
HRA*: Hybrid randomized path planning for complex 3D environments

Ernesto H. Teniente and Juan Andrade-Cetto

Abstract— We propose HRA*, a new randomized path plan-
ner for complex 3D environments. The method is a modified
A* algorithm that uses a hybrid node expansion technique that
combines a random exploration of the action space meeting
vehicle kinematic constraints with a cost to goal metric that
considers only kinematically feasible paths to the goal. The
method includes also a series of heuristics to accelerate the
search time. These include a cost penalty near obstacles, and
a filter to prevent revisiting configurations. The performance
of the method is compared against A*, RRT and RRT* in a
series of challenging 3D outdoor datasets. HRA* is shown to
outperform all of them in computation time, and delivering
shorter paths than A* and RRT.

I. INTRODUCTION

In mobile robotics, state-of-the art dense mapping tech-
niques are capable of producing impressively rich 3D envi-
ronment models [1], [2]. Yet, producing efficient trajectories
on large complex outdoor environments for off-road robots
is still a challenging task. The main reasons being the
irregularity of the surface and the need to account for the
nonholonomic constraints of the vehicles.

In this paper we present HRA*, a method to plan safe
trajectories in rich complex 3D environments that guarantees
reachability at a desired robot pose with significantly lower
computation time than competing alternatives. Our path
planner incrementally builds a tree using the A* algorithm.
However, it includes a hybrid cost policy to efficiently ex-
pand the search tree, we combine random sampling from the
continuous space of kinematically feasible motion commands
with a cost to goal metric that also takes into account the
vehicle nonholonomic constraints.

To speed up node search, our method also includes heuris-
tics to penalize node expansion near obstacles, with a penalty
proportional to the inverse distance to collision; and to
limit the number of explored nodes. The method book-keeps
visited cells in the configuration space, and disallows node
expansion at those configurations in the first full iteration of
the algorithm.

Our experiments show that HRA* compares favorably
against A*, RRT and RRT*, in terms of computation time,
and generates significantly shorter paths than A* and RRT.

This work has been partially supported by the Mexican Council of
Science and Technology with a PhD Scholarship to Ernesto Teniente, by the
Spanish Ministry of Science and Innovation under project DPI-2011-27510
and by the EU project ARCAS FP7-287617.

The authors are with the Institut de Robòtica i Informàtica
Industrial CSIC-UPC, Llorens Artigas 4-6, 08028 Barcelona.
{ehomar,cetto}@iri.upc.edu.

II. RELATED WORK

Grid-based path planning algorithms, such as the methods
based on the A* [3], connect cells of a discretized configura-
tion space from a start configuration to a goal configuration.
To jump from cell to cell, they typically explore the action
space with a deterministic minimal set of control parameters.
For instance, a skid steer vehicle moving on the plane
could have an action set of the form {−vmax, vmax} ×
{−ωmax, 0, ωmax}, with a time interval according to the size
of cells in the configuration space [4]. A number of heuristics
can be used to modify the resolution search. The time interval
for which the kinematic model is unrolled can be related to
the amount of clutter near the explored node, for instance,
with trajectory lengths proportional to the sum of the distance
to the nearest obstacle plus the distance to the nearest edge
in a Voronoi diagram of obstacles [5]. Besides modifying
the integration time, one can also condition the search speed
according to a cost to goal heuristic. This is typical of best-
first algorithms such as A* in which the priority queue is
sorted according to some cost to goal heuristic [6].

Our method combines these two ideas. We propose a
heuristic to modify the resolution search depending on the
amount of clutter near the explored node, but instead of
generating a Voronoi diagram as in [4], we add to the
policy cost a penalty proportional to the inverse distance to
a collision. In this way, configurations near obstacles will
be sampled sparsely, whereas configurations in open space
will have more chances of being tested. Furthermore, we
include a measure of the distance to the goal to our cost
policy, the same way as in [6], computed from Dubins
paths [7], which give the shortest length path between the
current configuration and the goal configuration.

Randomized sampling algorithms for path planning such
as PRM or RRT [7] explore the action space stochastically.
By randomly exploring a continuous action space, RRT has
the property of being probabilistically complete, although
not asymptotically optimal [8]. RRT* [9], [10] solves this
problem by triggering a rewire process each time a node
is added to the tree. The rewiring process searches for the
nearest neighbor in configuration space and decides whether
it is less costly to move to the new node from the explored
parent or from such closest neighbor. In very cluttered envi-
ronments however, RRT* may behave poorly since it spends
too much time deciding whether to rewire or not. In our
method, we also sample actions randomly from a continuous
action space, but in the search for neighbors within the tree,
we trigger a rewiring test only when these actions reach a

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1766

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v(m/s)

ω
(r

a
d

/s
)

1

2

3

4

5

6

7

14

28

56

112

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−0.45

−0.35

−0.25

−0.15

−0.05

0.05

0.15

0.25

0.35

0.45

x

y

1

2

3

4

5

6

7

14

28

56

112

(b)

Fig. 1. Reachable curvature sets. a) Normalized turning radius and velocity
correlation for different values of l. b) Integrated trajectories for different
values of l and ∆t = 1)

previously visited cell in an auxiliary maintained discretized
configuration space.

A more recent randomized motion planning strategy is
cross entropy motion planning [11]. The method samples in
the space of parameterized trajectories building a probability
distribution over the set of feasible paths and searching for
the optimal trajectory through importance sampling. Cross
entropy motion planning is only applicable to problems for
which multiple paths to the goal can be computed during
algorithm execution.

III. HYBRID RANDOMIZED PATH PLANNING

The task is to find a feasible path τ(t) : [t0, ..., tn]→ Cfree,
if it exist, in a configuration space free of collisions Cfree,
from an initial robot configuration τ(t0) = xI to a goal
robot configuration τ(tn) = xG.

Ideally, we would like to compute the minimum cost path

τ∗ = arg min(c(τ) : τ) (1)

but will be content with obtaining a low cost path with
a reasonable computation effort. To that end, a number of
heuristics aimed at pruning the search space and to bias the
exploration towards the goal will be devised.

In our planning context we are faced with nonholonomic
motion constraints for the vehicle, and it is through a control
sequence u(t) : [t0, ..., tn] → U , u(ti) = (vi, ωi,∆ti), that
we can move from one robot configuration to another.

A. Steering Functions

We use two motion control policies. The first is the
forward kinematics of the vehicle and the second one is an
optimal control policy that guarantees goal reach. Our mobile
robot is modelled as a Dubins vehicle: ẋ

ẏ

θ̇

 =

 v cos(θ)
v sin(θ)
ω

 , |ω| ≤ v/ρ (2)

where (x, y) is the vehicle position, θ is the vehicle heading,
v is the translational velocity, ω is the angular velocity, and
ρ is the vehicle minimum turning radius constraint.

1) Robot Forward Kinematics: To compute a new robot
position for search tree expansion, we solve Eq. 2 using the
second order Runge-Kutta method. This derivation computes
the new robot position more precisely than the Euler based
solution.

xi+1 = xi + vi∆ti cos

(
θi +

ωi∆ti
2

)
yi+1 = yi + vi∆ti sin

(
θi +

ωi∆ti
2

)
(3)

θi+1 = θi + ωi∆ti

The robot motion commands (vi, ωi) are subject to min-
imum and maximum speed constraints vi ∈ [vmin, vmax] and
ω ∈ [−ωmax, ωmax]|(ω = 0 ⇒ vmax), (|ω| = ωmax ⇒
vmin). This definition imposes the maximum speed constraint
v2 + ω2 ≤ 1 [7].

We want to compute random velocity commands subject
to this constraint. To avoid significant rotation at high speeds
we introduce a parameter l ≥ 1 designed to control the
relation between the translational and rotational velocities.
The mechanism to sample motion commands is as follows.
We draw random translational velocities from the fixed in-
terval vrand = [0, 1] and compute its corresponding rotational
velocity ω(vrand) = sin(arccos(vrand)). We then scale them
with

vl = l vrand , y = 1− vrand

r =
√
v2l + y2 , ωl = sin(arccos(vl/r)) (4)

In this way, we have a gauge to modify the robot behavior.
See Fig.1. The original velocity commands on the sphere
occur at l = 1. Finally, we scale these values to the range
given by the translational and rotational velocity

vi = vmin + vl(vmax − vmin) (5)
ωi = ωmaxωls , s ∼ rand(−1, 1) (6)

Finally, the sampling period ∆ti is randomly selected from
a small interval [tmin, tmax], and the new robot pose xi+1 and
trajectory τ(i + 1) are computed by integrating Eq. 3 over
small time steps δt << ∆ti.

The strategy essentially limits large curvature values at
high translational speeds, producing smoother trajectories.

2) Locally Optimal Control Policy: Now that we have
a mechanism to sample configurations from a search node
xi, we still need a way to measure the cost to reach goal
completion. To that end, we compute the length of a Dubins
curve from the computed configuration xi+1 all the way to
the xG.

Dubins curves [7] are optimal paths made up of circular
arcs connected by tangential line segments under the max-
imum curvature constrain κ = 1/ρ. In our application we
restrict to only use the CLC type and they are specified
by a combination of left, straight, or right steering inputs,
leading to only only four types of paths (RSL, LSR, RSR,
LSL).This will give us a locally optimal control policy and
a locally optimal path τ(t).

1767

Fig. 2. Proposed path projection step, used to estimate the local path and
the final robot orientation.

B. Cost Estimation

Our cost unit is time, and as in [12], we split the cost
into accumulated cost cacc, the time we have integrated
the kinematic model so far to go from xI to xi+i, and a
cost to the goal cgoal, the optimistic bound given by the
Dubins curve from xi+i to xG, assuming the remaining
path is free of obstacles. Similar to [13], we also use upper
and lower bounds, but in a slightly different manner. The
upper bound c+ is used during node selection to improve
exploration adding heuristics that bound the node search. The
lower bound c− is used to determine the best path from the
solutions set, i.e, c− will be the cost to minimize in Eq. 1.

The accumulated cost is computed with

cacc =
i+1∑
k=1

∆tk (7)

and the upper and lower bounds are computed with,

c− = cacc + dgoal/vmax (8)

c+ = cacc + dgoal/vmax +

n∑
j=1

hj (9)

where dgoal is the optimal path length of the Dubins curve to
the goal, and hj are each of the heuristics we use to penalize
a path.

We can use as many as desired penalization heuristics hj
to make some configurations less attractive to the planner.
Our first heuristic is a local penalty inversely proportional
to the distance to the nearest obstacle in front of the robot.
To compute it, we raytrace the environment at the robot’s
heading and measure the distance to the nearest obstacle in
front of the robot dCobs . We define the penalty h1 = κ1/dCobs ,
where κ1 is a user selected factor to weight the contribution
of this heuristic in c+.

Another penalty h2 occurs when τgoal ⊂ Cfree, i.e. the
Dubins path has a clear path to the goal. Then, h2 = ∞
and h2 = 0 otherwise. This way we avoid to explore that
node again. This is a termination condition because τgoal is
locally optimal so it is not possible to find a better solution
from that configuration to the goal.

C. Path projection

The presented control policies compute segment paths
parallel to a plane. These paths could be either on a local
planar patch, or with respect to a global coordinate frame.
These paths however, contain no information about their
elevation or orientation with respect to the 3D surface.
In [14] the authors use Lagrangian interpolation to project
2D roadmap streamlines to the 3D terrain model, and a
feasibility test for each 3D candidate path is computed.
In [15], the robot is assumed to move at small distances to
little planar patches, and robot transitions between patches
is assumed with constant velocity. To compute the 3D path,
we propose also a projection of the 2D local paths to the
3D surface, but in contrast to [14], we not only validate
feasibility, but an iterative nearest neighbor search is used to
refine the local path.

Local paths are computed parallel to the world xy plane.
The elevation value for each new configuration in the path
is initialized with that of its parent node. Then, a NN search
is performed to find its closest traversable point in the 3D
map, substituting the z coordinate with that of the NN. If
the difference between any two neighbor configurations in
the 3D local path is larger than a threshold (i.e., if the hill
is deemed too steep), we enter in a loop searching for a new
NN assignment. See Fig. 2. Finally, as in [16], we use local
planar information to compute the robot orientation for the
last configuration in the path.

D. Collision Detection

Once the local 3D path is computed, we need to check
again whether it remains collision free. If τ(t) is found to
be in collision, we keep the path segment that lies in Cfree,
i.e., τ(t) = [t0, ..., tm] ⊂ Cfree, and the configuration xm−λ is
added to the search tree and we update the path and the com-
mands. At that point, a new exploration step is triggered. The
parameter λ is introduced to avoid configurations blocked
by obstacles. Notice that if (tm − tm−λ − ∆tm) ≤ 0, the
algorithm would return to a collision.

E. Tree Rewire

The rewiring procedure proposed in this work is different
from that in [9], [10]. Instead of using vicinity information
around a volume or the k-nearest neighbors for each new
added node, we use a similar approach to that in [5]. We
maintain an auxiliary grid of the configuration space Cτ , and
mark visited cells on it. If a cell was previously visited, we
compare the cost of the new and the old paths. In contrast
to [5], we do allow rewiring even if the valid configuration
at that cell has children. Alg. 1 overviews HRA*, our hybrid
randomized path planning method.

IV. EXPERIMENTS

A. Experimental Setup

We show the performance of HRA* in three different
outdoor datasets of uneven challenging terrain. Two of them
were gathered using a custom built 3D laser with a Hokuyo
UTM-30LX scanner mounted in a slip-ring. The first dataset

1768

HYBRIDRANDOMIZEDPATHPLANNER(xI , xG, I,K,X)
INPUT:

xI : Initial configuration.
xG:Goal configuration.
I: Maximum number of iterations.
K: Number of motion samples per iteration.
X: 3D map.

OUTPUT:
τ∗: Path.
u∗: Commands.

1: T .init(xI ,X)
2: Cfree ← COMPUTEDISCRETIZEDCSPACE(X)
3: Cτ ← UPDATEAUXILIARCSPACE(∅, τ0)
4: solution = 0
5: for i = 1 to I do
6: qbest ← GETBESTNODE(T)
7: u← GENERATERANDOMCOMMANDS(K)
8: for k = 1 to K do
9: (xk, τk)← FORWARDKINEMATICS(T , uk, qbest)

10: m← COLLISONCHECK(τk, Cfree,X)
11: if m then
12: (xk, τk, uk)← UPDATEDATA(m,xk, τk, uk)
13: end if
14: if ∼ solution then
15: visited← AREVISITEDCELLS(τk)
16: end if
17: if (∼ m) ∧ (∼ visited) then
18: qold ← GETNODEINCELL(xk, Cfree)
19: if qold then
20: T ← TREEREWIRE(T , qbest, xk, qold)
21: else
22: Cτ ← UPDATEAUXILIARCSPACE(Cτ , τk)
23: cacc ← INCREMENTCOST(xk, T)
24: (cgoal, τgoal)← DUBINSTOGOAL(xk, xG)
25: m← COLLISONCHECK(τgoal,X)
26: H ← COMPUTEPENALTIES
27: (c+, c−)← COMPUTEBOUNDS(cacc, cgoal,H)
28: T ← TREEUPDATE(T , xk, τk, uk, c+, c−)
29: end if
30: if ∼ m then
31: (u∗, τ∗)← SELECTSHORTESTPATH(T)
32: solution = 1
33: end if
34: end if
35: end for
36: end for
37: RETURN (u∗, τ∗)

Algorithm 1: HRA*: Hybrid Randomized Path Planning

was acquired in the Facultat de Matemàtiques i Estadís-
tica (FME), located at the Campus Sud at the Universitat
Politècnica de Catalunya (UPC). The sensor is mounted atop
a Segway RPM400 mobile robot called TEO. The dataset
includes 39 dense 3D scans collected on different traversed
surfaces (soil, grass and gravel), TEO was driven over bumps
of about 10-15 cm height. In the second data set the sensor
was mounted atop a Pioneer 3AT platform. The Pioneer
gathered 400 points clouds. This is the Barcelona Robot
Lab dataset (BRL) [17]. The BRL is a permanent area for
mobile robots experiments in the UPC Campus Nord in
Barcelona and covers 10000 m2. The third dataset is part
of the Canadian Planetary Emulation Terrain 3D Mapping
Dataset [18]. It includes five subsets that emulate planetary
terrain. We use the boxmet (BM) subset which has 112 scans
and covers 7200 m2. To validate and compare our method
we extracted six different scenarios from these datasets: four
from the FME, and one from each of the BRL and BM
datasets. See Fig. 3. We analyzed different situations in
real static environments such as: narrow passages, cluttered
obstacles, bay-like situations, ramps, forks and more.

B. Experimental Conditions

For the RRT and RRT* algorithms, we run 50 Monte
Carlo simulations with a maximum number of iterations
I = 20, 000 for each of the five scenarios.

For the A* algorithm, we used 7 motion primitives as
described in Sec. III-A. In this case, experiments were run
only once since the A* solutions are unique. We set I =
10, 000 for the FME scenarios and I = 20, 000 for the BRL
and BM scenarios. To allow for a more fare comparison,
rewiring is allowed as described in Sec. III-E.

For HRA*, we run two sets of 50 Monte Carlo simulations
each, I = 10, 000 iterations, and we enable the heuristics h1,
h2, and rewiring. In the first set, HRA*1, cell bookkeeping
is disabled, whereas in the second set, HRA*2, bookkeeping
is enabled. The parameter l limiting the ratio between
translational and angular velocities was selected empirically,
by testing HRA*2 for different values of l. A value of l = 4
is a good compromise between path quality improvement
and execution time. The other parameters were chosen as
κ1 = 0.1m and dgoal = 0.3m.

When using cell bookkeeping we consider that a path
is new if the ration between new cells and visited cells is
larger than 1%. Incredibly, such as small percentage of new
cells, was enough to obtain a significant boost in computation
speed. The discretization of the configurations space was set
to (∆x,∆y,∆θ) = (0.3m, 0.3m, 5deg).

Experiments were run in MATLAB. Some functions where
implemented in C++ and embedded in mex files. We use
the ANN library [19] for the nearest neighbor search. All
experiments are executed on an Intel Core i7-2720 system
@ 2.20 GHZ, with 8 GB of RAM memory running Ubuntu
12.04 64 bits.

C. Results

Table I shows the first and best computed path lengths
for all methods. The reported algorithms’s first computed
path length corresponds to the mean value of the first length
obtained for each of the Monte Carlo runs. As for the best
path lengths reported, these correspond to the minimum path
lengths obtained over all Monte Carlo runs. The table shows
that the two versions of the proposed approach HRA*1, and
HRA*2 are able to compute path lengths comparable to A*
with rewiring in all datasets, and significantly shorter than
RRT.

Note how cell bookkeeping (HRA*2) improves the best
solution on almost all scenarios when compared to (HRA*1)
at the expense of a possible larger first solution. The reason is
that ell bookkeeping enforces sparsity in exploration gaining
speed in finding the first solution. Our method is able
to compute the first solution faster in all but one of the
scenarios. This is shown in Table II in which we report
mean first and best solution computation times for all Monte
Carlo runs. Note also how RRT is the fastest method in
computing its best solution, whereas RRT* is an order of
magnitude slower when compared to all the other methods.
The reason is because, each reconnection step involves a sum
of costly operations: computing Dubins paths, reprojection,

1769

Scenario
FME1 FME2 FME3 FME4 BRL BM

Method First Best First Best First Best First Best First Best First Best
A* with rewiring 18.12 17.63 33.84 33.93 18.61 17.84 36.97 36.47 14.77 14.77 30.97 30.83

HRA*1 16.52 16.34 34.54 32.92 18.29 17.39 36.48 35.98 15.64 14.46 31.03 30.50
HRA*2 16.40 15.73 35.42 32.28 18.50 17.28 36.59 35.50 15.79 14.50 31.25 30.59
RRT* 15.58 14.73 33.48 30.55 18.10 16.57 36.35 33.55 14.76 13.73 31.58 29.60
RRT 19.57 15.89 46.17 35.66 23.29 17.38 44.09 37.46 21.18 15.92 41.16 32.25

TABLE I
FINAL PATH LENGTH IN METERS COMPUTED FOR ALL METHODS. FIRST AND BEST SOLUTIONS.

Scenario
FME1 FME2 FME3 FME4 BRL BM

Method First Best First Best First Best First Best First Best First Best
A* w/ rewiring 2.01 95.75 10.04 10.05 51.77 83.64 20.62 21.93 184.90 184.90 425.82 799.41

HRA*1 2.37 132.92 16.88 62.10 18.31 47.59 14.01 76.65 24.89 36.84 308.43 371.68
HRA*2 1.20 342.02 13.55 396.63 6.05 169.37 10.51 139.66 4.70 191.02 47.14 724.43
RRT* 113.18 2555.42 387.82 4164.13 239.80 2074.17 655.41 3538.28 271.45 1516.01 1311.05 3840.55
RRT 1.89 25.06 8.58 33.20 20.85 41.89 14.71 40.82 10.42 21.54 415.37 611.86

TABLE II
COMPUTATION TIMES IN SECONDS FOR ALL METHODS. FIRST AND BEST SOLUTIONS.

Fig. 3. Path planning scenarios and computed paths. The scenarios, from upper left to bottom right, correspond to the FME1, FME2, FME3, FM4, BRL
and BM subsets. The green dots indicate the traversable areas and the degraded blue and gray dots represent non-traversable regions. The start and goal
positions are indicated by red and gray spheres, respectively. The resulting paths are: A* with rewiring (magenta), HRA* (red), RRT* (pink) and RRT
(dark blue).

and collision detection, which for RRT* is computed for
all neighbors within a radius, a significantly larger number
of times than in our approach, in which bookkeeping is
performed.

Fig. 3 shows the computed paths for the six scenarios and
all of the above-mentioned methods, but HRA*1. Notice that
even when RRT* has smaller paths than HRA*, the paths
computed by our method are smoother. Note also that the
proposed approach cannot be as good as RRT* in finding the
shortest path, because it uses discretized configuration space
for bookkeeping and rewiring, whereas RRT* explores the
entire nearest neighbor set.

Finally, an interesting metric to compare path planning

methods is the length vs time plot. This is, how quickly can
any given method compute a solution with some given qual-
ity, say a fixed path length. This computational complexity
per performance improvement plots are given in Fig. 4 for all
the scenarios explored. The plots nicely show how RRT* is
the most expensive algorithm able to compute shortest paths
at computation times an order of magnitude larger than the
rest of the methods. On the other side of the scale, RRT is
the fastes of them all, but the path lengths it computes are in
general larger than the rest of the methods. Furthermore, the
plots also show that increased computational time does not
necessarily mean better solutions with respect to path length
for the case of RRT. Our proposed strategies HRA*1 and

1770

14.5 15.5 16.5 17.5 18.5 19.5

10
0

10
1

10
2

10
3

Lenght (m)

T
im

e
 (

s
)

FME1

HRA*1

HRA*2

RRT *

RRT

σ

30 32 34 36 38 40

10
1

10
2

10
3

Lenght (m)

T
im

e
 (

s
)

FME2

HRA*1

HRA*2

RRT *

RRT

σ

15.5 16.5 17.5 18.5 19.5 20.5 21.5

10
1

10
2

10
3

Lenght (m)

T
im

e
 (

s
)

FME3

HRA*1

HRA*2

RRT *

RRT

σ

34 36 38 40 42 44

10
1

10
2

10
3

Lenght (m)

T
im

e
 (

s
)

FME4

HRA*1

HRA*2

RRT *

RRT

σ

14 15 16 17 18 19 20

10
1

10
2

10
3

Lenght (m)

T
im

e
 (

s
)

BRL

HRA*1

HRA*2

RRT *

RRT

σ

30 31 32 33 34 35 36 37 38

10
2

10
3

Lenght (m)

T
im

e
 (

s
)

Canada

HRA*1

HRA*2

RRT *

RRT

σ

Fig. 4. Length vs. time plots for the two HRA* proposed methods, RRT and RRT*. The greay ticks show one standard deviation bounds from the various
Monte Carlo runs. Note the logarithmic scale of the time axis.

HRA*2, – randomized action sampling with heuristic cost
penalties, with and without bookkeeping –, outperform their
counterpart methods in both ends. HRA* implementations
take significantly less time to compute solutions with the
same quality as those of RRT*, and are also able to compute
shorter paths than RRT for the same alloted execution time.

V. CONCLUSIONS

We presented a method to compute paths for a mobile
robot in outdoor challenging environments. The method,
called HRA*, is a modified A* algorithm that uses a
hybrid node expansion technique that combines a random
exploration of the action space meeting vehicle kinematic
constraints, with a cost to goal metric that considers only
kinematically feasible paths to the goal. The method is ex-
tended with a number of heuristics to penalize configurations
near obstacles that accelerate search time. The technique was
successfully tested on several real outdoors environments and
was shown to outperform A* with rewiring, RRT and RRT*
in computation time, and A* with rewiring and RRT in path
length.

REFERENCES

[1] O. Wulf, A. Nüchter, J. Hertzberg, and B. Wagner, “Benchmarking
urban six-degree-of-freedom simultaneous localization and mapping,”
J. Field Robotics, vol. 25, no. 3, pp. 148–163, Mar. 2008.

[2] R. Valencia, E. Teniente, E. Trulls, and J. Andrade-Cetto, “3D mapping
for urban service robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Saint Louis, Oct. 2009, pp. 3076–3081.

[3] R. Dechter and J. Pearl, “Generalized best-first search strategies and
the optimality of A*,” J. ACM, vol. 32, no. 3, pp. 505–536, Jul. 1985.

[4] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile
robots: controllability and motion planning in the presence of obsta-
cles,” in Proc. IEEE Int. Conf. Robot. Autom., Sacramento, Apr. 1991,
pp. 2328–2335.

[5] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
Int. J. Robot. Res., vol. 29, no. 5, pp. 485–501, 2010.

[6] M. Hwangbo, J. Kuffner, and T. Kanade, “Efficient two-phase 3D
motion planning for small fixed-wing UAVs,” in Proc. IEEE Int. Conf.
Robot. Autom., Rome, Apr. 2007, pp. 1035–1041.

[7] S. LaValle, Planning Algorithm. Cambridge University Press, 2006.
[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
2011.

[9] ——, “Optimal kinodynamic motion planning using incremental
sampling-based methods,” in Proc. IEEE Conf. Decision Control,
Atlanta, Dec. 2010, pp. 7681–7687.

[10] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT*,” in Proc. IEEE Int. Conf. Robot.
Autom., Shanghai, May 2011, pp. 1478–1483.

[11] M. Kobilarov, “Cross entropy motion planning,” Int. J. Robot. Res.,
vol. 31, no. 7, pp. 855–871, 2012.

[12] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning for
agile autonomous vehicles,” J. Guid. Control Dyn., vol. 25, no. 1, pp.
116–129, 2002.

[13] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Trans. Contr. Syst. Technol., vol. 17, no. 5, pp. 1105–
1118, 2009.

[14] D. Gingras, E. Dupuis, G. Payre, and J. de Lafontaine, “Path planning
based on fluid mechanics for mobile robots using unstructured terrain
models,” in Proc. IEEE Int. Conf. Robot. Autom., Anchorage, May
2010, pp. 1978–1984.

[15] M. B. Kobilarov and G. S. Sukhatme, “Near time-optimal constrained
trajectory planning on outdoor terrain,” in Proc. IEEE Int. Conf. Robot.
Autom., Barcelona, Apr. 2005, pp. 1821–1828.

[16] T. Simeon and B. Dacre-Wright, “A practical motion planner for all-
terrain mobile robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Tokyo, Jul. 1993, pp. 1357–1363.

[17] E. Teniente, M. Morta, A. Ortega, E. Trulls, and J. Andrade-Cetto,
“Barcelona Robot Lab data set,” [online] http://www.iri.upc.edu/
research/webprojects/pau/datasets/BRL/php/dataset.php, 2011.

[18] C. Tong, D. Gingras, K. Larose, T. Barfoot, and E. Dupuis, “The
canadian planetary emulation terrain 3d mapping dataset,” [online]http:
//asrl.utias.utoronto.ca/datasets/3dmap/, 2012.

[19] D. M. Mount and S. Arya, “ANN: A library for approximate nearest
neighbor searching,” in Proc. 2nd Fall Workshop Comput. Comb.
Geom., Durham, Oct. 1997.

1771

