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Abstract—There are two key problems in efficient large scale 

texture mapping for terrain rendering— efficient data 
organization and real time data updating in memory. In order to 
solve these problems, in this paper we propose a quadtree based 
indexing method to organize multi-resolution images and to fast 
retrieve data from disk; For memory updating, we present a real 
time dual-cache structure based updating method, which 
effectively reduces the frequency of data refresh. We also 
innovatively use a wavelet image enhancement algorithm to 
enhance original terrain texture, which obtain richer edge 
information and give us a more realistic effect in terrain 
rendering. Through the analysis of storage efficiency and 
rendering speed of our experiment, this dual-cache structure 
based method solves rendering speed and memory limit problems 
perfectly. 
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I.  INTRODUCTION 
     Virtual reality technology [1] is more and more important 
today. Real time terrain rendering is one of  the key problems 
in this area. In order to obtain more real effect, high resolution 
satellite texture image has been used in many virtual 
environments. But the data size of these images is very  large 
and exceeds the loading ability of the RAM in PC and 
graphics cards. We have to piece the large image into smaller 
patches and load one patch each time. But when the viewport 
is far away or high and more virtual scene comes into our field 
of view, this method can not deal with the huge data. In 2004, 
Hoppe, and others proposed a new geometry-clipmap[2] 
method for large scale terrain-rendering, which generated 
geometry LOD[3，4] as the same way of texture Mipmap[5] and 
cut interested regions on every level [6，7，8]. It is an effective 
solution in the memory limitations of terrain data loading. But 
as the texture data significantly more huge than terrain’s, we 

still need a more effective way to solve the problem of texture 
processing. 
     There are two key problems in efficient large scale texture 
mapping for terrain rendering. One is searching a rapid and 
effective texture organization and indexing way in the disk. 
Because terrain texture image stored in disk is usually 
tremendous. The scene should be dynamically refreshed while 
viewpoint moves and texture retrieval is a continuous process, 
so we need a fine data organization and indexing method for 
facilitate data retrieval with low frequency of data IO. Texture 
updating method in RAM and VRAM directly affects the 
display efficiency, so it is another key problem in efficient 
large scale texture mapping. By now the two problems 
mentioned above haven’t been satisfactorily resolved. In order 
to solve the first problem, in this paper we propose a quadtree 
based indexing method to organize multi-resolution image 
data and to fast retrieve data from disk; For memory updating, 
we present a real time dual-cache structure based updating 
method. By this way, texture remains part of quadtree 
structure in the memory and then we generate the second 
cache by cutting invalid edge [9], which effectively reduces the 
frequency of data refresh. In the process of generating multi-
resolution texture structures, some match artifacts between 
different layers of texture image are introduced for the reason 
of detail lost. In order to debase these artifacts we also 
enhance original texture’s edges innovatively to obtain richer 
edge information by use a wavelet image enhancement 
algorithm, which give us a more realistic effect in terrain 
rendering. Through the analysis of storage efficiency and 
rendering speed of our experiment, dual-cache structure 
method solves rendering speed and memory limit problems 
perfectly. 
     The organization of this paper is as follows: In the next 
section, we will give the achievement of quadtree based 
indexing technology used in texture preprocess. In section 3, 
we will present our dual-cache structure based updating 



         

method in real time rendering. In Section 4, we will give the 
image enhancement effect by using wavelet method to our 
work. In section 5, we will give some result of our 
experiments and last give the conclusions and works in the 
future. 

II. QUADTREE BASED INDEXING 

A. Quadtree  Encoding  
     Quadtree code is a kind of encoding method which is used 
to designate a particular block in the overall texture. 

      
(a)                                                   (b) 

Figure 1.  Quadtree encoding     

     Figure 1 (a) shows the coding rule of quadtree, the texture 
size of 2n were divided into four child nodes and then encoded 
them as shown in figure, thus we get four simple quadtree 
codes 0,1,2,3 in anti-clockwise. Then we divide each node and 
encode them with the same rules, to which we add its father 
node’s quadtree code, as child node 3 shown in figure 1 (b). 
Repeating this operation, we get all quadtree codes of the 
original texture images, as shown in figure 2. 

 
Figure 2.   The structure of the quartree codes 

     This code reflects the position of texture region in the 
overall texture picture, and we can get the current texture 
region’s father region code quickly by its quadtree code. If the 
length of the current texture region’s code is n, its father 
region’s code is its first n-1digits. 

B. Texture Preprocess 
The data of the original texture is tremendous and can not 

be read into the memory in one time, therefore need a 
preprocess for data organization, which including two parts : 
Down sampling and Segmentation.  

     Down sampling [10] is used to get lower resolutions of the 
original texture images. We use the simplest sampling method-
getting the average of four adjacent pixels as a new pixel 
value. One down sampling process will get half resolution of 
the texture. Repeating this operation, we get a serial of 
textures, which buildup a texture pyramid and are encoded 
with 0 1 2 3 …from the original one. 
     Segmentation is to cut the textures in the texture pyramid 
into some small patches, whose size helps to both read the data 
into memory one time and do not waste system bandwidth. 
     We organized the textures patches with quratree code and 
save them in the disk with name of clip[-a][-b], where clip is 
the original texture’s name, a represents the level of the 
pyramid this texture patch belonging to and b is the texture 
patch’s quadtree code in layer a. 

III. DUAL-CACHE STRUCTURE BASED TEXTUR UPDATING  
We build up a dual-cache structure in order to debase the 

frequency of data exchange both  from disk to memory and 
from memory to video memory. 

A. Exchange Texture Data between Memory and Disk 
    Because of memory limit, we assign a small viewport 
around viewpoint. On each layer of texture pyramid，only 
few (up to 4) texture patches near to the viewpoint can be read 
into the memory. With the movement of the viewport, we 
must update data from external memory (disk) to the interior 
memory. But the reading way just relying on the quadtree’s 
father-child relationship does not meet our demands. As 
shown in figure 3, the current viewpoint drops on the right 
bottom corner of the texture patch encoded with 300. 
According to the quadtree’s father-child relationship, we 
should read patch 300, 301, 302 and 303 into the memory. 
Now we will face a problem: the texture we read into the 
memory can not cover current viewport (red box in figure 3). 
At this time, the texture we should to read is 122,123,300,301. 
And only by this way, we can avoid the range of the viewport 
beyond the texture in memory. 

 
Figure 3.  Read textures from the Disk  

Next, we give the method we used to obtain the disk texture 
patches in accordance with the current view port: 
     First, we define a structure named “fourimagestruct” as 
following, which is used to store the texture data in the same 
level that is read from the hard disk  
struct fourimagestruct{   //used to storage data from disk 
                    // coordinate of current storage area 
    GLfloat   x; 
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 GLfloat   y; 
               BYTE *           data; 
}; 
Where, “data” stores the texture data consisted by four hard 
disk texture patches, (x, y) is the coordinate of bottom right 
corner of the current texture in the overall texture. Second we 
calculate the quadtree code of texture patche on lower level on 
which the viewpoint dropped. This code is used to determine 
which four texture patches we should read. 
     As shown in figure 4, ABCDEFGI is nine adjacent texture 
patches in the disk. For example, if the viewpoint drops on the 
E-district, thus E-district was divided into four sub-regiones 
E1, E2, E3, E4, and we get the quadtree code “choosecode” 
which is deeper than E’s quadtree code, then “choosecode” 
helps to decide which four adjacent regions should be read. If 
viewpoint drops on E1, we should read four patches DEAB; if  
on E2, we read four patches EFBC; If on E3, we read four 
patches GHDE, if the E4, read four patches HIEF. After 
identifying four texture patches which should be read, we can 
easily know their quadtree codes by our new method: as is 
shown, the code of E can be calculate by removing the final 
value of the code “choosecode”. Next we determine the other 
three patche’s quadtree code according to E’s quadtree code 
and the position of E in the four patches. 

 
Figure 4.  Loaded patches choice on disk 

According to the symmetry of patches we can easily get the 
other three patches’ quadtree codes: First identify the final 
value of the four patches’ code, then from the order of which 
we deduce their father patches’ relations. The father patches’ 
relationship can be summarized in the following four 
situations as shown in figure 5. 
   From the four texture patches’ father textures’ relationship, 
we can get the last second digit of the four patches’ Quadtree 
code, and then we can continue deduce the relationship of the 
higher level of texture in quadtree with the second four, and 
then we get the last third values. Repeating this processing, we 
can get the whole quadtree code of the four texture patches. 
Plus four texture’s level number we can obtain the file name of 
the four texture patches on the disk which will be read into 
memory. The most crucial step in this method is how to get the 
relation of the father textures from the child textures’ quadtree 
code.  

    After deductions, we find that all the cases of the value of 
four adjacent texture patches in quadtree code have 16 kinds 
of style as shown in figure 6.     

   
(a)         (b) 

   

(c) (d)  
Figure 5.  (a)  Four child texture patches 0123 belong to the same father 
texture patche.  (b) Four child texture patches 0123 belong to two up-down 
different texture patches. (c)Four child texture patches 0123 belong to two 

left-right different texture patches. (d)Four child texture patches 0123 belong 
to different texture patches. 

   

 

 

 

 
 

Figure 6.  16 Distributions 

   As shown in figure 6, we find that in one row, the values 
in the bottom left corner of the units are same, but the values 
in the top right corner are different; in one column, the values 
in the top right corner of the units are same, but the values in 
the bottom left corner are different. So the 16 units can be 
divided by the value of the bottom right and top left corner 
values. 
      Finally we relate each unit to a map in figure 5, and set up 
the following response:  

• Figure 5 (a) counterparts in the case of zero  
• Figure 5 (b) counterparts in the case of one  
• Figure 5 (c) counterparts in the case of two  
• Figure 5 (d) counterparts in the case of three  

     
 



         

B. Texture Updating in the memory 
While the viewpoint moves, the texture in the memory 

need to be updated in real-time, but the frequency of updating 
will seriously affect the speed of rendering. For this problem, 
we propose a dual-cache structure. The first cache stores 
layers of texture which are read from the disk, the texture size 
is greater than the size of the viewport; and the second cache 
memory stores layers of textures cut from the first cache with 
size equal to the viewport. So, a short-distance moving of the 
viewpoint will not result in that the viewport exceed the scope 
of texture stored in the first cache, particularly on lower 
resolution layers. We just need update the second cache from 
the first cache’s data. Only if the viewport is out of the scope, 
we reread data from the disk. So most timely, the viewport can 
slide on the texture in the first cache while the viewpoint 
moves. It will greatly avoid frequent data exchanging between 
the hard disk and the memory and improve the rendering 
speed. 

 

  

(a)               (b)  
Figure 7.    (a)  Position of the viewport   (b) Dual-cache structure 

      As is shown in Figure 7, MNST is first cache constituted 
by four texture patches, ABCD is the scope of the viewport, 
which can slides on MNST. The data in the viewport is also 
stored in the second cache, it will be bound and read into the 
video memory.  
      

C. Video Memory Updating 
Each movement of the viewpoint will result in the data 

updating of the viewport, this will greatly reduce the 
efficiency of the system, so here we apply L-district updating 
technology to update texture in video memory. 

 
Figure 8.  L-district updating process 

As shown in Figure 8, the rectangle window is a texture 
with size same to the viewport stored in the video memory. If 
the viewpoint changes, the data of the texture memory needs 
to be updated. Obviously, there is a common region between 
the old data and new data (the fixed region), this region does 
not change both before and after the updating, and just three 
regions A, B, C change, so we just change the data in L area as 
we need update the texture. This processing is shown in the 
third and fourth steps in figure 8, when the viewpoint moves to 
the right corner, data of regions A, B, C in step 3 must be 
updated. We copy A’s texture data to the bottom region, copy 
texture data of B to the left region, copy the data of C which 
locate in the top right corner to the bottom left corner. Thus we 
complete the data updating of the video memory. 

IV. IMAGE ENHANCEMENT 
In the texture mapping process, the use of multi-resolution 

technology lead to some loss of the details in terrain texture 
and introduce image blur and some match artifacts between 
different layers of texture image. We applied a wavelet-based 
image enhancement method [11] to enhance the texture before 
preprocess, which can increase the details of the texture, 
Figure 9.(b) shows the original texture with two different 
resolutions(left part is half resolution of right part). We 
enhanced the lower resolution part in this image as shown in 
figure 9.(a). We can find that the blurred image in (b) looks 
more clear. 

(a) 

(b) 
 

Figure 9.  (a) Enhanced texture (b) Original texture 

V. EXPERIMENT 
By using Visual C + + and OpenGL, we establish a 3D 

navigating system by using our method on a PC (Pentium 
(R) D 2.8GHz CPU, 1.00GB memory, NVIDIA 256MB video 
card.) DEM used to be tested is size of 1202 x 802, texture size 

viewpoin
t

fixed  
region 

viewpoint 

fixed  
region 



         

is 10000 × 6667. Each pixel occupies three bytes and viewport 
is size of 256 × 256(pixels). We establish cache 1 with 
seven layer and cache 2 with seven layer. All the storage 
space requires: 256 × 256 (texture pixels) × 7 (levels) +512 × 
512 (texture pixels) × 7 = 6.5MB, which is much less than 
Mipmap(shown in Table I). the results of the experiment is: the 
time of the data exchanging between disk and memory for one 
time is about 30 ms, memory separate updating time is about 
20 ms, L-area technology helps to short the updating time to 
about  8 ms . As is shown in Table II, The rate of display 
is about 53 fps. 

TABLE I.  THE  STORAGE  SPACE OF  MIPMAP AND OUR METHOD 

Method Mipmap Our Method 
First Cache Second Cache  5.25M 1.31M 

Total Space  365M 6.56M 
 

TABLE II.  FPS OF  SOME VIEWPORT SIZE OF OUR METHOD 

Window size Max Min Mean 

256×256(pixel) 60fps 46 fps 53 fps 

 

Figure 10.(a) shows a mesh terrain which has more than 
one levels, (b) is the corresponding  mapping terrain, the red 
lines mark different resolution images we used. We give 
another overall effect of the terrain in Figure 11. 

VI. CONCLUSION 
We do not use complicated calculations to complete disk 

documents’ retrieval, but adopt pattern matching method on the 
basis of pre-generating quadtree codes’ fixed model, which 
greatly increase the speed of retrieval and save time for the disk 
data’s obtaining. Quadtree and dual-cache is used for memory 
texture ‘s handling ,which reduce the frequency of data 
updating effectively. In the early state of the pretreatment, we 
weighted enhanced the textures, which effectively improves 
visual effect. The technology fusing double quadtree and dual-
cache achieved Clipmap terrain mapping perfectly. 
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