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Abstract— We present a new matching algorithm considering
a priori (the prior probability) based on Bayes’ theorem.
Performance of point cloud registration between target and
source clouds is effectively improved by introducing maximum
a posteriori (MAP) estimation. The standard Iterative Closest
Point (ICP) algorithm for the registration sometimes falls into
misalignment due to measurement errors, narrow sensing field
of view, or the movement of objects during measurement.
Our approach resolves such problems by considering both
the likelihood of the measurement and the prior probability
of the initial guess for registration in the objective function.
We have implemented a new 6DOF Iterative Closest Point
matching using MAP estimation, and evaluated the method
in real environments comparing with conventional registration
methods. The experimental results have shown that our pro-
posed method has wide convergence region and matches point
clouds accurately preventing the misalignment problem.

I. INTRODUCTION

Autonomous navigation is an important research area, and
the technology can be applied to cars, automated guided
vehicles, construction machines, personal transporters, and
mobile robots. Autonomous vehicles in DARPA Urban Chal-
lenge [1] and Google Self-Driving Car [2] are counting on
accurate localization for navigation. In these works, 3D-
LIDARs (laser scanners) are used primarily. On the other
hand, various depth cameras that are inexpensive or even
adapt to sunlight have appeared in the last few years.

Localization methods that match point clouds obtained
from such sensors to map are often used. Conventional
approaches for the registration of point clouds, however,
sometimes fails to detect the ground truth and falls into mis-
alignment due to measurement errors, narrow sensing field
of view, or the movement of objects during measurement.
These problems are exacerbated in 6 degrees of freedom
(DOF) matching due to the significantly increased number of
local minima, and hence matching is likely to fail. Bayesian
approaches [3] are effective ways to approach the problem
and many techniques have been proposed [4].

In this paper, we present a new matching algorithm
introducing maximum a posteriori (MAP) estimation based
on Bayes’ theorem. A novel feature of this algorithm is to
consider both the likelihood of the measurement and the
prior probability (a priori) of the initial guess for registration
in the objective function. This is a similar concept to the
conventional methods using Bayesian estimation [4], but

solved with a different approach. We have implemented
a new 6DOF Iterative Closest Point matching using MAP
estimation, and evaluated localization errors of the method
in comparison with conventional registration methods. We
have named the proposed method MAP-ICP.

II. RELATED WORK

Point cloud matching has been enthusiastically researched
in the computer vision field. [5] reviewed, in detail, coarse
registration using features without an initial guess, and fine
registration using the overall shapes and an initial guess. A
representative method for fine registration that is the targeted
in this paper is the Iterative Closest Point (ICP) algorithm
[6], [7]. Besl et al. [6] have proposed point-to-point ICP,
and Chen et al. [7] have proposed point-to-plane ICP. Segal
et al. [8] have formulated a generalization of the point-
to-point and point-to-plane, then introduced plane-to-plane
ICP. Rusinkiewicz et al. [9] made comparative evaluations of
ICP variants in terms of correspondence finding, weighting
of correspondences, rejecting outliers, error metrics, and an
optimization method. There are many researches using ICP
variants for localization of mobile robots, such as [10]–
[12]. Since the ICP algorithm is one of the least squares
methods based only on the likelihood of the measurement,
it sometimes falls into misalignment. ICP with M-estimation
for robustness to outliers [13] and ICP with EM algorithm
for the hypotheses of multiple correspondences [14] have
been proposed, but these techniques are still a type of least
squares method and have the problem described above.

To deal with the misalignment problem, our method takes
into account both the likelihood of the measurement and the
prior probability based on probability theory [3]. In robotics
field, the Bayes Filter that is using Bayesian estimation
is often used for localization [4]. The Extended Kalman
Filter, that is an implementation of the Bayes Filter with
the Gaussian distribution, however is not able to handle
landmarks of arbitrary shapes and can only handle point
landmarks and line landmarks [4], [15]. On the other hand,
Histogram Filter and Particle Filter can handle point clouds
of arbitrary shapes as landmarks with grid representation [4].
Olson [16] has done real time 3DOF matching for 2D shapes
by speeding up the localization method using correlation
and Histogram Filter [17]. However, applying this method to
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Fig. 1. A concept of the point cloud matching using maximum a posteriori
estimation and the definitions of variables

3D shapes and 6DOF matching still requires an intractable
computational cost. Kummerle et al. [18] and Suzuki et al.
[19] applied Monte Carlo Localization [20] using a Particle
Filter to 3D shapes and 6DOF matching. Our objective is also
6DOF matching with 3D shapes based on probability theory,
but we perform the matching using MAP estimation instead
of conventional Bayesian estimation. We have evaluated the
performance of our method in real environments comparing
with conventional registration methods.

III. MATCHING WITH MAP ESTIMATION

In this Section, we describe our algorithm for matching
using maximum a posteriori estimation.

A. Formulation

The essence of the proposed method is considering both
the likelihood of the measurement and the prior probability
of the initial guess for registration in the objective function.
For example, we use odometry as the prior probability of the
motion. In the standard ICP, the odometry is conventionally
used merely as the initial guess of the iterative calculation,
and the algorithm is to look for a matching pose in the
evaluation field represented only by the likelihood of the
measurement. The proposed method finds a matching pose
in the evaluation field represented both by the likelihood of
the measurement and the prior probability.

Fig. 1 shows the concept of the matching using MAP
estimation and definitions of respective variables. The pro-
posed method matches point clouds under the constraint that
they must remain in the neighborhood of the initial guess
as the prior probability. In addition, it estimates the pose
displacement in the coordinate frame where the origin is at
the initial guess, in order to deal with the prior probability
as a Gaussian distribution with zero mean. That is to say, it
does not estimate robot pose xt directly, it estimates the pose
displacement at from the initial guess T(ut)xt−1. The initial
guess T(ut)xt−1 is transformed robot pose xt−1 at time t−1
by motion ut . Eq. (1) shows the relationship of respective
variables.

x̂t = T(ât)T(ut)xt−1 (1)

Here, x̂t is the estimated robot pose xt at time t, ât is
the estimated pose displacement at at time t, T(ât) is the

axis
angle

x y

z

Fig. 2. Axis-angle representation for rotation in 3D Euclidean space

transformation matrix of the estimated pose displacement ât ,
and T(ut) is the transformation matrix of motion ut .

For MAP estimation, we derive an energy function based
on Bayes’ theorem and perform the matching process by
minimizing the function. The derived energy function E(at)
is shown in Eq. (2). The derivation of this equation will
appear in Section III-D.

E(at) =
1
K

K

∑
k=1

∥∥∥T(at)zt,k − mct,k

∥∥∥2
+ aT

t ψat (2)

zt,k is the k-th point of the measured cloud (source cloud) at
time t, K is the point number of the source cloud zt,k, mct,k is
the point of the map (target cloud) corresponding to source
cloud zt,k, ψ is a weighting matrix called a regularization
parameter matrix. Compared with the error function of the
standard ICP algorithm, the second term + aT

t ψat is newly
introduced. With the second term, the convergence will be
constrained to remain in the neighborhood of the initial
guess as the prior probability. The second term is equivalent
to the regularization term (penalty term) according to [3].
The regularization parameter matrix ψ, that is described
in detail in Section III-D, is defined by Eq. (3) using the
covariance matrix of the prior probability Σa, the variance of
the likelihood of the measurement σ2

z , and the point number
of the source cloud K.

ψ=
σ2

z

K
Σ−1

a (3)

Here, we multiply the variance of the likelihood of the
measurement σ2

z by 1
K so that the ratio of the likelihood

of the measurement (the first term) and the regularization
term (the second term) in Eq. (2) does not depend on the
point number of the source cloud K. Thus, the weighting of
the likelihood of the measurement is invariant to the point
number of the source cloud K.

The regularization term in Eq. (2) can be interpreted as
the Mahalanobis distance of the pose displacement at with
the regularization parameter matrix ψ. Here, we should pay
attention to treatment of the rotation in 3D Euclidean space.
For the regularization term, the distance (i.e. the norm) in
not only translation but also rotation must be defined. There
is the significant issue of dealing with the norm of 3DOF
rotation of the pose displacement at . The Euler angles are
not suitable to obtain the norm because of the ambiguity and
the nonlinearity of the rotation representation. Additionally,
the determinant of a rotation matrix and the norm of a
rotation quaternion are always 1. Hence, we have selected
the rotation angle in the axis-angle representation [21] as the
rotation element of the norm. Fig. 2 shows a visualization of
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a rotation represented by the axis-angle representation. The
rotation angle value is equivalent to the norm of the rotation
vector [21]. Finally the regularization parameter matrix ψ
becomes a 4× 4 matrix with 3 translation components and
1 rotation component.

The pose displacement at that minimizes the energy
function E(at) becomes the guess of displacement ât as
shown in Eq. (4). We compute the guess of robot pose x̂t by
substituting the estimated pose displacement ât into Eq. (1).

ât = argmin
at

E(at) (4)

B. MAP-ICP Algorithm

In order to minimize as in Eq. (4), it is necessary to
know the correspondences from source cloud zt,k to target
cloud mct,k . In this paper we aim for fine registration using
the overall shapes, our MAP-ICP algorithm determines the
corresponding point by the nearest neighbor search and
performs minimization of Eq. (4) in iterative calculation of
the three steps that is a variant of the standard ICP algorithm.
As described before, MAP-ICP computes the steps in the
coordinate frame where the origin is at the initial guess
of the iterative calculation, in order to deal with the prior
probability as a Gaussian distribution with zero mean.

1) Correspondence by the Nearest Neighbor Search: In
the first step, the algorithm searches for a target point mĉ(i)t,k
on the map where the correspondence distance is minimum,
relative to the respective source points ẑ(i−1)

t,k in the previous

iteration. Here (i) is the number of iterations (1,2, . . . , I), ĉ(i)t,k
is an estimated index of the target point m corresponding to
the source point ẑ(i−1)

t,k . ẑ(i−1)
t,k is calculated in the previous

iteration, where ẑ(0)t,k = zt,k (source point at the initial guess).
2) Estimation of Differential Transformation: Under the

correspondences ĉ(i)t,k, the algorithm calculates the differential

transformation b̂(i)t from the previous pose displacement
â(i−1)

t by minimizing as shown in Eq. (5) and (6).

b̂(i)t = argmin
b(i)t

{
1
K

K

∑
k=1

∥∥∥∥T
(

b(i)t

)
ẑ(i−1)

t,k − m
ĉ(i)t,k

∥∥∥∥2

+ a(i)Tt ψa(i)t

}
(5)

at
(i) = T

(
b(i)t

)
â(i−1)

t (6)

We use Levenberg-Marquardt algorithm for nonlinear opti-
mization shown in Eq. (5).

3) Applying the Differential Transformation and Conver-
gence Determination: The algorithm transforms the pose dis-
placement â(i−1)

t by the estimated differential transformation
b̂(i)t for the pose displacement â(i)t in the i-th iteration as
â(i)t = T

(
b̂(i)t

)
â(i−1)

t , where â(0)t = 0. Then, it transforms the

respective source points ẑ(i−1)
t,k by the estimated differential

transformation b̂(i)t as ẑ(i)t,k = T
(

b̂(i)t

)
ẑ(i−1)

t,k . If the differential

transformation b̂(i)t has converged to a sufficiently small

robot pose: xt

probability
density:
p(xt)

likelihood: p(zt|xt,ut)
(e.g. matching)

Bayesian estimation
(Estimation of

the posterior distribution)

Maximum A Posteriori estimation
(Point estimation of the posterior)

Maximum Likelihood estimation
(Point estimation of likelihood)

the prior: p(xt|ut)
(e.g. odometry)

the posterior: p(xt|ut,zt)

The initial guess is
the mode of the prior

Constrained to remain
in the neighborhood
of the initial guess

Exploring the
high likelihood

Fig. 3. A schematic graph of probability distribution in Bayes’ theorem
for localization

value, or if the number of iterations (i) reaches the threshold,
the iterative calculation of MAP-ICP will terminate, other-
wise it will return to the first step.

As a result of the above iterative calculation, the energy
function E(at) in Eq. (2) is minimized and the source cloud
zt,k is matched to the target cloud mct,k . The algorithm also
computes the guess of robot pose x̂t by substituting the
estimated pose displacement â(i)t into Eq. (1).

C. Comparison with Localization Methods Using Bayesian
Estimation

In probability theory according to [3], the meaning of our
proposed method is as follows. Applying Bayes’ theorem to
fundamental localization problem, we get Eq. (7).

p(xt | ut , zt) = η p(zt | xt ,ut) p(xt | ut) (7)

Here, p(xt | ut , zt) is the posterior probability of the robot
pose, p(zt | xt ,ut) is the likelihood of the measurement,
p(xt | ut) is the prior probability such as the odometry, and η
is a normalization factor. Fig. 3 shows a schematic graph of
probability density in the case of 1DOF localization for Eq.
(7). The maximum likelihood estimation (equivalent to the
least squares method) such as in the standard ICP obtains a
guess by maximizing the likelihood. The estimation is based
only on the likelihood of the measurement, it sometimes falls
into misalignment. In contrast, MAP estimation and Bayesian
estimation estimates the posterior probability. Taking account
of both the likelihood of the measurement and the prior
probability, it means the estimation is less likely to fall
into misalignment. Our proposed method explores the guess
of robot pose that is not too far from the mode of the
prior probability and has high likelihood by using the MAP
estimation.

In the Bayes Filter that is a type of Bayesian estimation for
localization, we apply Bayes’ theorem as in Eq. (8). Then,
we get Eq. (9) by assuming the time series of robot poses
as a Markov process and using the law of total probability.
Eq. (9) shows the Bayes Filter for localization.

p(xt | u1:t , z1:t ,m)

= η p(zt | xt ,u1:t , z1:t−1,m) p(xt | u1:t , z1:t−1,m) (8)
= η p(zt | xt ,m)

·
∫

p(xt | xt−1,ut ,m) p(xt−1 | u1:t−1, z1:t−1,m)dxt−1 (9)
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Fig. 4. Graphical models for localization

Localization is represented by the graphical models [3] as
shown in Fig. 4. Fig. 4(a) is Bayes Filter, and Fig. 4(b) is our
proposed method using MAP estimation. While Bayes Filter
applies Bayes’ theorem by assuming the time series of robot
poses as a Markov process, the proposed method applies
Bayes’ theorem by dealing with the issue of localization
at a certain point in time rather than the time series of
robot poses. In addition, our method introduces the pose
displacement as a new hidden variable in order to deal
with the prior probability as a Gaussian distribution with
zero mean. As shown in Fig. 3, Bayes Filter computes the
posterior probability of the robot pose as a distribution,
in comparison to our method that is one of the point
estimation and computes only the mode (i.e. the best guess)
of the posterior probability. If we require the distribution of
the posterior probability, we can obtain it by the Laplace
approximation [3].

D. Derivation of the Energy Function

In this Section, we describe the derivation of the energy
function E(at) shown in Eq. (2). As mentioned before, the
proposed method formulates the issue of localization at a
certain point in time by introducing the pose displacement.
Applying Bayes’ theorem with the graphical model as shown
in Fig. 4(b), we get Eq. (10).

p(at |xt−1,ut , zt ,m)

=η p(zt | xt−1,ut , at ,m) p(at | xt−1,ut ,m) (10)

For MAP estimation, we estimate the pose displacement
at as in Eq. (11) by maximizing the posterior probability in
Eq. (10).

ât = argmax
at

p(at | xt−1,ut , zt ,m) (11)

Assuming the likelihood distribution as the Gaussian dis-
tribution of the distances between corresponding points, the
likelihood of the measurement becomes Eq. (12).

p(zt |xt−1,ut , at ,m)

=
K

∏
k=1
N

(
z′t,k | S(xt−1,ut , at ,m, zt,k),Σz

)
(12)

Here, S(xt−1,ut , at ,m, zt,k) is a function of the nearest neigh-
bor search, and z′t,k is the transformed source cloud zt,k by
the pose displacement at as z′t,k = T(at)zt,k.

In addition, assuming that the covariance matrix of the
likelihood distribution Σz is an isotropic covariance matrix
[3] (a scalar matrix), we get Σz = σ2

z I. Then, Eq. (12)
becomes Eq. (13), where M is the dimension of the source
cloud zt,k. In the case of 3D shapes, M is 3.

p(zt |xt−1,ut , at ,m)

=
K

∏
k=1

1(√
2πσ 2

z

)M

· exp
{
− 1

2σ2
z

∥∥z′t,k −S(xt−1,ut , at ,m, zt,k)
∥∥2
}

(13)

Then, assuming the prior probability of the pose displace-
ment as a Gaussian distribution with zero mean, we get

p(at | xt−1,ut ,m) = N (at | 0,Σa) (14)

Eq. (14) is expanded to Eq. (15), where N is the dimension
of the pose displacement at . In the case of the displacement
in 3D Euclidean space, N is 6DOF.

p(at | xt−1,ut ,m) =
1(√
2π

)N
1√
|Σa|

exp
(
−1

2
aT

t Σ
−1
a at

)
(15)

Since maximization of the posterior probability as shown
in Eq. (11) is equivalent to minimizing the negative natural
logarithm of the posterior probability, as

ât = argmin
at

− ln p(at | xt−1,ut , zt ,m) (16)

According to Eq. (16), we substitute Eq. (13) and Eq. (15)
for negative natural logarithm of Eq. (10), then

− ln p(at | xt−1,ut , zt ,m)

=− ln p(zt | xt−1,ut , at ,m)− ln p(at | xt−1,ut ,m)− const.

=
MK

2
ln
(
2πσ 2

z
)
+

1
2σ2

z

K

∑
k=1

∥∥z′t,k −S(xt−1,ut , at ,m, zt,k)
∥∥2

+
N
2

ln(2π)+
1
2

ln |Σa|+
1
2

aT
t Σ

−1
a at − const. (17)

We define the energy function E(at) shown in Eq. (18)
by eliminating constant terms from Eq. (17) and multiplying
it by 2σ2

z
K . As described in Section III-A, the regularization

parameter matrix ψ is defined by Eq. (3), which incorporated
the covariance matrix of the prior probability Σa, the variance
of the likelihood of the measurement σ2

z , and the point
number of the source cloud K. Furthermore we expand the
transformation of the transformed source cloud z′t,k and the
function of the nearest neighbor search S(xt−1,ut , at ,m, zt,k),
finally we get Eq. (19).

E(at) =
1
K

K

∑
k=1

∥∥z′t,k −S(xt−1,ut , at ,m, zt,k)
∥∥2

+ aT
t ψat (18)

=
1
K

K

∑
k=1

∥∥∥T(at)zt,k − mct,k

∥∥∥2
+ aT

t ψat (19)

By the above calculation, we have derived the energy
function E(at) of the proposed method shown in Eq. (2)
based on Bayes’ theorem.
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Fig. 5. An experimental environment to inves-
tigate the influence of complex shapes

robot

Xtion PRO LIVE

Fig. 6. An experimental environment to inves-
tigate the influence of planar shapes

robot

Xtion PRO LIVE

The cardboard box and the trash box were moved

after the measurement of the target cloud

moved

Fig. 7. An experimental environment to inves-
tigate the influence of moved objects

IV. EXPERIMENTS

In order to evaluate the proposed method MAP-ICP in
comparison with standard ICP, we have experimented with a
robot equipped with a depth camera ASUS Xtion PRO LIVE.
Xtion has large measurement errors according to measuring
distance because it uses the triangulation method. In addition,
the sensing field of view of Xtion is narrow only 58 deg
horizontally and 45 deg vertically, hence the registration is
prone to fall into misalignment. We performed MAP-ICP
and standard ICP under many experimental conditions of
initial guesses, and evaluated localization errors of MAP-
ICP in comparison with conventional standard ICP. For
experimental conditions of initial guesses, we have added
several translation and orientation errors independently to the
ground truth. In this paper, the added translation errors are in
the direction of the y axis (the lateral direction of the robot),
and orientation errors are in the yaw rotation. In order to
evaluate localization errors, we have used the distance from
the ground truth for translation errors and the rotation angle
from the ground truth in the axis-angle representation [21]
for orientation errors.

It is known that the performance of the ICP algorithm will
change depending on the definition of the error metric [9]
(the norms in the first term of Eq. (2) and (5)). Therefore, we
have experimented with both point-to-point [6] and point-to-
plane [7] versions of matching. For point-to-plane matching,
we compute the normals using the eigen decomposition of
the covariance matrix of the closest points within 0.2 m of
respective target points. The eigen vector corresponding to
the smallest eigen value will approximate the surface normal.
For both the point-to-point and the point-to-plane matching,
we compare the four registration methods: standard ICP,
MAP-ICP, standard ICP with RANSAC [22], and MAP-
ICP with RANSAC. We use the implementation of Point
Cloud Library [23] for standard ICP and standard ICP
with RANSAC. In all of these algorithms, the maximum
correspondence distance (threshold) was set to 1.0 m. The
RANSAC outlier rejection threshold was set to 0.2 m. For
MAP-ICP in this experiment, we assume the regularization
parameter matrix ψ to be a diagonal matrix in that x and
y elements were set to exp(−100), z element was set to
exp(−5), and the axis-angle element was set to exp(−3). The
x and y elements are very weak constraints. Here, the unit
for translation components of the regularization parameter

matrix ψ is meter, and the unit for rotation component is
radian.

We chose three experimental environments. The first is a
room environment to investigate the influence of complex
shapes where various objects such as desks and chairs
are located as shown in Fig. 5. The second is a hallway
environment that consists of large planes to investigate the
influence of planar shapes as shown in Fig. 6. The third is a
dynamic environment to investigate the influence of moved
objects where some objects has been moved by us between
the measurement of the target and source clouds as shown in
Fig. 7. After the measurement of the target cloud, we have
moved the cardboard box and the trash box to the left about
0.5 m. Then, the source cloud has been measured.

Fig. 8, 11, and 14 show examples of the matching results
for standard ICP and MAP-ICP (without RANSAC) in each
environment. In these examples, the initial guesses were
the ground truths (the added errors are zeros) and point-to-
plane matching was performed. Note that black means the
target cloud, and gray means the source cloud. In the room
environment as shown in Fig. 8, both standard ICP and MAP-
ICP matched the source cloud accurately to the target cloud.
Standard ICP, however, fell into misalignment in the hallway
environment as shown in Fig. 11, while MAP-ICP was able
to match point clouds accurately and keep the horizontal and
the vertical tilt of the floor and the walls. In addition, standard
ICP matched point clouds inaccurately under the influence of
the moved objects in the dynamic environment as shown in
Fig. 14, while MAP-ICP was still able to match point clouds
accurately with constraint of the prior probability.

In each plot of Fig. 9, 10, 12, 13, 15, and 16, the vertical
axis represents localization error where a lower value is a
better result. We consider the matching has converged accu-
rately in the following cases: the translation error is not more
than 0.2 m, and the orientation error is not more than 5 deg.
The horizontal axis represents the initial displacement from
the ground truth (i.e. added error of the initial guess). The
convergence region refers to the range of initial displacement
to converge accurately.

Fig. 9 and 10 show the plots of localization error as a
function of the initial displacement in the room environment.
Fig. 9 shows point-to-point matching, while Fig. 10 shows
point-to-plane. In both the point-to-point and the point-
to-plane cases, MAP-ICP with RANSAC had the widest
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Both standard ICP and MAP-ICP matched the source cloud accurately to the target cloud

Standard ICP MAP-ICP

Fig. 8. An example of matching results of standard ICP and MAP-ICP in the room environment
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convergence region over 0.6 m and 10 deg. It matched point
clouds accurately even when there was a certain amount of
initial pose translation. In the case of initial pose rotation,
MAP-ICP with RANSAC and standard ICP with RANSAC
matched point clouds with similar accuracy and had a similar
convergence region.

Fig. 12 and 13 show the plots of localization error as a
function of the initial displacement in the hallway environ-
ment. Fig. 12 shows point-to-point matching, while Fig. 13
shows point-to-plane. Similarly to the room environment,
MAP-ICP with RANSAC had wide convergence region in
both the point-to-point and the point-to-plane cases. In the
point-to-point case, the convergence region was almost 0.4
m and 10 deg. In the point-to-plane case, the convergence
region was approximately 0.4 m and 15 deg. MAP-ICP
with RANSAC matched point clouds accurately even when
some amount of initial pose translation was occurred. On
the other hand, MAP-ICP (without RANSAC) had wider
convergence region than MAP-ICP with RANSAC when
a certain amount of initial pose rotation was present. This
property was dependent on the shapes of the point clouds.
In the point-to-point case especially when there was initial
pose rotation for the range of less than 10 deg, MAP-ICP
with RANSAC was the most accurate. Then, in the point-
to-plane case when there was some amount of initial pose
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Fig. 10. Errors of estimated pose using point-to-plane matching in the
room environment

rotation, MAP-ICP with RANSAC and standard ICP with
RANSAC matched point clouds with similar accuracy and
had a similar convergence region.

Fig. 15 and 16 show the plots of localization error as
a function of the initial displacement in the dynamic en-
vironment. Fig. 15 shows point-to-point matching, while
Fig. 16 shows point-to-plane. Similarly to the room and
the hallway environment, MAP-ICP with RANSAC had the
widest convergence region over 0.2 m and 5 deg in both the
point-to-point and the point-to-plane cases. It matched point
clouds accurately even when a certain amount of initial pose
translation was occurred. This was also true in the case where
the initial guess was the ground truth, and localization error
of MAP-ICP with RANSAC was nearly zero. In the case
of initial pose rotation, only MAP-ICP with RANSAC and
MAP-ICP matched point clouds accurately.

From the above experimental results, we obtained the con-
clusions that our proposed method MAP-ICP with RANSAC
had the widest convergence region and matched point clouds
accurately in both the point-to-point and the point-to-plane
cases. In 6DOF matching for 3D shapes, there are a large
number of local minima and hence matching is likely to
fail. By considering both the likelihood of the measurement
and the prior probability of the initial guess with MAP
estimation, MAP-ICP will not fall into misalignment and
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Standard ICP MAP-ICP

Standard ICP fell into misalignment

and the floor and the walls were tilted

MAP-ICP was able to match clouds accurately and keep

the horizontal and the vertical tilt of the floor and the walls

Fig. 11. An example of matching results of standard ICP and MAP-ICP in the hallway environment
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Fig. 12. Errors of estimated pose using point-to-point matching in the
hallway environment

is able to localize robot pose accurately even if we use a
depth camera that has large measurement errors and a narrow
sensing field of view.

V. CONCLUSION

In this paper, our objective was a new 6DOF matching
algorithm for 3D shapes based on probability theory for
localization. Since conventional approaches are particularly
susceptible to becoming stuck in the numerous local min-
ima, and fall into misalignment, hence we introduced MAP
estimation based on Bayes’ theorem to the ICP algorithm.
Our approach resolves such problems by considering both
the likelihood of the measurement and the prior probability
of the initial guess for registration in the objective function.
We have implemented MAP-ICP algorithm and evaluated
localization errors of the method in comparison with con-
ventional methods. The experimental results have shown that
our proposed method has the widest convergence region
and is able to match point clouds accurately preventing the
misalignment problem. Consequently, if we can obtain an
appropriate initial guess, it is better to use MAP-ICP rather
than the standard ICP for fine registration.
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