
978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

Dual-cache Structure Based Large Scale Texture
Mapping for Real-time Terrain Rendering

Dong Tian
Image Processing and Pattern Recognition Laboratory

Beijing Normal University
Beijing 100875, P.R. China
tiandong@mail.bnu.edu.cn

Xiaodong Wang
Image Processing and Pattern Recognition Laboratory

Beijing Normal University
Beijing 100875, P.R. China
xd_wang@mail.bnu.edu.cn

Xin Zheng
Image Processing and Pattern Recognition Laboratory

Beijing Normal University
Beijing 100875, P.R. China

zhengxin@bnu.edu.cn (Corresponding Author)

Abstract—There are two key problems in efficient large scale

texture mapping for terrain rendering— efficient data
organization and real time data updating in memory. In order to
solve these problems, in this paper we propose a quadtree based
indexing method to organize multi-resolution images and to fast
retrieve data from disk; For memory updating, we present a real
time dual-cache structure based updating method, which
effectively reduces the frequency of data refresh. We also
innovatively use a wavelet image enhancement algorithm to
enhance original terrain texture, which obtain richer edge
information and give us a more realistic effect in terrain
rendering. Through the analysis of storage efficiency and
rendering speed of our experiment, this dual-cache structure
based method solves rendering speed and memory limit problems
perfectly.

Keywords—Large scale texture mapping; Dual-cache

structure; Image enhancement; Quadtree; Virtual reality

I. INTRODUCTION
 Virtual reality technology [1] is more and more important
today. Real time terrain rendering is one of the key problems
in this area. In order to obtain more real effect, high resolution
satellite texture image has been used in many virtual
environments. But the data size of these images is very large
and exceeds the loading ability of the RAM in PC and
graphics cards. We have to piece the large image into smaller
patches and load one patch each time. But when the viewport
is far away or high and more virtual scene comes into our field
of view, this method can not deal with the huge data. In 2004,
Hoppe, and others proposed a new geometry-clipmap[2]
method for large scale terrain-rendering, which generated
geometry LOD[3，4] as the same way of texture Mipmap[5] and
cut interested regions on every level [6，7，8]. It is an effective
solution in the memory limitations of terrain data loading. But
as the texture data significantly more huge than terrain’s, we

still need a more effective way to solve the problem of texture
processing.
 There are two key problems in efficient large scale texture
mapping for terrain rendering. One is searching a rapid and
effective texture organization and indexing way in the disk.
Because terrain texture image stored in disk is usually
tremendous. The scene should be dynamically refreshed while
viewpoint moves and texture retrieval is a continuous process,
so we need a fine data organization and indexing method for
facilitate data retrieval with low frequency of data IO. Texture
updating method in RAM and VRAM directly affects the
display efficiency, so it is another key problem in efficient
large scale texture mapping. By now the two problems
mentioned above haven’t been satisfactorily resolved. In order
to solve the first problem, in this paper we propose a quadtree
based indexing method to organize multi-resolution image
data and to fast retrieve data from disk; For memory updating,
we present a real time dual-cache structure based updating
method. By this way, texture remains part of quadtree
structure in the memory and then we generate the second
cache by cutting invalid edge [9], which effectively reduces the
frequency of data refresh. In the process of generating multi-
resolution texture structures, some match artifacts between
different layers of texture image are introduced for the reason
of detail lost. In order to debase these artifacts we also
enhance original texture’s edges innovatively to obtain richer
edge information by use a wavelet image enhancement
algorithm, which give us a more realistic effect in terrain
rendering. Through the analysis of storage efficiency and
rendering speed of our experiment, dual-cache structure
method solves rendering speed and memory limit problems
perfectly.
 The organization of this paper is as follows: In the next
section, we will give the achievement of quadtree based
indexing technology used in texture preprocess. In section 3,
we will present our dual-cache structure based updating

method in real time rendering. In Section 4, we will give the
image enhancement effect by using wavelet method to our
work. In section 5, we will give some result of our
experiments and last give the conclusions and works in the
future.

II. QUADTREE BASED INDEXING

A. Quadtree Encoding
 Quadtree code is a kind of encoding method which is used
to designate a particular block in the overall texture.

(a) (b)

Figure 1. Quadtree encoding

 Figure 1 (a) shows the coding rule of quadtree, the texture
size of 2n were divided into four child nodes and then encoded
them as shown in figure, thus we get four simple quadtree
codes 0,1,2,3 in anti-clockwise. Then we divide each node and
encode them with the same rules, to which we add its father
node’s quadtree code, as child node 3 shown in figure 1 (b).
Repeating this operation, we get all quadtree codes of the
original texture images, as shown in figure 2.

Figure 2. The structure of the quartree codes

 This code reflects the position of texture region in the
overall texture picture, and we can get the current texture
region’s father region code quickly by its quadtree code. If the
length of the current texture region’s code is n, its father
region’s code is its first n-1digits.

B. Texture Preprocess
The data of the original texture is tremendous and can not

be read into the memory in one time, therefore need a
preprocess for data organization, which including two parts :
Down sampling and Segmentation.

 Down sampling [10] is used to get lower resolutions of the
original texture images. We use the simplest sampling method-
getting the average of four adjacent pixels as a new pixel
value. One down sampling process will get half resolution of
the texture. Repeating this operation, we get a serial of
textures, which buildup a texture pyramid and are encoded
with 0 1 2 3 …from the original one.
 Segmentation is to cut the textures in the texture pyramid
into some small patches, whose size helps to both read the data
into memory one time and do not waste system bandwidth.
 We organized the textures patches with quratree code and
save them in the disk with name of clip[-a][-b], where clip is
the original texture’s name, a represents the level of the
pyramid this texture patch belonging to and b is the texture
patch’s quadtree code in layer a.

III. DUAL-CACHE STRUCTURE BASED TEXTUR UPDATING
We build up a dual-cache structure in order to debase the

frequency of data exchange both from disk to memory and
from memory to video memory.

A. Exchange Texture Data between Memory and Disk
 Because of memory limit, we assign a small viewport
around viewpoint. On each layer of texture pyramid，only
few (up to 4) texture patches near to the viewpoint can be read
into the memory. With the movement of the viewport, we
must update data from external memory (disk) to the interior
memory. But the reading way just relying on the quadtree’s
father-child relationship does not meet our demands. As
shown in figure 3, the current viewpoint drops on the right
bottom corner of the texture patch encoded with 300.
According to the quadtree’s father-child relationship, we
should read patch 300, 301, 302 and 303 into the memory.
Now we will face a problem: the texture we read into the
memory can not cover current viewport (red box in figure 3).
At this time, the texture we should to read is 122,123,300,301.
And only by this way, we can avoid the range of the viewport
beyond the texture in memory.

Figure 3. Read textures from the Disk

Next, we give the method we used to obtain the disk texture
patches in accordance with the current view port:
 First, we define a structure named “fourimagestruct” as
following, which is used to store the texture data in the same
level that is read from the hard disk
struct fourimagestruct{ //used to storage data from disk
 // coordinate of current storage area
 GLfloat x;

Root

viewpoint

 GLfloat y;
 BYTE * data;
};
Where, “data” stores the texture data consisted by four hard
disk texture patches, (x, y) is the coordinate of bottom right
corner of the current texture in the overall texture. Second we
calculate the quadtree code of texture patche on lower level on
which the viewpoint dropped. This code is used to determine
which four texture patches we should read.
 As shown in figure 4, ABCDEFGI is nine adjacent texture
patches in the disk. For example, if the viewpoint drops on the
E-district, thus E-district was divided into four sub-regiones
E1, E2, E3, E4, and we get the quadtree code “choosecode”
which is deeper than E’s quadtree code, then “choosecode”
helps to decide which four adjacent regions should be read. If
viewpoint drops on E1, we should read four patches DEAB; if
on E2, we read four patches EFBC; If on E3, we read four
patches GHDE, if the E4, read four patches HIEF. After
identifying four texture patches which should be read, we can
easily know their quadtree codes by our new method: as is
shown, the code of E can be calculate by removing the final
value of the code “choosecode”. Next we determine the other
three patche’s quadtree code according to E’s quadtree code
and the position of E in the four patches.

Figure 4. Loaded patches choice on disk

According to the symmetry of patches we can easily get the
other three patches’ quadtree codes: First identify the final
value of the four patches’ code, then from the order of which
we deduce their father patches’ relations. The father patches’
relationship can be summarized in the following four
situations as shown in figure 5.
 From the four texture patches’ father textures’ relationship,
we can get the last second digit of the four patches’ Quadtree
code, and then we can continue deduce the relationship of the
higher level of texture in quadtree with the second four, and
then we get the last third values. Repeating this processing, we
can get the whole quadtree code of the four texture patches.
Plus four texture’s level number we can obtain the file name of
the four texture patches on the disk which will be read into
memory. The most crucial step in this method is how to get the
relation of the father textures from the child textures’ quadtree
code.

 After deductions, we find that all the cases of the value of
four adjacent texture patches in quadtree code have 16 kinds
of style as shown in figure 6.

(a) (b)

(c) (d)
Figure 5. (a) Four child texture patches 0123 belong to the same father
texture patche. (b) Four child texture patches 0123 belong to two up-down
different texture patches. (c)Four child texture patches 0123 belong to two

left-right different texture patches. (d)Four child texture patches 0123 belong
to different texture patches.

Figure 6. 16 Distributions

 As shown in figure 6, we find that in one row, the values
in the bottom left corner of the units are same, but the values
in the top right corner are different; in one column, the values
in the top right corner of the units are same, but the values in
the bottom left corner are different. So the 16 units can be
divided by the value of the bottom right and top left corner
values.
 Finally we relate each unit to a map in figure 5, and set up
the following response:

• Figure 5 (a) counterparts in the case of zero
• Figure 5 (b) counterparts in the case of one
• Figure 5 (c) counterparts in the case of two
• Figure 5 (d) counterparts in the case of three

B. Texture Updating in the memory
While the viewpoint moves, the texture in the memory

need to be updated in real-time, but the frequency of updating
will seriously affect the speed of rendering. For this problem,
we propose a dual-cache structure. The first cache stores
layers of texture which are read from the disk, the texture size
is greater than the size of the viewport; and the second cache
memory stores layers of textures cut from the first cache with
size equal to the viewport. So, a short-distance moving of the
viewpoint will not result in that the viewport exceed the scope
of texture stored in the first cache, particularly on lower
resolution layers. We just need update the second cache from
the first cache’s data. Only if the viewport is out of the scope,
we reread data from the disk. So most timely, the viewport can
slide on the texture in the first cache while the viewpoint
moves. It will greatly avoid frequent data exchanging between
the hard disk and the memory and improve the rendering
speed.

(a) (b)
Figure 7. (a) Position of the viewport (b) Dual-cache structure

 As is shown in Figure 7, MNST is first cache constituted
by four texture patches, ABCD is the scope of the viewport,
which can slides on MNST. The data in the viewport is also
stored in the second cache, it will be bound and read into the
video memory.

C. Video Memory Updating
Each movement of the viewpoint will result in the data

updating of the viewport, this will greatly reduce the
efficiency of the system, so here we apply L-district updating
technology to update texture in video memory.

Figure 8. L-district updating process

As shown in Figure 8, the rectangle window is a texture
with size same to the viewport stored in the video memory. If
the viewpoint changes, the data of the texture memory needs
to be updated. Obviously, there is a common region between
the old data and new data (the fixed region), this region does
not change both before and after the updating, and just three
regions A, B, C change, so we just change the data in L area as
we need update the texture. This processing is shown in the
third and fourth steps in figure 8, when the viewpoint moves to
the right corner, data of regions A, B, C in step 3 must be
updated. We copy A’s texture data to the bottom region, copy
texture data of B to the left region, copy the data of C which
locate in the top right corner to the bottom left corner. Thus we
complete the data updating of the video memory.

IV. IMAGE ENHANCEMENT
In the texture mapping process, the use of multi-resolution

technology lead to some loss of the details in terrain texture
and introduce image blur and some match artifacts between
different layers of texture image. We applied a wavelet-based
image enhancement method [11] to enhance the texture before
preprocess, which can increase the details of the texture,
Figure 9.(b) shows the original texture with two different
resolutions(left part is half resolution of right part). We
enhanced the lower resolution part in this image as shown in
figure 9.(a). We can find that the blurred image in (b) looks
more clear.

(a)

(b)

Figure 9. (a) Enhanced texture (b) Original texture

V. EXPERIMENT
By using Visual C + + and OpenGL, we establish a 3D

navigating system by using our method on a PC (Pentium
(R) D 2.8GHz CPU, 1.00GB memory, NVIDIA 256MB video
card.) DEM used to be tested is size of 1202 x 802, texture size

viewpoin
t

fixed
region

viewpoint

fixed
region

is 10000 × 6667. Each pixel occupies three bytes and viewport
is size of 256 × 256(pixels). We establish cache 1 with
seven layer and cache 2 with seven layer. All the storage
space requires: 256 × 256 (texture pixels) × 7 (levels) +512 ×
512 (texture pixels) × 7 = 6.5MB, which is much less than
Mipmap(shown in Table I). the results of the experiment is: the
time of the data exchanging between disk and memory for one
time is about 30 ms, memory separate updating time is about
20 ms, L-area technology helps to short the updating time to
about 8 ms . As is shown in Table II, The rate of display
is about 53 fps.

TABLE I. THE STORAGE SPACE OF MIPMAP AND OUR METHOD

Method Mipmap Our Method
First Cache Second Cache 5.25M 1.31M

Total Space 365M 6.56M

TABLE II. FPS OF SOME VIEWPORT SIZE OF OUR METHOD

Window size Max Min Mean

256×256(pixel) 60fps 46 fps 53 fps

Figure 10.(a) shows a mesh terrain which has more than
one levels, (b) is the corresponding mapping terrain, the red
lines mark different resolution images we used. We give
another overall effect of the terrain in Figure 11.

VI. CONCLUSION
We do not use complicated calculations to complete disk

documents’ retrieval, but adopt pattern matching method on the
basis of pre-generating quadtree codes’ fixed model, which
greatly increase the speed of retrieval and save time for the disk
data’s obtaining. Quadtree and dual-cache is used for memory
texture ‘s handling ,which reduce the frequency of data
updating effectively. In the early state of the pretreatment, we
weighted enhanced the textures, which effectively improves
visual effect. The technology fusing double quadtree and dual-
cache achieved Clipmap terrain mapping perfectly.

ACKNOWLEDGMENT
The research work described in this paper was supported by

grant from the National Natural Science Foundation of China
(Project No.60703070) and grant from the National Natural
Science Foundation of China (Project No.60675011)

REFERENCES
[1] Jiazhu Wu、Gang Dang、Huafeng Liu. Visual simulation technology

and its application[M]. Xi’an：Xi'an Electronic Science and Technology
University. 2001. 213-215.

[2] Frank Losasso, Hugues Hoppe. Geometry clipmaps. terrain rendering
using nested regular grids，ACM Transactions on Graphics. New York:
Aug 2004. Vol. 23, Iss. 3

[3] Haifei Liu, Deyan Zang, Jianren Chen. LOD terrain simplification and
geometric deformation correction based on Quadtree. Mapping and
space geographic information，2006

[4] Zhao Youbing, Zhou Ji, Shi Jiaoying, Pan Zhigeng，A Fast Algorithm
For Large Scale Terrain Walkthrough，CAD/Graphics’2001

(a)

(b)

Figure 10. (a) Multi-resolution of terain polygons. (b)With texture mapping

Figure 11. Overall effext

[5] Ying Du，Yuguo Wu，Xiong You. Research of Mipmap Textures for
Virtual Global Terrain Environmen. Mapping Science and Technology
Journal 2006

[6] Leon Shirman， and Yakov Kamen，A new look at mipmap level
estimation techniques. Computers & Graphics ,Volume 23, Issue 2,
April 1999, 223-231

[7] Chih-Chun Chen, Jung-Hong Chuang, , Bo-Yin Lee, Wei-Wen Feng and
Ting Chiou，Rendering complex scenes using spatial subdivision and

textured LOD meshes，Computers & Graphics ，Volume 27, Issue 2,
April 2003, 189-204

[8] Zhengliang Huang，The LOD generation of multi-resolution terrain
based on the view port，Ship Electronic Engineering,Issue 3, 2007

[9] Jiang, Zhongding ，Luo, Xuan Mao, Yandong Zang, Binyu Lin, Hai
Bao, Hujun，Interactive Browsing of Large Images on Multi-projector
Display Wall System，Springer Berlin / Heidelberg，2007

[10] Tam!as Frajka, Kenneth Zeger. Downsampling dependent upsampling
ofimages. Signal Processing: Image Communication 19 (2004) 257–265

[11] Hai-feng Cui1, Xin Zheng, Wen-cheng Wang，A Wavelet-based Image
Enhancement Algorithm For Real Time Multi-resolution Texture
Mapping,2006

