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Abstract—In this paper, addressed to the problems existed in 
the squeeze film damper (SFD) based on the dynamic pressure 
bearing in the rotational machinery, a new type of the hybrid 
squeeze film damper (HSFD) with piezoelectric crystal electro-
hydraulic active control is proposed. It is composed of dynamic 
pressure bearing and static pressure bearing. The effectiveness of 
HSFD is analyzed theoretically, and the simulation of the chaos 
dynamics characteristics is carried out. The results obviously 
show that the HSFD not only overcomes the bi-stable problem, 
but also restrains the shock in the rotor supporting system. 
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I.  INTRODUCTION  
SFD is an important component of damper in the rotor 

supporting system and has a good damping effect to restrain 
not a large amount of the unbalanced force. However, as a 
result of highly nonlinear in the change of oil film force 
adapting to the bearing eccentricity, the nonlinear dynamic 
actions such as bi-stable state, bifurcation and chaos will 
appear and have an impact on the work of aero-engine. 
Research on nonlinear dynamic activity and active control of 
bearing-rotor supporting system has become a focus in several 
cross-disciplinary fields which are among rotor dynamics, 
vibration and control.  

The representative studies of bearing-rotor dynamics and 
control are focused on the following aspects: 1) Nonlinear 
behavior analysis of SFD bearing-rotor system. Cooper firstly 
observed the phenomenon of the bi-stable state from 
experimental and analyzed the effect on the bi-stable state from 
the Jeffcott’s bearing-rotor system design parameters[1,5]; 
Meng and Xue analyzed the bi-stable state of SFD flexible 
bearing-rotor system with the retaining spring, and indicated 
that the nonlinear response of system presents as the Duffing’s 
nonlinearity, additional branch nonlinearity and the 
combination of the former and the latter[1,5]; Zhao and Hahn 
researched on the bifurcation and chaos dynamic characteristics 
of nonlinear SFD flexible bearing-rotor system by using shaft-

centre-locus, Poincare’s map and bifurcation diagram[8]. 2) 
Passivity damping device composed of the other type of 
dampers and SFD can restrain the SFD nonlinear affection and 
it can improve damping effects [4,10]. For example, Zhang and 
Yan proposed PSFD by combining power metallurgical ring 
and SFD, and supported the external ring using a metal rubber 
ring. 3) The vibration active control theory of the SFD and its 
implementation [1,5,4,10]. The implement methods of active 
control mainly contain auxiliary electromagnetic bearing 
method, alternating retaining-spring stiffness method, 
piezoelectric actuator controlling centering spring stiffness 
method, ER fluid supporting method and controllable hybrid 
bearing, etc. Among of them, the last one is most likely to be 
practically used as an active damping device on account of a 
few changes on SFD, small additional mass and good 
controllability. 

HSFD to be introduced in this study uses static pressure 
bearing to improve the dynamic characteristics of the SFD. As 
shown in Fig.1, it has 4 static pressure area, axial dynamic 
pressure area and rotational pressure area. By changing the 
pressure in the static pressure range, the controllability of 
HSFD can be achieved. 

 
Figure 1.  HSFD system working principle 
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indexes of the rotor-supporting system, such as phase trajectory, 
power spectrum, the Poincare’s mapping, and the overall 
bifurcation diagram. Section 3 discusses the appropriate control 
strategy to eliminate cycle times and chaotic motion based on 
the research results, so the active control on the bearing-rotor 
can be achieved. Finally, the conclusions and recommendations 
for further work are given. 

II. MATHEMATICAL MODELING OF HSFD SYSTEM 
Fig.1 is a principle diagram of HSFD and the rotor. It 

consists of a controllable hybrid bearing, a hydraulic half-
bridge driven by piezoelectric actuator, a controller and a 
power supply. The rigid rotor is supported on the device by a 
roller bearing with HSFD and a retaining spring. A 
controllable damping force can be formed to achieve active 
damping by the squeeze-film damper. It divides the regular oil 
chamber into four independent static pressure regions at 
rotational direction. For the sake of convenience, the following 
assumptions of HSFD are made as 

A1: The oil in HSFD is incompressible fluid with the same 
viscosity; 
A2: The fluid between axis and dynamic pressure region is 
laminar flow; 
A3: The depth of oil chamber is much larger than the 
clearance of damper and the pressure in the oil chamber is 
considered to be a constant; 
A4: The elastic deformation between the bearing and the 
bearing housing is negligible and flow inertia is negligible; 
A5: The configuration of HSFD is symmetric and the size 
of each oil chamber is identical. 

A. Pressure distribution equations 
    Based on the assumption of incompressible and oil film 
bearing theory in the reference [4], the Reynolds equation is 
given as follows 
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where R represents radius of oil film. Bθ φ φ= − , /e Cε =  
mean dimensionless eccentricity, C means clearance of radius, 

Bφ  means the motion angle of bearing axis, µ  means 
dynamic viscosity of lubricating oil, and p represents the 
pressure of oil film. 

The pressure distribution of HSFD can be divided into 3 
parts: static pressure region, rotation direction dynamic 
pressure region and axial direction dynamic pressure region. 
The pressure inside the static pressure range is constant. Each 
pressure ,c ip of the four ranges is as follows: 
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where 
Sp  represents the pressure of oil supply. The differential 

pressure 1p∆  of range 1 and 3 and the differential pressure 

2p∆  of range 2 and 4 are decided by the following equations. 

kp and kd respectively on behalf of proportion and differential 
coefficients. 
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In the polar system, Eq.(3) can be transformed  as follows  
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The pressure distributing of dynamic pressure range and 
axis can be decided based on solving Reynolds equations (1) 
after deciding each range’s pressure as the boundary 
conditions. 

In the area aza ≤≤−  of the HSFD, the pressure in the 
static pressure region is constant as ,c ip and the pressure in the 
dynamic pressure region can be solved by using the long 
bearing theory. In the area / 2a z L≤ ≤  of the HSFD, the 
pressure can be solved by using short bearing theory and the 
boundary condition of 0( , ) ( )z ap z pθ θ=± =  

and / 2( , ) 0z Lp z θ =± = . The pressure distribution is shown in 
Fig.2 and Fig.3. and 0 ( )p θ can be written as  
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According the pressure distribution assumed in Fig.3, solve the 
Eq.(1), we can get the pressure distribution ( )ip θ  as follows 
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where 1,2,3,4i = , 1 ( 1)
2 2i Bi π βθ φ= − + − , and β  is half of the 

distribution angle of static pressure region. Substituting 

2 2 2i Bi π βθ θ φ= = − −  into Eq.(6) yields  the coefficient 

1C expression as follows 
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In area of HSFD with a≤∣z∣≤L/2 , the pressure 
distribution can be solved as follows 
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Figure 2.  Pressure distribution of axial direction in HSFD 

 

 
Figure 3.   Pressure distribution of rotational direction in HSFD 

B. Solution of the instant oil film supporting force  
 The oil film forces of HSFD oil pressure can be determined 

when the oil film pressure of static pressure region decided by 
Renault equations is achieved. The oil film force of HSFD 
consists of 3 parts: static pressure oil film forces, axis direction 
dynamic pressure region forces and the rotational direction 
dynamics pressure region forces. The force components in the 
area of static pressure region and the dynamic pressure region 
can be respectively given as follows 
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where ( )ip θ  can be determined by Eq.(6). In the area of 
/ 2a z L≤ ≤  at axis direction, with the symmetry character, 

the oil film forces supplied by the oil film pressure forces can 
be determined by the equations as follows 
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Based on the above-analyzed results, the total oil film forces 
can be solved as r sr tr arF F F F= + + , and t st tt atF F F F= + + . 

C. Rotor Dynamics Equation 
The force diagram of rotor support system shows in Fig.4, 

Ob is center of oil film ring, jO is oil film journal center, cO is 
gravity center. The load can be got through the motion and 
force analysis: unbalanced exciting force caused by mass 
eccentricity, centrifugal inertia force brought by motion, oil 
film force and elastic restore force of bearing, and inertia force 
in journal center created by precession acceleration that around 
the oil film ring. 
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Figure 4.  Force analysis of a rotor with HSFD 

Assuming that the rotor speed is sω , v is mass relative 
eccentricity,  cme U=  is mass eccentricity, m is the rotor mass 
that lumped at the mid-point. By using free-body method to 
carry out the analysis to the action forces applied to rotor-
supporting system, the dynamical model is described as 
follows 
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Combining Eq.(11) with Eq.(2) to Eq.(10), yields the 
mathematical model of the overall HSFD system. 



         

III. DYNAMIC DIGITAL SIMULATION OF HSFD  

A. Procedure of the digital simulation  
Fig.5 shows the whole computing simulation process of 

HSFD dynamic characteristics. In the start of first calculation, 
a set of initial values 0 0 0 0, , ,B Bε ε φ φ  are taken into PD control 
Eq.(4) to confirm the initial pressure pc,i  in static pressure 
chamber, and then the oil film pressures  of every position can 
be solved through taking pc,i into Eq.(5) and Eq.(7). With that 
the oil film forces in static pressure chamber, rotational 
pressure range and axial pressure range are achieved in Eq.(8-
10). Afterward, taking the above three forces into Eq.(11) and 
the , , ,B Bε ε φ φ  could be got by solving second-order 
differential equations with Runge-Kutta method, then a new 
turn iteration process is started by taking the first solutions of 

, , ,B Bε ε φ φ  into Eq.(4). 

 
Figure 5.   Calculating procedure diagram 

The main parameters are as follows: damping 
ratio 0.0005ξ = , oil chamber numbers n=4, critical speed 

140cω π= rad/s, oil density 850ρ = kg/m3, 0.008µ = m2/s, 

a=0.012m, L=0.04m, R=0.03m, 61 10sp = × Pa, C=5.3 410−× m. 
Runge-Kutta algorithm is used to solve the dynamics 

equations. On step division, the computing experience in 
reference [3] will be consulted, that means 540 points will be 
picked out in rotor one cycle rotation and the instant data of the 
first cycles are abandoned in order to ensure steady state 
motion can be arrived. 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 
and rms do not have to be defined. Do not use abbreviations in 
the title or heads unless they are unavoidable. 

B. Parameter working scale discussion of HSFD active 
control program 

The computing results above show the bifurcation and chaos 
dynamics characteristics as the rotating speed ratio ω  is 
variation in the condition that the proportional control 
coefficient kp is fixed; besides, the same characteristics are 
existed whenω is fixed and kp is variation. So it is proved that 
the period-doubling and chaos motion can be completely 
eliminated to make the trace of rotor axial center always keep 
the state of limit loop as long as properly regulating coefficient 
kp , when in the condition of fixed rotating speed. It is very 
significant to enhance rotor speed and increase the fatigue 
lifespan. 

 
(a)                                                    (b) 

 
                     (c)                                                    (d) 

Figure 6.  Relationship between the solution types and parameter kp  

The whole computing process adopts MATLAB language 
program and divides rotor’s one rotation cycle into 540 steps 
to calculate. Taking ω =1.2 for example, the simulation will 
choose the initial value 

0ε =0.6(X=0.6, Y=0) according to 
assumption of coordination circle precession, then to observe 
the solution through regulating the proportional control 
coefficient kp. Fig.6 (a)-(d) are the motion traces of rotor axial 
center in condition of the kp values to be 1.1,1.6,1.7,1.74 
respectively. There into, Fig.6(b) and (c) are trajectories of 2-
period solution and 4-period solution separately, and there may 
exists chaos solutions when on some ω  values and kp is in 
certain scale (e.g. kp=1.74). So it means that keeping the rotor 
dynamics states always be 1-period solution as long as 
choosing proper kp value scale in appropriate rotating speeds. 
For everyω  value, a corresponding kp interval which makes 
the rotor stay in the state of 1-period solution can be obtained, 
and Fig.7 shows the diagram. Rotor only stays in the state of 
1-period solution no matter which speed rotor has, when kp 
adopts values in the shadow area. 
 

 
 

Figure 7.  Proportional gain kp versus Rotational speed ratio ω when the axis 
centre trajectory keeps 1-preiod solution 
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In the implementation process, rotor rotating speed 

ratio is easily measured by speed sensor; and it is 
convenient to adjust the proportional coefficient of PD 
controller for the computer control system. This 
procedure is actually to determine a series of ω→kp maps. 
If ω→kp map is known, the active control of high speed 
rotor can be implemented in the condition of choosing 
proper coefficient kp according to the measured rotating 
speed ratio ω. 

IV. CONCLUSIONS 
In the paper, it is studied that rotor supporting system of 

squeeze-film damper with active control has two motion states 
of bifurcation and chaos by using the digital simulation for 
HSFD system. The complicated bifurcation and chaos 
dynamics characteristics of HSFD system have been analyzed 
by the quantitative and qualitative methods from the diagrams 
of phase traces and bifurcation charts. 

Furthermore, it is found that HSFD system also shows the 
bifurcation and chaos dynamics states in some fixed speed, as 
the proportional coefficient kp variation. So the motions of 2-
period and chaos in system can be eliminated and to make 
HSFD system stay in 1-period state, as long as choosing the 
proper proportional differential controller. Based on this, an 
active control idea for high speed rotor in HSFD system was 

put forward. It is significant to increase rotor working speed 
and fatigue lifespan and decrease body vibration. 
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