1 − t0 = 30
seconds).

TABLE I: The weight of the state transition.

Edges Weight Note
S(i, j)→ S(i, j + 1) 2/9 Edges included

S(i+ 1, j + 1)→ S(i+ 1, j + 2) 2/9 in two paths
S(i, j + 1)→ S(i+ 1, j + 1) 1/9
S(i, j + 1)→ S(i, j + 2) 1/9

S(i+ 1, j)→ S(i+ 1, j + 1) 1/9 Edges included
S(i, j)→ S(i+ 1, j) 1/9 in one path

S(i, j)→ S(i+ 1, j + 2) 1/9

Total 1
Assigned in

one transition

belong to any of the clusters. The number total states is
d = N0(N0+1)

2 , and the matrix describing transitions between
states has dimension d× d.

As a simplification, we assume that the environment may
stay in the same state or change to another state by one-
state increments or decrements. Then a state transition can
only occur in five directions such as (i, j)→ (i, j), (i, j)→
(i+1, j), (i, j)→ (i−1, j), (i, j)→ (i, j−1), and (i, j)→
(i, j + 1). The transitions between states is illustrated as a
right-angled triangle in Fig. 4.

For each edge, a transition probability is computed by the
frequency counts of the boxes moving between states in each
time interval. In order to measure the frequency of each state
transition, we define an alternative formula which assigns a
certain weight in the transited state. The total weight of 1 is
assigned when one transition occurred in a time interval. If
the transition of the state is varies with a single increment,
decrement, or stayed in the same, the total weight of 1 is
allotted to the transition.

Let St0 be the starting state (i0, j0) at time t0, and Stn

be the state (in, jn) after n time intervals from t0. If we
assume that the state transition occurs along edges in the state
diagram, the number of steps to approach from St0 to Stn

is computed by the difference of absolute values of the state
grid, |in−i0|+ |jn−j0|. Let x be |in−i0| and y be |jn−j0|.
With empirical data, it is possible that x > 1 or y > 1 in a
single time interval. If this is the case, the weight is divided
and we consider all paths that reach from the current state to
the next state via transitions, and assign a weight proportional
to the number of possible routes connecting the states. Fig. 5
illustrates all paths that approach St1 from St0 after one time

4316



interval. If we consider only the shortest path, the number of
the shortest paths in an x×y grid map type is (x+y)!/x!y!.
All edges of each path have the weight divided by the number
of edges in the shortest path, x+y. In other words, the weight
of the edge in a selected path is as follows,

Wedge =
x!y!

(x+ y)!
× 1

x+ y
. (1)

In addition, since the edges can be selected multiple times
as a path, the final weight of the edges will be

Wtotal =
x!y!

(x+ y)!
× 1

x+ y
×Ns, (2)

where Ns is the number of times selected as a path.
The weight of all edges of the state transition in Fig. 5 is

shown in Table I. With the rule above assigning weights, a
transition matrix is generated by integrating the weighted
frequencies of all state transitions that occur over the duration
of the calibration experiments. The weighted frequencies
are then normalized to calculate the transition probability.
That is, if a transition from one state to another state occurs
frequently, the probability of the transition is large. In our
scenario, the matrix has 231 states, where each state has
transition probabilities for 5 directions. We order the 231
states along the rows and columns of the transition matrix as
(0, 0), (0, 1), · · · , (0, 20), (1, 0), · · · , (1, 19), · · · , (19, 0), (19, 1), (20, 0).

We constructed a model for all combinations of twisters and
diggers, producing transition probability matrices for six
divisions of labor from calibrated experiments with 0T5D,
1T4D, 2T3D, 3T2D, 4T1D and 5T0D.

B. Prediction of state transition

After the transition matrix is obtained, Stn can be pre-
dicted by a discrete-time Markov chain [16]. Let M be the
state transition matrix of our system. The ij-th entry mij of
M provides the probability of going from state i to state j
in one time-step. Then the n-step transition matrix can be
determined by M (n) = (mij)

n. Thus, we can predict the
state distribution of Stn by

P {Stn = (in, jn) |St0 = (i0, j0)} = St0M
n. (3)

Fig. 6 illustrates the variation of the probability distribu-
tion of states at particular time intervals, where the Markov
chain provides the possible states at each time step. The
distribution spreads out because the number of entries having
non-zero probability grows gradually with each transition, as
time increases.

C. Selecting sequence of strategies

Having constructed a Markov chain model that predicts
clustering task performance for each of the twister vs. digger
mixes, we now turn to selection of the sequence of labor
mixes which achieves the best performance of the clustering
task; we seek a sequence that is both reliable and efficient.
As a proof of this concept in this paper, we consider the
most basic sequence comprised of only two mixes but, as

Fig. 6: Variation of the probability distribution of states in
n time-steps (n=0, 9, 19 and 180). The probability of large
point is relatively higher than the probability of small point.

will be seen below, more complex varieties follow the same
procedure directly.

From the Markov chain Theorem, the state distribution
of the sequence of two mixed strategies after n time-steps
where they switch at time k is

Mseq = [MA]
k
[MB ]

n−k
, (4)

where MA and MB are the transition matrices of labor mix
A and labor mix B, respectively, and k is the time at when
the strategy is switched where 0 ≤ k ≤ n. With Eqs. 3 and 4,
the probability of a configuration during the clustering task,
given the switching time, can be predicted. For example, if
the initial configuration is (0, 0) in which is no boxes in the
central clusters or the boundary clusters, the initial vector,
X0 = [1, 0, · · · , 0], here X0 has size 1 × d. That is, the
probability distribution of the final state after n time-steps
can be computed by X0Mseq . We can use the probability
distribution of the final states to determine the best strategy
for the clustering task.

To quantify the clustering performance, we introduce a
performance metric. Given an initial configuration, a perfect
central cluster has state (N0, 0), and ought to be assigned
a high weighting factor for quantifying the clustering per-
formance. Smoothing this function, weights are assigned
up to clusters composed of more than 90% boxes in a
central cluster. For example, since we use 20 boxes in our
experiment, we consider up to the states, (18,0), (18,1),
and (18,2) for measuring the clustering performance. Let
P {St180 = (i, j)|St0 = (0, 0)} be Mseq(i, j). Then, the per-
formance metric is defined as follows.
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Fig. 7: An example of the clustering result of a sequence
having high performance.

Performance Metric =
N0∑

u=b0.9×N0c

u

N0

N0−u∑
v=0

Mseq(u, v).
(5)

Fig. 7 provides an example of a result from a sequence
having high performance. For example, as shown in Fig. 7,
if the boxes are located in the central region of the arena
at the final time step, we can assume that the sequence of
mixed strategies produce a good result with high probably.

IV. PHYSICAL ROBOT EXPERIMENTS

We first describe how the Markov chain model is built
based on data obtained from calibration runs. Next, we
validated our Markov chain model by comparing the model
prediction with physical robot experiments.

A. The Markov chain model

In order to build the Markov chain model, we conducted a
calibrated run for all possible combination of Twister(T) and
Digger(D) with 5 robots: 0T5D, 1T4D, 2T3D, 3T2D, 4T1D,
and 5T0D. We used iRobot Creates robots with a differential
drive mechanism involving two wheels and a passive caster.
The robots have only two sensors: (1) a bumper is used
to detect the presence of objects directly in front of the
robot; (2) a proximity sensor on its right side senses the
presence of an object along the direction of the IR beam. We
conducted three runs of each labor mix, and each run lasted
90 minutes, with 20 boxes. All experiments were videotaped
and annotated with n = 180 moments by observing frames
every 30 seconds. For each division of labor, a total number
of 540 transitions between states was observed. From this
we obtain the state transition matrix.

In order to find the best sequence of strategies having the
maximum clustering performance, we compared the perfor-
mance by varying the switching time from k = 0 to k = 180.
Fig. 8 shows the performance metric for all sequence of
strategies. The Markov chain model predicts that the best
sequence of strategies was switching from 2T3D to 0T5D,
and it outperformed the clustering performance of a single
strategy between 22 to 89 min. The switching sequences
of 2T3D→1T4D and 1T4D→0T5D also outperformed the
clustering performance of a single strategy between 55 to
89 min, and between 17 to 89 min, respectively. Note that

the end points of each line shows the performance of a pure
strategy where no switching occurs.

B. Model validation

The model suggests that the best strategy is a sequence
where 2T3D is switched to 0T5D after 25 minutes (shown
in Fig. 8). We examined the ordering by comparing the
clustering performance predicted by the Markov chain with
an actual experiment. We selected the two best sequences:
the sequence from 2T3D to 0T5D and the sequence from
2T3D to 1T4D, and carried out physical experiments for
both cases, switching at 25 minutes. Each set of sequences
was conducted five times under the same initial configuration
with 5 robots and 20 boxes and lasted 90 minutes. We
assumed that the average size of a single central cluster at
the final step, 180 time-step, is a good measurement of the
task performance.

Table II shows the average size of a single central cluster at
the final step in each sequence, and represents the clustering
results of each experiments after 90 minutes. Since the
average size of a single central cluster in the sequence
from 2T3D to 0T5D (95% collecting rate) is larger than
the average size of the sequence from 2T3D to 1T4D (70%
collecting rate), the result supports that idea that the ordering
predicted from the model at 25 minutes, is also reflected in
physical experiments.

This observation is further confirmed with a statistical
test. We assumed that the gap in performance between
two sequences in physical experiment is identical to the
difference of the statistical mean. In order to test a statistical
hypothesis, we conducted the two-sample t-test with unequal
variance based on experimental data. The two-sample t-test
is used to determine if two population means are equal or
not. The two-sample t-test is defined as

H0 : µa = µb,

Ha : µ are not equal.

We then select the level of significance to be used in the
test as 0.05. After performing the hypothesis test, we could
get the P-value. Since the P-value, 0.0425, is below 0.05
in one-tailed test, we can reject the null hypothesis of no
difference between the means from the two samples in favor
of the alternative. In other words, we accept that the mean of
the size of a single central cluster between the sequence from
2T3D to 0T5D and the sequence from 2T3D to 1T4D are
unequal with 95% confidence. That is, the difference of the
performance between two sequences in physical experiments
has significant difference. Consequently, the ordering of the
clustering performance predicted by the Markov chain model
corresponds to the ordering of the clustering performance by
physical robots.

V. CONCLUSION

We conclude that the Markov chain model is useful at
predicting the performance of self-organized robots per-
forming an object clustering task, and the model permits
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Fig. 8: A comparison of predicted performance via the Markov chain model with varying switching time.

TABLE II: Experimental results and Two-sample t test.

2T3D → 0T5D
(Switching @25min)

2T3D→ 1T4D
(Switching @25min)

1 18 boxes 11 boxes
2 19 boxes 20 boxes

Trials 3 19 boxes 9 boxes
4 18 boxes 17 boxes
5 20 boxes 14 boxes

Average size of a
single central cluster

at the final step 18.8 boxes 14.2 boxes
P(T ≤ t) one-tail 0.0425

planning of a sequence of changes to the division of labor.
The experiments suggest that the model’s predictions of the
relative performance of different switched strategies of the
labor mix are useful for reasoning about the performance of
real robots.

This work showed that a sequence of one division of labor
followed by another improves clustering performance over a
single strategy. Future work will include sequences of more
than two strategies. In addition, since the results verify the
utility of the stochastic model with the object clustering,
we plan to extend our method to adapt to different self-
organized cooperative systems such as a transportation tasks
or a monitoring task system.
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