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Abstract—Face recognition often suffers from the Small Sam-
ple Size problem. Regularization is one of the solutions to
this problem. In this paper, we investigate the Kullback-Leibler
information measure (KLIM) based regularization classifiers for
face recognition. Two parameter estimation approaches including
the cross-validation technique and model selection criterion are
chosen to optimize the regularization parameter. In the experi-
ments, the ORL face data is used to evaluate these algorithms.
We compared the KLIM algorithms with quadratic discriminant
analysis, linear discriminant analysis, regularized discriminant
analysis, and leave-one-out covariance matrix estimate. Consider-
ing both time cost and classification rate, KLIM classifiers exceed
the others and obtain stable results.

Index Terms—Gaussian classifier, Regularization, Cross vali-
dation, Principal component analysis, Face recognition.

I. INTRODUCTION

Face recognition is a hot research topic in the fields of
pattern recognition and computer vision, which has been
widely used in many applications, such as verification of credit
card, security access control, and human computer interface.
As a result, numerous face recognition algorithms have been
proposed, and surveys in this area can be found in [1], [2], [3].
Two central issues to an automatic face recognition system are:
1) feature selection for face representation and 2) classification
of a new face image based on the chosen feature representation.
In an actual face recognition system, the results of feature
selection can be easily affected by some variations in the face
images, such as lighting, expression and pose.

Generally, face recognition is a high-dimensional data set
classification problem, it often suffers from the Small Sample
Size problem (SSS). In SSS problem, usually the class sample
size n; is approximately equal to or smaller than the variable
dimension d, the covariance estimation in discriminant analysis
will become highly variable, in which case it becomes ill- or
poorly-posed classification problems. A typical representative
of approaches suffering this problem is Quadratic Discriminant
Analysis (QDA) [4]. QDA is widely used if there are sufficient
training samples. Unfortunately, sometimes training samples
are usually hard to acquire, and the dimensionality of face
data is extremely high, thus the estimated covariance matrix
will become singular.

There exist two main solutions for SSS problem. One is
to classify them directly in high-dimensional space with regu-
larization methods, and the other is to reduce data dimension
first, then classify them in feature space. Dimension reduction
methods can be divided into two main categories [5]. One is
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based on local feature, which typically extracted a set of facial
features from the image, such as eyes, nose etc, and used it to
classify the face; the other is global or “holistic” approaches,
which takes a holistic view of the recognition problem, and
holistic feature extraction of face images is adopted in this
approach. Fisher Linear Discriminant Analysis (F-LDA) [6] is
one of the most popular feature extraction techniques in the
second approach. F-LDA finds a set of the most discriminant
projection vectors by maximizing the between-class scatter
matrix (Sp) while minimizing the within-class scatter matrix
(Sy) in the projective feature space. The major drawback of
applying F-LDA is that when the number of training samples is
smaller than that of their dimensionality, it can’t solve the SSS
problem. Under these circumstances, .S,, becomes singular, and
it results in the difficulty to calculate the F-LDA vectors. Now,
many new approaches has been developed based on F-LDA
technique, like Direct Linear Discriminant Analysis (D-LDA)
[7], Regularized Linear Discriminant Analysis (R-LDA) [8],
and Kernel Direct Linear Discriminant Analysis (KDDA) [9].
Like LDA, Principal Component Analysis (PCA) [10], [11],
[12] is also a powerful tool in data dimension reduction as well
as an effective feature extraction method in pattern recognition
field. Its goal is to describe the pattern with the less quantities
of feature, and to reduce dimensionality of the feature space
without losing the most important, for discrimination purposes,
information. Kernel Principal Component Analysis (KPCA)
[13] is the kernel edition of PCA in nonlinear subspace.

Regularization is another solution to solve SSS problem.
There are many regularized classification techniques [14] in
this research field. Linear discriminant analysis (LDA) [15]
could be used as one kind of regularization if the total
number of samples is larger than the dimension of variables.
The covariance matrix, in LDA, is substituted by common
covariance matrix. However, in the case of small sample sizes,
the common covariance matrix is also singular. Regularized
discriminant analysis [16] (RDA) adds the identity matrix as
a regularization term to solve the problem in matrix estima-
tion, and leave-one-out covariance [17], [18] (LOOC) brings
the diagonal matrix in, too. The regularization parameters
(or called Model) in both methods are optimized by leave-
one-out cross-validation [19] method, which cost a mass of
computing time. Kullback-Leibler information measure [20]
based classifier (KLIM1 and KLIM2) is the one that we
derived to estimated the covariance matrix. It only contains one
regularization parameter that can be determined with derived
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model selection criterion. KLIM has been successfully used in
stellar spectra data classification [21], [22].

In this paper, we will investigate the performance of the
KLIM algorithm in face recognition. To evaluate the perfor-
mance under different feature dimensionality, we adopt PCA
before classification. We compare the KLIM approach with
QDA, LDA, RDA, and LOOC approaches on ORL face data.
The parameter tuning, computing time and performance are
detailed analyzed in our experiments.

II. DISCRIMINANT ANALYSIS

Discriminant analysis is to assign an observation x €
RY with unknown class membership to one of k classes
C4,...,Ck known a priori. There is a learning data set A =
{(x1,¢1)s ey (Xnycn)x; € RY and ¢; € {1,...,k}}, where
the vector x; contains IV explanatory variables and c; indicates
the index of the class of x;. The data set allows to construct a
decision rule which associates a new vector x € RY to one of
the k classes. Bayes decision rule assigns the observation x to
the class C'7 which has the maximum a posteriori probability.
Which is equivalent, in view of the Bayes rule, to minimize a
cost function d;(x),

j*:argm.indj(x)> j:1727"'>k (1)
J

d;(x) = —2In(a; f;(x)). 2)

Where @; is the prior probability of class C; and f;(x) denotes
the class conditional density of x, Vj =1, ..., k.

Assumes that the class conditional density f;(x) for the
class C; is Gaussian N (x, m;, ij), which the mathematical
expressions are as the followings,
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Substitute this expression in Eq. 2, then leads to the discrimi-
nant function,

dj(x) = (x — m;)TS; (x — @) + In[E)] - 2Ina;. @)

Where m; is the mean vector, and by j 1s the covariance matrix
of the j-th class. If the prior probability &; is the same for all
classes, the term 21In &j can be omitted and the discriminant
function reduces to a more simple form.

ITI. CLASSICAL DISCRIMINANT CLASSIFIERS

Some classical discriminant analysis methods can be ob-
tained by combining additional assumptions with the Bayes
decision rule, such as QDA, LDA, RDA, and LOOC. Among
them, LDA, RDA, and LOOC are three regularization methods.
The crucial difference of these methods is the diversity of the
covariance matrix estimation formula. Before the introduction
of KLIM approach, we will give a brief review of these
methods.

A. ODA

Quadratic Discriminant Analysis (QDA) [4], [14] is widely
used in pattern recognition problem. In QDA, the parameters
in Eq. 4 can be estimated with traditional maximum likelihood
estimator.

iy = — 3" x, )

i=1

~ 1 n; R N
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where the x; is a sample from class j with probability one,
and n; is the training sample number of class j. When using
an unbiased estimation,

~ 1 n; ~ ~
3= D7 (xi —my)(x; —my)T ™)

n; — 1 i=1

this is called sample covariance matrix.

In practice, this method suffers SSS problem in high-
dimensional spaces since it requires estimating many parame-
ters. For small sample number case, it will lead to the ill-posed
problem. In that case the parameter estimates can be highly
unstable, giving rise to high variance in classification accuracy.
By employing a method of regularization, one attempts to
improve the estimates by biasing them away from their sample
based values towards values that are deemed to be more
“physically plausible”.

B. LDA

Linear discriminant analysis (LDA) [15] is a regularization
methods to deal with the poorly-posed problem. The LDA
used in regularization is different from F-LDA in dimension
reduction. The X; in Eq. 6 is replaced with the following
pooled covariance matrix, also called common covariance
matrix,

~ 1 k ~
> = ~ ijl n;3;. (8)
C. RDA

RDA is a regularization method which was proposed by
Friedman [16]. RDA is designed for small number samples
case, where the covariance matrix in Eq.(4) takes the following
form:

Trace[X; ()]
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The two parameters A and 7, which are restricted to the
range 0 to 1, are regularization parameters to be selected ac-
cording to maximizing the leave-one-out correct classification
rate (CCR). A controls the amount of the 3; that are shrunk
towards f], while ~ controls the shrinkage of the eigenvalues
towards equality as Trace[3;(\)]/d is equal to the average of
the eigenvalues of X,(\).



Fig. 1.

D. LoOC

There exists another covariance matrix estimation formula
which was proposed by Hoffbeck and Landgrebe [17]. They
examine the diagonal sample covariance matrix, the diagonal
common covariance matrix, and some pair-wise mixtures of
those matrices. The proposed estimator has the following form:

%5(&)) = E1diag(S)) + €2 + €3 B+Eadiag(E). (11)

The elements of the mixing parameter §; =
(651,852, &)3,€54]7  are required to sum up to unity:
¥t & = 1. In order to reduce the computation cost, they
only considered three cases: ({;3,&;4) = 0, (§;1,&;4) = 0, and
(§1,&j2) = 0. They called the covariance matrix estimator
as LOOC because the mixture parameter £ was optimized by
leave-one-out cross-validation method.

IV. KLIM BASED CLASSIFIERS

Toward the ill-posed problem in discriminant analysis and
reduce the computation time in regularization parameter se-
lection, we have developed a KLIM1 estimator [23] based
on Kullback-Leibler information measure, and we assume that
the class conditional density f; for the class C'; is Gaussian
N (x,m;, ﬁj) The matrix estimation formula of KLIMI is
shown in the following:

=M (h) = hlg+ 55, (12)

where h is a regularization parameter, I is a d x d dimensional
identity matrix.

This class of formula can solve matrix singular problem
in high-dimension setting. In fact, as long as h is not too
small, Ej_l(h) exists with a finite value and the estimated
classification rate will be stable.

We also derived a KLIM2 estimator based on KLMII,
which is computed as follows:

2 h S 4+ 3
EE' )(h) = (1+ §Trace[2j + X])hls +

h2 PP
L+ (L+n)’
where ev(3X) stands for a diagonal matrix in which the

diagonal elements are the eigenvalues of 3. The following
notations are used in the above equations,

(S, +3) + (13)

n= %Trace[H(j)] (14)
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Examples of face images for two persons chosen from the ORL face database.

H(j) = i‘ZH(j), (16)

and

k
Z qy(x; — my) (x; —my)” (17)

For estimating the regularization parameter with cross-
validation is time consuming, we derived a model selection
criterion to compute the parameter h in [22]:

1 N N
h= dN3 ZZHXZ XJH (18)

i=1 j=1
V. EXPERIMENTS

In our experiments, in order to investigate the performance
of KLIM classifiers with different feature dimensionality, we
first adopt PCA to reduce data dimensionality. The inputs of the
classifiers are the selected features, and we use two different
methods (the cross-validation technique and model selection
criterion) to optimize the regularization parameters. Also we
compare the KLIM algorithm with QDA, LDA, RDA, and
LOOC algorithms in the classification of ORL face database.
Correct classification rate (CCR) and time cost are used to
evaluate the performance for each classifiers.

A. Database

All the experiments were conducted on the ORL face
database, which is a popular database in face recognition
research. This database consists of 40 persons, with each
person’s face appearing in 10 images, and comprises 400
images altogether. The images are taken at different time
instances, with different lighting conditions, facial expres-
sions (open/closed eyes, smiling/not smiling) and facial details
(glasses/no glasses). All the images were taken against a dark
homogeneous background with the persons in an upright,
frontal position, with tolerance for some movement. All of
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Fig. 2. Two dimensional projection of the first group data by PCA.
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Fig. 3. Two dimensional projection of the second group data by PCA.

the images are 112 x 92 in size. Fig. 1 shows examples of the
face images for two persons taken at different time instances.

To implement the face recognition experiment, we design
two group of experiments. In every group, we randomly select
7 persons from the ORL database, and the ORL database
is randomly partitioned into a training set and a testing set
with no overlap between them. In each experiment, four
images per person are randomly drawn for test to measure
the classification accuracy, the remain six images are used to
consist the training set and used to estimate the mean and
covariance matrices. Thus, a training set of 42 images and a
test set of 28 images are created. To show the separability of
the two group data, we reduce the dimensionality to d = 2
with PCA, as shown in Fig. 2 and Fig. 3, from which we
can see that some data overlaps from different classes after
dimension reduction with PCA. The ill-posed problem will
occur without feature dimension, and separability of the face
data is depressed since dimension reduction loses discriminant
information, so we can introduce regularization approaches to
deal with above problem.

B. Regularization Parameter Estimation

The regularization parameter in KLIM is determined by
statistical cross-validation technique (CV) or calculation by
model selection criterion (MSC). For the parameter estimation
with cross-validation, 20 h values are chosen geometry pro-
portionately between O to 1. Cross-validation is also used in
RDA and LOOC for parameter estimation. In RDA, the values
of both A and ~ are sampled over a very coarse grid, (0.0, 0.2,
0.4, 0.6, 0.8, 1.0), resulting in 36 data points. In LOOC, the
four parameters are picked according to the table in [17].

C. Experiment with different feature dimensions

We perform PCA primarily to obtain different feature
dimensionality. For the convenience of comparison, we reduce
the dimensionality of face data to seven different levels (40,
30, 25, 20, 10, 5, and 2). In experiments, we noted the correct
classification rate (CCR) and time cost for each classifiers.
Twenty five runs of each experiment were performed, and all
the results reported below are the average over the twenty five
runs.

Table I and Table III is the results of the first group. Table II
and Table IV are the results of the second group. In Table I and
Table II, the CCR is reported in percentage, and the value in
parentheses represents the standard deviation. Furthermore, the
notation N/A represent that the covariance matrix is singular,
in which case reliable results can not be obtained. As it can
be seen from the Table I and II, the feature dimension is
critical in discriminant analysis in face recognition. The ill-
posed problem will degrade the performance since classifiers
are trained with higher feature dimension and fewer samples,
while discriminant information will degrade if the feature
dimension is reduced to very low. Although some samples can
be separated in high dimension space, they cannot be separated
anymore when projected into a reduced dimension space.

In both group experiments, QDA usually produces good
results when training sample number is sufficient d < 6, but
it faces ill-posed problems when the dimensionality is high
d > 6 and the results will be unreliable. LDA achieves a best
performance 95.29% with d = 20 in the first group experiment,
and 99.71% with d = 25 in the second group experiment. RDA
performs stable in the experiments with the best performance
97.86% with d = 40 and 100% with d = 40. LOOC is better
in some experiments with an average performance 97.605%
and 98.29% with d > 10, but it gets worse when we reduce
the dimensionality to d = 2 with PCA. Compared with the
above discriminant classifiers, KLIM’s performance is stable
with d > 2 both in KLIM1 and KLIM2 approaches. KLIM1
achieves the highest average performance 95.1014%, while
RDA is 94.8171% in the first group experiment, and equivalent
result 95.4186% in the second group experiment.

D. Experiment comparison with time cost

The time cost of the six kind of classifiers are compared
in Table III and Table IV for the two group data, from which
we can see that the training and testing time increase with
the increasing of the feature dimensions. In the experiments,



COMPARISON RESULTS OF KLIM1, KLIM2, QDA, LDA, RDA, AND LOOC APPROACHES WITH DIFFERENT FEATURE DIMENSIONS FOR THE FIRST GROUP

TABLE I

EXPERIMENT DATA.

COMPARISON RESULTS OF KLIM1, KLIM2, QDA, LDA, RDA, AND LOOC APPROACHES WITH DIFFERENT FEATURE DIMENSIONS FOR THE SECOND

GROUP EXPERIMENT DATA.

Classifier d =40 d=30 d =25 d=20 d=10 d=5 d=2
QDA N/A N/A N/A N/A N/A | 72.86(0.0155) | 88.00(0.0032)
LDA N/A | 94.86(0.0033) | 95.29(0.0018) 95.71(0.0012) | 92.14(0.0019) | 92.14(0.0017) | 85.43(0.0020)
RDA 97.86(0.0009) | 97.29(0.0010) | 96.86(0.0013) 97.14(0.0014) | 95.14(0.0015) | 92.14(0.0010) | 87.29(0.0042)

LOOC 97.71(0.0008) | 97.57(0.0009) | 97.57(0.0009) 97.57(0.0006) | 91.43(0.0023) | 89.29(0.0019) | 86.86(0.0033)
KLIMIMSC) | 96.43(0.0008) | 96.14(0.0007) | 96.71(0.0008) 96.29(0.0008) | 95.14(0.0011) | 94.29(0.0011) | 90.71(0.0011)
KLIM2(MSC) | 93.00(0.0011) | 91.43(0.0010) | 91.29(0.0010) 91.14(0.0010) | 87.00(0.0038) | 70.29(0.0142) N/A

KLIMI(CV) 96.57(0.0009) | 96.29(0.0007) | 96.29(0.0008) 96.14(0.0008) | 94.86(0.001 ) 93.57(0022) 88.14(0035)
KLIM2(CV) 94.57(0.001) | 94.14(0.0014) 93(0.0022) | 0.9343(0.0027) 89(0.0059) | 82.29(0.0114) 90.14(0.004)
TABLE I

Classifier d =40 d =730 d=25 d=20 d=10 d=5 d=2
QDA N/A N/A N/A N/A N/A 80.86(0.014) | 74.29(0.0061)
LDA N/A | 99.439(0.0003) | 99.71(0.0002) | 99.43(0.0002) | 99.57(0.0001) 96(0.0018) | 80.43(0.0033)
RDA 100(0) 99.86(0) | 99.57(0.0002) 99.86(0) | 99.71(0.0002) | 97.57(0.0019) 80(0.0035)

LOOC 98.14(0.0011) 98.29(0.001) 98.29(0.001) 98.29(0.001) 98(0.0011) 93(0.0026) 79.86(0.003)
KLIM1(MSC) 99(0.0003) 99.29(0.0002) | 99.29(0.0002) | 99.43(0.0002) 100(0) | 97.43(0.0013) | 75.71(0.0041)
KLIM2(MSC) | 98.71(0.0004) 98.57(0.0005) | 98.43(0.0005) | 98.57(0.0004) | 98.57(0.0004) | 93.14(0.0024) N/A

KLIMI(CV) 99(0.0003) 99.29(0.0002) | 99.29(0.0002) | 99.43(0.0002) 100(0) | 97.43(0.0031) | 75.71(0.0053)
KLIM2(CV) 98.71(0.0005) 98.57(0.0004) | 98.43(0.0004) | 98.57(0.0004) | 98.57(0.0020) | 93.14(0.0033) N/A
TABLE III
COMPARISON TIME COST OF KLM1, KLIM2, QDA, LDA, RDA, AND LOOC APPROACHES FOR THE FIRST GROUP EXPERIMENT DATA.
Classifier d =40 d =130 d=25 d=20 d=10 d=>5 d=2
QDA Train Time 0.0031 0.0018 0.0019 0.0012 0.0006 0.0019 | 0.0056
Test Time 1.0563 0.985 1.0438 1.2307 1.0555 0.05 0.038
LDA Train Time 0.0031 0.0018 0.0019 0.0012 0.0006 0.0019 | 0.0056
Test Time 1.3825 0.315 0.2407 0.185 0.0882 0.0495 | 0.0344
RDA Train Time 19.7425 | 10.9068 9.225 7.7138 5.45 3.4806 | 0.9382
Time of Para Estimation | 19.7418 | 10.9056 9.2238 7.7132 5.4494 3.4806 | 0.9369
Test Time 0.5812 0.3888 0.2912 0.2288 0.1263 0.0844 | 0.0331
LOOC Train Time 0.507 0.3888 0.2937 0.223 0.1056 0.1169 | 0.0569
Time of Para Estimation 0.507 0.3888 0.2931 0.2224 0.105 0.1162 | 0.0569
Test Time 0.3711 0.2375 0.182 0.147 0.0719 0.0482 | 0.0325
KLIM1(MSC) Train Time 0.0031 0.0018 0.0019 0.0012 0.0006 0.0019 | 0.0056
Time of Para Estimation 0.0031 0.0018 0.0019 0.0012 0.0006 0.0019 | 0.0056
Test Time 0.5219 0.3257 0.2351 0.1726 0.0806 0.0498 0.035
KLIM2(MSC) Train Time 0.0219 0.014 0.0136 0.0106 0.0076 0.0088 0.01
Time of Para Estimation 0.0031 0.0018 0.0019 0.0012 0.0006 0.0019 | 0.0056
Test Time 0.4994 0.2986 0.2269 0.1644 0.0787 0.0514 | 0.0387
KLIM1(CV) Train Time 38.6295 | 31.7069 39.305 | 37.1488 | 32.3725 | 10.0123 | 1.5923
Time of Para Estimation | 38.6295 | 31.7069 39.305 | 37.1488 | 32.3725 | 10.0123 | 1.5923
Test Time 0.6143 0.4036 0.8868 0.5881 0.17 0.0913 | 0.0344
KLIM2(CV) Train Time 40.2832 | 32.7619 | 41.8126 | 39.9131 | 35.6219 22.1 | 2.1444
Time of Para Estimation | 40.2638 | 32.7495 41.8 39.905 | 35.6187 | 22.0951 | 2.1389
Test Time 0.5557 0.3356 0.5786 0.4481 0.2188 0.0526 | 0.0338

we also give the time cost of the parameters estimation with
cross-validation and estimation criterion. The computation
complexity of LDA and QDA is fixed as the baseline. RDA
is the slowest classifiers for both its parameter tuning and
training which involves two-dimensional optimization, while
LOOC and KLIM only require one-dimension optimization
computation complexity. The covariance matrix estimation in
KLIM1 is simple while that of KLIM?2 is a little complex.
Also for time complexity, the training time of KLIMI is the
same with RDA, which illustrates that the optimal / in the
computation of covariance matrix adds the recognition rate
and almost without increasing training time. In the experiments
with KLIM based approaches, two parameters calculation ways
are compared in Table III and Table IV. The cross-validation

takes about 40 seconds to parameters estimation for d = 40,
while the estimation criterion only takes about 0.003 seconds.
The speed is improved above 3000 times for KLIM based
approaches.

From the experiments with ORL face data, we can find
QDA is poor for face recognition problem. LDA is fast
but the performance will degrade with the increasing of the
feature dimensionality. RDA always gives satisfactory results
with some more computations in optimizing regularization
parameters, and LOOC could be better under some specific
situations. Considering both the time cost and classification
rates, the performance of KLIM classifiers is better than other
classifiers in the high dimension-setting case.



TABLE IV
COMPARISON TIME COST OF KLM1, KLIM2, QDA, LDA, RDA, AND LOOC APPROACHES FOR THE SECOND GROUP EXPERIMENT DATA.

Classifier d =40 d =30 d=25 d=20 d=10 d=5 d=2
QDA Train Time 0.0031 0.0013 0.0038 0.0013 0.0018 | 0.0019 | 0.0044
Test Time 1.1995 1.2843 1.2393 1.4333 1.3813 | 0.0506 | 0.0356

LDA Train Time 0.0031 0.0013 0.0044 0.0013 0.0018 | 0.0019 | 0.0044
Test Time 1.643 0.4002 0.2857 0.2074 0.1032 | 0.0526 | 0.0376

RDA Train Time 20.5137 11.025 | 10.3994 7.8644 5.6481 | 3.4326 | 0.9619
Time of Para Estimation | 20.5131 | 11.0226 | 10.3981 7.8638 5.6481 | 3.4326 0.96

Test Time 0.588 0.3507 0.2831 0.2162 0.122 | 0.0857 | 0.0368

LOOC Train Time 0.53 0.3961 0.31 0.2401 0.113 | 0.1144 | 0.0557
Time of Para Estimation 0.5294 0.3955 0.31 0.2401 0.113 | 0.1144 | 0.0557

Test Time 0.3901 0.2457 0.1888 0.1499 0.0732 | 0.0519 | 0.0337

KLIM1(MSC) Train Time 0.0037 0.0019 0.0063 0.0013 0.0024 | 0.0019 | 0.0044
Time of Para Estimation 0.0037 0.0019 0.005 0.0013 0.0024 | 0.0019 | 0.0044

Test Time 0.5438 0.3261 0.2387 0.1769 0.085 | 0.0536 | 0.0355

KLIM2(MSC) Train Time 0.0211 0.0139 0.0156 0.0106 0.0054 | 0.0074 | 0.0094
Time of Para Estimation 0.0031 0.0013 0.0044 0.0013 0.0018 | 0.0019 | 0.0044

Test Time 0.55 0.3313 0.2438 0.1844 0.0864 | 0.0558 | 0.0287

KLIMI(CV) Train Time 46.3682 | 41.2437 | 43.7668 | 39.5006 | 39.5073 | 9.5357 | 1.6012
Time of Para Estimation | 46.3682 | 41.2431 | 43.7668 | 39.5006 | 39.5073 | 9.5357 | 1.6006

Test Time 0.6037 0.3886 1.0444 1.0556 0.572 0.09 | 0.0344

KLIM2(CV) Train Time 56.3464 | 49.2188 | 46.8118 | 43.6068 | 39.0231 | 23.438 | 2.1225
Time of Para Estimation | 56.3275 | 49.2039 | 46.8013 | 43.5976 | 39.0168 | 23.433 | 2.1187

Test Time 0.5649 0.3507 1.075 1.0276 0.7219 | 0.0514 | 0.0338

VI. CONCLUSION

In this paper, we investigated the performance of KLIM
algorithm with ORL face data sets, and compared it with
QDA, LDA, RDA, and LOOC approaches. The performance
of KLIM classifiers is better than other classifiers in the high
dimension-setting case, and has a stable performance with the
change of feature dimensionality.

The classification accuracy of KLIM is directly associated
with the regularization parameter. We compared optimized reg-
ularization parameter by our derived model selection criterion
and cross-validation method. Experiment shows that the model
selection criterion obtains a faster and more accuracy results
compared with cross-validation method.
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