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Abstract— Nonlinear elasticity of transmission is indispens-
able in any passively variable stiffness mechanism. However,
it remains obscure how to decide a desired nonlinear force-
displacement function. On the other hand biological muscular
actions are associated with stiffness/impedance variation in
a wide range as demanded by everyday tasks. This paper
addresses the issue of designing a nonlinear elastic transmission,
where the elastic behaviour is obtained from the passive prop-
erties of biological muscle, which happens to be an exponential
one, leading to existence of linearity between stiffness and force.
In general, with passive damping, the transmission behaves as a
mechanical impedance element, to be used in variable impedance
actuation. Knowledge of the varying impedance is required to
operate the transmission reliably. An off-line calibrated model
can only be approximate and erroneous with noisy sensors and
changing characteristics of the passive elements with time and
environmental condition. This article implements an Extended
Kalman Filter algorithm for on-line estimation of stiffness and
impedance of such a damped series-elastic transmission. The
underlined principle in stiffness-force affine relation is exploited
favourably in stiffness estimation with reduced complexity. The
effectiveness of the proposed estimator is examined through
experiments on the mechanical transmission designed using the
biological principle.

I. INTRODUCTION

Introduction of flexibility and variation of intrinsic passive
impedance is becoming essential in enhancing ability and
performance of actuation systems in applications involving
physical-human-robot-interaction including new generation
of human friendly robots [1], exoskeletons and rehabilitation
devices [2], prostheses and in legged locomotion [3]. In lit-
erature, Immega [4] by using pneumatic bladders, Goswami
[5] with hydraulic cylinders, Mills [6] by employing a
hybrid system of dc motor and pneumatic bladder have
implemented variable stiffness mechanisms. Inherent un-
known uncertainties, thermodynamic effects and packaging
are some of the influencing drawbacks of these methods. On
introducing stiffness variability in intrinsically safe flexible
joint robots, Bicchi [1] achieved considerable performance
enhancement, whereas Hurst [3] achieved efficient walking
with nonlinear springs in legged locomotion. Essentially,
all these approaches, (such as [1], [3], [7], [8], [9]), at-
tempt to obtain stiffness variability through passive elastic
elements with nonlinear force-displacement characteristics.
However, the existing literature suggests little about how to
make a choice of this nonlinear elastic function in general.
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On the other hand, the task of simultaneous motion and
stiffness control can be achieved either explicitly, or antag-
onistically, or in combinations. The ubiquitous presence of
agonist-antagonistic musculoskeletal actuation in the biolog-
ical world sometimes motivates to go for an antagonistic
implementation. Again, principles from the biology can be
borrowed in search for a well grounded design principle of
such a nonlinear elastic element. In this article, firstly, a
principle is derived from experimentally validated behaviour
of biological muscle fibre, from literature [10]. Then using
the principle of virtual work, a general method for designing
a mechanism (cam & cam-profile) is devised in order to
exhibit the desired characteristic. The design of the nonlinear
spring follows the work in [11], miniaturized for smaller
deformation and higher load capacity and augmented with
a damping element in parallel. Coincidentally, it carries
similarity with the design in [12], but has been developed
independently with a different principle and characteristic.

In simultaneous control of motion and
impedance/stiffness, a difficult task remains in estimating
the impedance components. An off-line static calibration
and model based identification suffers from inaccuracies,
un-modeled uncertainties, effect of sensor errors and drift
in characteristics with time and environment condition.
In order to avoid erroneous model based identification,
Grioli [13] designed a model-free method in reconstructing
time varying stiffness, using measurements of position and
force and their time derivatives. The same authors in [14]
proposed a dynamic stiffness observer, achieving ultimately
bounded error stability. Serio [15] presented an EKF based
stiffness observer, where, constant damping was assumed.
Again, in a series of papers, Flacco [16], [17] avoided the
use of extra force sensor in a novel way; however, not all
the methods are proposed for real time implementation.
These literatures also omit any report on sensor error
modelling. In this article, a first order Extended Kalman
Filter is proposed for estimation of stiffness with reduced
complexity by making use of the affine relation between
stiffness and force. For damping rate, a model is used, which
follows the characteristic obtained from the manufacturer
of the damper used. With force and position measurements
and estimation of time rate of force, the EKF procedure
estimates the impedance components. Sensor error models
are also obtained experimentally.

II. PRINCIPLES FROM BIOLOGICAL MUSCLES

Nonlinearity in elasticity (and damping) is essential for
passively variable stiffness (impedance) mechanism. Animal
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world in muscular actions carries out this variation quite ef-
fectively and efficiently and motivates to borrow a principle.

A. The Principle

Most of the models of biological muscle are still based on
1930s’ A.V. Hill’s model and subsequent contributions by
A.F. Huxley. Two distinct behaviours of muscles are iden-
tified - one due to passive properties (without stimulations)
and the other for the active properties. Muscles are found
to become progressively stiffer on stretches. Pinto and Fung
[10] observed experimentally (on rabbit heart muscle) that
derivative of muscle stress, s with respect to Lagrangian
strain, εL is proportional to stress at that point (left figure
of Fig. 1). Therefore, ds

dεL
= α(s+β ), where εL = L

L0
, L0 =

rest length, L the current length and α and β are constants.
Then, following is derived assuming constant cross section:

L0

A
dFS

dx
= α

(
FS

A
+β

)
, (1)

where, FS ≥ 0 is the elastic force transmitted, A the constant
cross sectional area and x ≥ 0 is the elongation. Define,
stiffness σ = ∂FS

∂x .
Proposition: Stiffness at a point of displacement being

proportional to the force at that point leads to an exponential
force-displacement characteristic,

FS = Φ(x) = µ exp
(

α

L0
x
)

+ F0 , x≥ 0 , (2)

where, α is an exponent and µ and F0 =−Aβ are constant
coefficients.

Equation (2) is a solution of (1), which in normalized form
can be expressed as

σ =
∂FS

∂x
=

α

L0
(FS +Aβ ) = k1 + k2FS. (3)

This relates stiffness and force affinely, (where, k2 =
α

L0
and

k1
k2

=−F0).

B. Force Displacement Function from Spring Specification

Writing FS = Φ(x), the relative force error is expressed
as δFS

FS
= 1

Φ(x)
dΦ(x)

dx δx . Let, the minimum sensible initial
deflection of spring is δ0 and corresponding relative force
error is C0. The relative force error of (2) at x= 0 is computed
as δFS

FS
= αµδ0

L0(µ+F0)
. At x = 0, F0 =−µ makes initial relative

error undefined. For other values of F0, there will be a force
offset. An initial desired stiffness can be specified, which
is equivalent to specifying initial force offset. Normally, the
force offset is nonzero and the minimum controllable force
is limited by dead band (backlash), dry friction and motor
torque ripple.

For specified δ0, relative force error at L0 is given by,

C0 =
µ

α

L0
exp(α) δ0

µ exp(α) + F0
. (4)

Defining dimensionless ratios, Fratio =
FSmax
FSmin

, Lratio =
Xmax
L0

,
and Sratio =

C0L0
δ0

, the following nonlinear equation needs to

be solved for α

α exp(α) (Fratio−1)+Sratio exp(α)−Sratio exp(Lratioα)= 0,
(5)

For the chosen specification of maximum load capac-
ity FSmax = 200N, maximum deformation Xmax = 20mm,
L0 = 5mm, minimum force FSmin = 5N, C0 = 0.2N/N and
δ0 = 1mm, value of α = 1.3288 is computed from (5) and
following is obtained as a reasonable spring,

FS = 0.9772exp(0.2658x)+1.2372, x≥ 0. (6)

Fig. 1(right) shows both the designed and the calibrated
spring force behaviour with deflection (see also Fig. 8(top)).

Fig. 1. (Left) Stress (s) developed across a muscle fibre under uniaxial
tension according to [10]. (Right) The designed force-displacement charac-
teristic, according to (6), is plotted in dashed line. Off-line least square curve
fit is shown in solid line (see Table I). The deviation is due to lack of precise
knowledge of stiffness of the linear spring on cam-follower, assumption of
zero roller radius and inherent friction.

III. PHYSICAL REALIZATION OF NONLINEAR
DAMPED ELASTIC TRANSMISSION

The physical realization of the spring follows the proce-
dure described in [11], which attains the specified desired
characteristic. Migliore et al. in [12] designed a spring
with quadratic characteristic using cam profile. The present
design is fundamentally different and has been developed
independently. This approach applies virtual work principle,
which is elegant, general and suitable for realizing any
arbitrary continuous monotonic spring function (please refer
to [11]).

A. Synthesis of Cam Profile
A spring loaded cam-follower on a cam profile is em-

ployed here. The desired characteristic in (2) is mapped on
a Cartesian geometric plane using principle of virtual work
(left figure of Fig. 2). Denoting Y = Ψ(x) as the cam profile
with Y being the displacement of the cam follower (loaded
by a linear spring of fixed stiffness ks) and FX = FS be the
elastic force along X , then application of principle of virtual
work results into

Ψ(x) =
(

1
ks

{
µL0

α
exp

(
α

L0
x
)
+ F0 x + C

}) 1
2
, (7)

where, C is constant of integration. Roller radius and rolling
friction are neglected here. With initial condition of Ψ(0) =
0, C = − µL0

α
.
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Fig. 2. (Left) Virtual work principle is applied to synthesize the geometric
profile Ψ(x). Ff is friction-force, R is the reaction, θ is the instantaneous
contact angle, r be the roller radius. Linear spring is of stiffness ks (see [11]
for detail). (Right) CAD model of the designed exponential Cam profile and
the actual machined component with Cam surface.

B. Manufacture of Cam Profile and Assembly of the Damped
Elastic Transmission

The cam profile is realized in an aluminium block by CNC
milling (Fig. 2). Two cam surfaces are used in opposition and
the cam-followers are loaded by a linear spring with design
spring constant of 5 N/mm; although the actual spring used
in the spring assembly differs in the value of spring rate.
A carriage containing the cam-followers is pulled by a rod;
stiffness gets manifested at this rod end (see Fig. 3).

A nonlinear damping element is added in parallel with the
elastic element by using an off-the-shelf miniature damper
obtained from ACE GmBh, model FRT-D2-152. The force
velocity characteristic from data sheet is well represented by
an odd polynomial function

Fd = d1ẋ+d2ẋ3, (8)

where, d1 and d2, are constant coefficients. The damping
element is shown in Fig. 3 and the identified damper char-
acteristic at convergence is reported in Fig. 3(bottom) (also
see Fig. 8 (bottom)).

The rotary damper and a miniature encoder of Hengstler
make (model PC9S051204N) are mounted through a rotary-
to-linear conversion. A miniature tensile force sensor of
make Futek (model FBB300) is mounted at the pulling rod
end to measure the transmission force. The assembly of the
transmission is presented in the photograph of Fig. 3.

IV. IMPEDANCE OF A MECHANICAL
TRANSMISSION

Impedance of a transmission is said to be the resistance
experienced in changing the state (static/dynamic) of the
transmission. Along with the elastic component a transmis-
sion can have a dissipation element, either inherently, or/and
added on intentionally.

A. Nonlinear Transmission Model

The nonlinear transmission is modelled by a spring-
damper-mass system,

F(t) = FM(ẍ(t))+Fd(ẋ(t))+Fσ (x(t))+d0sgn(ẋ)+F0 ,
where, FM = mẍ, FS = Fσ +F0, and d0 is the static friction.

(9)

Fig. 3. (Top) The transmission assembly, showing the exponential spring
and a nonlinear rotary damper in parallel through a rotary-to-linear con-
version. An encoder is used to measure the displacement through the same
mechanism. (Bottom) Damping characteristic obtained from a full model
parameter estimation. d2 is found to be negative. Static friction is identified;
however, it is not needed in the impedance estimation in Sec. VI.

m is the inherent mass and FS and Fd are given by (2)
and (8) respectively. The implicit dynamic force balance in
(9) can, therefore, be expressed as (in terms of unknown
coefficients)

F = f (x, ẋ, ẍ,d0,d1,d2,µ,k2,F0,m) (10)

and the problem boils down to the task of identifying the
unknown coefficients. To note that, k2 does not appear
linearly in (10), in contrary to other parameters. This problem
is overcome in implementing the Extended Kalman Filter by
estimating only the stiffness, exploiting the affine relation
between stiffness and force (along with other impedance
components).

B. Impedance of the Transmission

Given above, impedance components are defined as

Generalized Stiffness: σ = ∂ f
∂x

Generalized Damping rate: D = ∂ f
∂ ẋ

Generalized Inertia: M = ∂ f
∂ ẍ

(11)

and the following differential form is obtained:

δF = Mδ ẍ+Dδ ẋ+σδx. (12)

In practice, it is very difficult (especially in steady state)
to directly measure the impedance components by evaluating
the ratios of respective differential forces and differential
motions. One direct method for estimating the impedance
components (stiffness, damping-rate and inertia) requires
precise knowledge of the elastic and damping models. Differ-
ently, here an attempt is made in estimating the generalized
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impedance components of (11) not using the direct force
model of (10), but following a novel approach through
exploiting the affine stiffness-force relation.

C. Exploiting the Affine Stiffness-Force Relation

The design principle chosen allows to take this approach,
so that, only few of the unknown coefficients (here,only
k2) need to be estimated, which is appearing linearly. The
following derivative is assumed to exist

Ḟ(t) =
∂FS

∂x
ẋ(t)+

∂Fd

∂ ẋ
ẍ(t)+

∂FM

∂ ẍ
...x (t), (13)

such that Ḟ = σ ẋ+Dẍ+M
...x using definitions in (11).

1) Case- constant damping: Time rate of stiffness is given
by

σ̇(t) = k2σ ẋ, and Ḋ = 0, Ṁ = 0. (14)

A small constant damping is considered to be present in
linear ball-bushes in the spring assembly. Equations (13) and
(14) are used in the EKF formulation in estimating the states
x, ẋ and ẍ and the impedance components σ(t), D = d1 and
M = m. The pretension force F0 and the static friction d0
can be estimated in a parallel filter (which may be slower)
based on the total measured force and the total estimated
impedance force. This formulation requires the time rate of
change of force, which is obtained by using a filter on the
force data.

2) Case- nonlinear damping force: From the damper
characteristic in (8), time derivative of the damping rate is:

Ḋ = 6d2 ẋ ẍ (15)

V. PARAMETER ESTIMATION: INITIALIZATION

The transmission here is designed to have some desired
behaviour and a first order EKF is devised for impedance
estimation. Like any other algorithm based on Kalman filter,
the convergence of the procedure remains highly sensitive
to the initial guess of the unknown states and parameters.
To improve the convergence, an initialization procedure is
proposed, based on a weighted least square method. In
doing so, firstly, sensor error (noise) models are obtained
experimentally, along with their variance.

A. Sensors and their Error Models

Fig. 4. Allan variance plot of force sensor data, indicating a constant slope
of −1 approximately for white nature of the noise.

The experimental configuration is shown in Fig. 5. A pre-
calibrated standard force gauge of IMADA make (model

TABLE I
INITIAL PARAMETER VALUES FROM OFFLINE ESTIMATION PROCEDURE.

Initial d0 d1 d2 µ k2 F0 m

Mean 3.8221 1.8446 -0.0108 0.9251 0.2586 4.199 0.39
59

Variance 0.1835 0.0193 0.0024 0.0012 – 0.1741 0.04
01

DS2-200N) is used as reference for determining the force
sensor error model and calibration. Data are logged at 100
Hz frequency for a long time in a National Instruments based
data acquisition system using Labview R©. The white nature
of the noise is more or less observed from nearly constant
slope of Allan Variance plot in Fig. 4 (see [18]). Similarly,
noise pattern of force-rate is found to be more or less white
in nature, obtained in another experiment with a constant
ramp input. The encoder error model is taken from [19],
which has been carried out in CSIR-CMERI, India. Encoder
noise as well is found to be white in nature. Variances of the
sensors are obtained as 0.017N (force), 0.088N/s (force-rate)
and 0.01mm (position) respectively.

B. Initialization - Identifying Initial Model Parameters

Except k2, all the parameter coefficients of the elastic and
damping function appear linearly in respective relationships.
Therefore, initial k2 is identified off-line using a nonlinear
least square fit. Initial identification of all other unknown
parameters are then refined by solving a over-constrained
system of simultaneous equations in (16). Defining X =[

m d0 d1 d2 µ F0
]T ∈ Rq, q = 6,

F = AX +W , (16)

where F ∈ Rp; W ∈ Rp is a zero mean disturbance vector
with E[W W T ] = Rw, A∈Rp×q have entries from logged and
estimated data of position, velocity, acceleration, p being the
number of logged data set. A minimum variance least square
estimate, X̂ and its variance, RX , can be obtained as (see
[20]):

X̂ = (AT R−1
w A)−1AT R−1

w F , (17)

RX = E[(X̂−X)(X̂−X)T ] = (AT R−1
w A)−1. (18)

The obtained initial parameter values are indicated in Table I,
having consistent units.

VI. IMPEDANCE AND STATE ESTIMATION BY AN
EKF PROCEDURE

In this EKF framework for simultaneous state, parameters
and impedance estimation, only k2 and d2 appear in the
state vector, according to the derivation in section IV-C.
It estimates generalized stiffness (σ ), generalized damping
rate (D) and generalized inertia (M), rather than the elastic
and damping model parameters. The input to the estimator
includes time rate of force, which is obtained using a filter
from the force-sensor data. Measurement is the deflection;
velocity and acceleration are estimated within the filter.
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The state vector considered in the estimator for nonlinearly
damped transmission (Case 2) is Z = {zi | i = 1 to 8} =[

x ẋ ẍ σ D M k2 d2
]T .

The input to the state estimator is force-rate, whereas,
encoder is used for observation. With sampling time T for
the discrete system, the state equations are described below:

zk+1
1 = zk

1 +T zk
2,

zk+1
2 = zk

2 +T zk
3,

zk+1
3 = zk

3−
(zk

2zk
4+zk

3zk
5)T

zk
6

+ Ḟ(k)T
zk
6

,

zk+1
4 = zk

4 +3zk
2zk

4zk
7T,

zk+1
5 = zk

5 +18zk
2zk

3zk
8T,

zk+1
6 = zk

6, zk+1
7 = zk

7, zk+1
8 = zk

8.

(19)

VII. EXPERIMENTAL SETUP
The experimental setup is shown in Fig. 5. The transmis-

sion is pulled by a geared dc motor, configured as a position
actuator, with a wire rope. One end of the transmission
is hanged on the digital force-gauge and force-sensor is
attached on the pulling rod at the motor side. Data are logged
at a frequency of 100 Hz.

Fig. 5. Experimental setup. Locations of the sensors are shown.

VIII. RESULTS AND DISCUSSION
Good convergence is obtained in both the states and

parameters/impedance estimation in experiments. Estimated
values of the impedance components and the required model
parameters at convergence are tabulated in Table II for the
damped elastic transmission (Case 2). Input to the EKF es-
timator is force and its derivative, which is obtained passing
through a first order filter and reported in Fig. 6. Estimated
kinematic states are presented in Fig. 7. The identified
stiffness characteristic with mean values at convergence and
the mean characteristic of the damper are presented in Fig. 8.
d2 is found to be negative, confirming the nature of the
damper obtained from the data sheet. The variances indicate
good repeatability (Table II).

Linearly damped transmission (Case 1) is used solely
to find the elastic characteristic. Here, only the results on
the nonlinearly damped transmission (Case 2) are reported.

TABLE II
PARAMETER VALUES AND IMPEDANCE COMPONENTS AT CONVERGENCE

d2 k2 σ D m

Mean -0.1063 0.2601 Varying Varying 0.055

Variance 0.928 0.849 16.6 10.79 0.644
×10−4

Generalized stiffness and damping rate are estimated at every
time update step and it is seen that estimation converges
reasonably well. Tracking estimation of the impedance com-
ponents are reported in Fig. 9.

Fig. 6. (Top) Input force sensor reading. (Bottom) Estimated force rate.

Fig. 7. (Top) Measured and estimated position, (Middle) estimated velocity,
and (Bottom) estimated acceleration of deflection of the transmission. Actual
values of velocity and acceleration are not measured.

IX. CONCLUSIONS

The article presents a novel design of a nonlinear elastic
transmission (added with nonlinear damping), starting from
a first principle derived from biological muscle property.
The resulted characteristic happens to be an exponential one,
which possesses the advantageous property of linearity be-
tween stiffness and elastic force of the transmission. Again,
it has been reported in [11] that a spring with an exponential
force-displacement function behaves fastest among a class of
power springs in moving from one higher stiffness value to
a lower value with same stored initial potential energy.

The article proposes an Extended Kalman Filter based
procedure for on-line estimation of transmission impedance.
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Fig. 8. (Top) Evolution of estimation of stiffness (mean values) plotted
over the identified stiffness characteristic at convergence. (Bottom) Similar
evolution of damping rate plotted over the identified values at convergence.

Fig. 9. Tracking of impedance components. (Top) Generalized Stiffness,
(Middle) Generalized Damping, and (Bottom) Generalized Inertia.

In contrary to conventional methods for parameter estimation
of transmission function, the proposed procedure exploits the
affine stiffness-force relationship in estimating the varying
transmission stiffness. In estimating the impedance compo-
nents (stiffness, damping rate and inertia), not all model
parameters appear in the EKF formulation and thereby
reduces the complexity of the procedure. However, the con-
vergence is sensitive on the choice of initial parameter states
(reduced) and their covariance. It is proposed to obtain these
initial values through an off-line identification procedure. A
weighted least square method is employed with the sensor
covariance matrix as the weighting matrix. It is claimed
that good convergence can be obtained in this way. The
implementation assumes an approximate model, which is
justified - the design of the nonlinear transmission is not
arbitrary; rather follows an optimal functional behaviour.
Nevertheless, the method suffers from the inherent limitation
of indeterminacy of accuracy (like any other EKF), but
achieves good repeatability. Force rate is taken as input with
an approximate variance obtained from limited experiments.

It is kept as future work to obtain the error model of the
force rate through extensive experiments.
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